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Abstract

Neutral kaons can be treated as open systems, i.e. as subsystems immersed
in an external environment, generated either by the fundamental dynamics of
extended objects (strings and branes), or by matter fluctuations in a medium.
New, non-standard phenomena are induced at low energies, producing irre-
versibility and dissipation, whose physical description requires however some
care. Meson factories are suitable interferometric set-ups where these new ef-
fects can be experimentally studied with great accuracy.

1 Introduction

Standard quantum mechanics usually deals with closed physical systems, i.e.

with systems that can be considered isolated from any external environment.

The time-evolution of such systems is described by one-parameter groups of

unitary operators, U(t) = e−iHt, generated by the system hamiltonian H ; they

embody the reversible character of the dynamics.

This description is however just an approximation, valid when the action

of the external world on the system under study can be considered vanishingly

small. On the contrary, when a system S interacts with an environment E in

a non-negligible way, it must be treated as an open quantum system, namely

as a subsystem embedded within E , exchanging with it energy and entropy,

and whose time-evolution is irreversible.1 Being closed, the total system S + E
1The literature on the theory of open quantum systems and their phe-

nomenological applications is large. General reviews and monographs on the
topic can be found in Refs.[1-17].



evolves in time with the unitary dynamics generated by the total hamiltonian

Htot, that can always be written as:

Htot = HS +HE +H ′ . (1)

In this decomposition, HS is the hamiltonian driving the dynamics of S in

absence of the environment, HE describes the internal evolution of E , while H ′

takes into account the interaction between subsystem and environment.

In many instances, one is interested in the dynamics of the subsystem S
alone and not in the details of the E motion; one can then eliminate (i.e. sum

over) the environment degrees of freedom. The resulting time-evolution for S
turns out to be rather involved: it can not anymore be described in terms of

a unitary evolution. Indeed, representing the states of S in terms of density

matrices, the map transforming the initial state ρ(0) into the final one ρ(t) is

given by:

ρ(0) ≡ TrE
[
ρS+E

]
7→ ρ(t) ≡ TrE

[
e−iHtot t ρS+E e

iHtot t
]
, (2)

where ρS+E is the density matrix representing the initial state of the total

system, while TrE constitutes the trace operation over the environment degrees

of freedom.2 Due to the exchange of energy as well as entropy between S and

E , the evolution map ρ(0) → ρ(t) gives rise in general to nonlinearities and

memory effects, and can not be described in closed form.

Nevertheless, the situation greatly simplifies when the interaction between

subsystem and environment can be considered to be weak. In this case, physi-

cally plausible approximations lead to reduced dynamics ρ(0) → ρ(t) ≡ γt[ρ(0)]

that involve only the S degrees of freedom: they are represented by linear maps

γt, that are generated by master equations. Such reduced dynamics provides

an effective description of how E affects the time-evolution of S, and typically

gives rise to dissipative and noisy effects.1) − 9)

However, not all time-dependent linear maps γt can represent suitable

reduced dynamics: very basic physical requirements need to be satisfied. Al-

though the dynamics is no longer reversible, forward in time composition should

2In absence of initial correlations between S and E , a situation commonly
encountered in many physical applications, it can be written in factrorized
form: ρS+E = ρ(0)⊗ ρE , where ρE is the density matrix representing the state
of the environment.



be guaranteed: γs ◦ γt = γt+s, for all positive times s, t; the one-parameter

(≡ time) family of maps {γt} is then said to be a semigroup. Further, γt

should preserve probability and positivity.1) − 7) Indeed, in order to represent

a physical state of the subsystem S, a density matrix ρ must be a positive

operator, since its eigenvalues have the meaning of probabilities; this is at the

root of the statistical interpretation of quantum mechanics. The time evolu-

tion ρ(0) 7→ ρ(t) = γt[ρ(0)] must then preserve this fundamental property, and

therefore map a positive initial ρ(0) into a positive final ρ(t). Such a property

of the linear transformation γt is called positivity.

Apparently, positivity seems sufficient to assure the physical consistency

of the reduced dynamics. In reality, the structure of quantum mechanics re-

quires a more stringent requirement to be satisfied, that of complete positiv-

ity. 1) − 8) This property guarantees the positivity not only of γt but also of

the dynamics of a larger system built with two equal, mutually non interacting

systems S, immersed in the same external environment; as we shall see, such

a situation is precisely that of correlated neutral kaons coming from the de-

cay of a φ meson. The dynamics of this enlarged system is then described by

Γt = γt ⊗ γt. Positivity of Γt means complete positivity of the map γt.
18) It

is important to note that this property is intimately related to entanglement,

i.e. to the possibility that the initial state of the compound subsystem S + S
exihibits quantum correlations.6), 19)

A family of one-parameter linear maps γt that satisfy all the above men-

tioned properties, including complete positivity, forms a so-called quantum dy-

namical semigroup.1) − 8) In the regime of weak coupling between subsystem

and environment, they represent the most general realization of a dissipative

reduced dynamics compatible with the probabilistic interpretation of quantum

mechanics.20)− 26), 6)

This description of the open quantum systems turns out to be very

general. Although originally developed in the framework of quantum op-

tics, 10) − 16) it has been successfully applied to model very different sit-

uations, in atomic and molecular physics, quantum chemistry, solid state

physics. 1) − 9), 17) Further, it has been recently applied to the study of irre-

versibility and dissipation in the evolution of various particle systems, involv-

ing atoms, 27) neutrons, 28), 29) photons, 30) − 33) neutrinos 34) − 36) and

in particular neutral mesons. 37) − 52)



In standard treatments, these systems are usually considered as closed;

once more, this is justified only in an idealized situation. Indeed, quantum grav-

ity effects at Planck’s scale or more in general, the dynamics of fundamental, ex-

tended objects (strings and branes) are expected to act as an effective environ-

ment, inducing non-standard, dissipative effects at low energies.53)− 56), 44)

Similar effects are also produced when neutral kaons or neutrinos travel inside a

fluctuating matter medium; in this case, due to the interactions between these

elementary particles and the scattering matter centers, the medium plays the

role of an environment producing noise and decoherence.36), 52)

These new phenomena are nevertheless expected to be very small; they are

suppressed by at least one inverse power of the Planck mass, in the case of grav-

itational or stringy effects, while in presence of matter fluctuations they appear

to be second order with respect to ordinary regeneration or oscillation effects.

In spite of this, interesting bounds on some of the constants parametrizing

the dissipative effects have been already obtained using available experimental

data, and improvements are expected in the future.

In this respect, dedicated neutral meson experiments at meson factories,

appear to be particularly promising. Indeed, as we shall see in the follow-

ing, suitable neutral meson observables turn out to be particularly sensitive to

the new, dissipative phenomena, so that their presence can be experimentally

probed quite independently from other, non-standard effects.

2 Positivity and complete positivity

The evolution and decay of the neutral kaon system can be effectively modeled

by means of a two-dimensional Hilbert space.57)− 60) A kaon state is then

described by means of a 2 × 2 density matrix ρ, i.e. a positive hermitian

operator (with real, nonnegative eigenvalues) and constant trace.

The evolution in time of the kaon system can then be formulated in terms

of a linear master equation for ρ; it takes the general form:1)− 7)

∂ρ(t)

∂t
= −iHeff ρ(t) + iρ(t)H†

eff
+ L[ρ(t)] . (3)

The first two terms on the r.h.s. of this equation are the standard quantum

mechanical ones: they contain the effective hamiltonian Heff = M − iΓ/2,

which includes a non-hermitian part, characterizing the natural width of the

kaon states.



The entries of this matrix can be expressed in terms of the complex pa-

rameters ǫS , ǫL, appearing in the eigenstates of Heff ,

|KS〉 =
1

(1 + |ǫS|2)1/2
(|K1〉+ǫS |K2〉) , |KL〉 =

1

(1 + |ǫL|2)1/2
(ǫL|K1〉+|K2〉) ,

(4)

with |K1,2〉 = (|K0〉±|K0〉)/
√

2, and the four real parameters mS , γS and mL,

γL, the masses and widths of the states in (4), characterizing the eigenvalues

of Heff : λS = mS − i
2
γS , λL = mL − i

2
γL. For later use, we introduce the

following positive combinations: ∆Γ = γS − γL, ∆m = mL − mS , as well

as the complex quantities Γ± = Γ ± i∆m and ∆Γ± = ∆Γ ± 2i∆m, with

Γ = (γS + γL)/2. One easily checks that CPT -invariance is broken when

ǫS 6= ǫL, while a nonvanishing ǫS = ǫL implies violation of CP symmetry.

On the other hand, the additional piece L[ρ] in the evolution equation

(3) encodes effects leading to dissipation and irreversibility: these are non-

standard phenomena that in general give rise to further violations of CP and

CPT symmetries.61), 51)

It should be stressed that in absence of the piece L[ρ], pure states (i.e.

states of the form |ψ〉〈ψ|) are transformed by the evolution equation (3) back

into pure states, even though probability is not conserved, a direct consequence

of the presence of a non-hermitian part in the effective hamiltonian Heff . Only

when the extra piece L[ρ] is also present, ρ(t) becomes less ordered in time

due to a mixing-enhancing mechanism, producing possible loss of quantum

coherence.

The explicit form of the linear map L[ρ] can be uniquely fixed by taking

into account the basic physical requirements that the complete time evolution,

γt : ρ(0) 7→ ρ(t), generated by (3) needs to satisfy. As mentioned in the

introductory remarks, in order to represent a physically consistent dynamical

evolution, the one-parameter family of maps γt should obey the semigroup

composition law, γt[ρ(s)] = ρ(t + s), for t, s ≥ 0, while transforming density

matrices into density matrices, in particular preserving their positivity.

One can show that the semigroup request fixes L[ρ] to be of Kossakowski-

Lindblad form: 20)

L[ρ] =

3∑

i,j=1

Cij

[
σjρ σi −

1

2

{
σiσj , ρ

}]
, (5)

where σi, i = 1, 2, 3 are the Pauli matrices, while [Cij ] is a 3× 3 matrix, called



the Kossakowski matrix. We shall consider dissipative evolutions for which the

von Neumann entropy, S = −Tr[ρ lnρ], is increasing; this is a condition that

is very well satisfied in usual phenomenological treatments of open systems

consisting of elementary particles. In this case, the matrix [Cij ] turns out to

be real symmetric: its six entries parametrize the noise effects induced by the

presence of the environment.1), 6)

The condition that the map γt generated by (3) preserve the positivity

of the single kaon state ρ for all times gives further constraints on these real

parameters. 29) In order to explicitly show this, it is convenient to decompose

the density matrix ρ along the Pauli matrices σj , j = 1, 2, 3, and the identity

matrix σ0, and represent ρ as a 4-dimensional ket-vector |ρ〉,

ρ =

(
ρ1 ρ3

ρ4 ρ2

)
=

3∑

µ=0

ρµσµ 7−→ |ρ〉 =




ρ0

ρ1

ρ2

ρ3


 (6)

ρ0 =
ρ1 + ρ2

2
, ρ1 =

ρ3 + ρ4

2
, ρ2 =

ρ4 − ρ3

2i
, ρ3 =

ρ1 − ρ2

2
. (7)

Then, the action of the linear operator L[·] in (5) on the state ρ can be equiv-

alently expressed as the action of a real symmetric 4 × 4 matrix
[
Lµν

]
on the

column vector |ρ〉. This matrix can be parametrized by six real constants a, b,

c, α, β, and γ as follows:

[
Lµν

]
= −2




0 0 0 0
0 a b c
0 b α β
0 c β γ


 . (8)

We know that any hamiltonian evolution preserves the positivity of the density

matrices; then, one can limit the discussion to the contribution of the dissipative

piece L only.3 Since Tr(L[ρ]) = 0, as easily checked from the expression in (5),

we have ρ0(t) = ρ0(0). Further, the positivity of the spectrum of ρ is preserved

3Let us indicate by ωt the time-evolution generated by (3) in absence of
the dissipative term L, and λt the one generated just by L in absence of the
hamiltonian term. The complete evolution γt can then be expressed via the

Lie-Trotter formula as: γt = limn→∞(ωt/n ◦ λt/n)n. 7) Being the evolution ωt
positive, the positivity properties of γt are directly connected to those of λt.



at all times if and only if Det(ρ) = (ρ0)2−∑3

j=1
(ρj)2 ≥ 0. We now set ρ ≡ ρ(0)

and use
dDet(ρ(t))

dt

∣∣∣
t=0

= −2

3∑

ij=1

[L ]ij ρ
iρj . (9)

If |ρ〉 = (ρ0, ρ1, ρ2, ρ3) is a pure state, Det(ρ) = 0 and the right hand side of (9)

cannot be negative, otherwise a negative eigenvalue would appear for t > 0. By

varying ρj while keeping
∑
j(ρ

j)2 = (ρ0)2, from
∑3

ij=1
[L ]ij ρ

iρj ≥ 0 one gets

that the real symmetric submatrix [L ]ij must necessarily be positive, therefore

that the following inequalities must be fulfilled,






a ≥ 0
α ≥ 0
γ ≥ 0

,






aα ≥ b2

aγ ≥ c2

αγ ≥ β2

, Det([Lij ]) ≥ 0 . (10)

These conditions are also sufficient for preservation of positivity. In fact, since

−[Lij] ≥ 0, we can write −[L] = B2, with B a symmetric 3 × 3 matrix. Then,

the term in the right hand side of the equality in (9) is given by ‖B|ρ〉‖2. Let

us suppose Det[ρ(t′)] < 0, at time t′ > 0; it follows that Det[ρ(t∗)] = 0 at some

time t∗ such that 0 ≤ t∗ < t′. Thus, B|ρ(t∗)〉 = 0, otherwise Det[ρ(t)] > 0

for t ≥ t∗; but this implies |ρ̇(t∗)〉 = L |ρ(t∗)〉 = −B2|ρ(t∗)〉 = 0. Therefore,

for all t > t∗, |ρ(t)〉 = |ρ(t∗)〉, and the dissipative dynamics generated by L is

positivity-preserving.

Although the conditions (10) guarantee that the evolution ρ(0) 7→ ρ(t) ≡
γt[ρ(0)] of a single neutral kaon is physically consistent, more stringent con-

straints are needed in order to get a positive dissipative evolution when corre-

lated kaons produced in a φ-meson decay are considered.39), 41), 45)

Since the φ-meson has spin 1, the two neutral spinless kaons produced in

a φ-decay, and flying apart with opposite momenta in the meson φ rest-frame,

are produced in an antisymmetric state:

|ψA〉 =
1√
2

(
|K1,−p〉 ⊗ |K2, p〉 − |K2,−p〉 ⊗ |K1, p〉

)
. (11)

Their corresponding density matrix ρA ≡ |ψA〉〈ψA| is antisymmetric in the

spatial labels. By means of the projectors onto the CP eigenstates,

P1 = |K1〉〈K1| , P2 = |K2〉〈K2| , (12)



and of the off-diagonal operators,

P3 = |K1〉〈K2| , P4 = |K2〉〈K1| , (13)

we can write

ρA =
1

2
(P1 ⊗ P2 + P2 ⊗ P1 − P3 ⊗ P4 − P4 ⊗ P3) . (14)

The time evolution of a system of two correlated neutral K-mesons, ini-

tially described by ρA, can be analyzed using the sigleK-meson dynamics so-far

discussed. Indeed, as in standard quantum mechanics, it is natural to assume

that, once produced in a φ decay, the kaons evolve in time each according to

the map γt generated by (3), (5).4

Within this framework, the density matrix that describes a situation in

which the first K-meson has evolved up to proper time t1 and the second up

to proper time t2 is given by:

ρA(t1, t2) ≡
(
γt1 ⊗ γt2

)[
ρA

]
=

1

2

[
P1(t1) ⊗ P2(t2)

+ P2(t1) ⊗ P1(t2) − P3(t1) ⊗ P4(t2) − P4(t1) ⊗ P3(t2)
]

(15)

where Pi(t1) and Pi(t2), i = 1, 2, 3, 4, represent the evolution according to (3)

of the initial operators (12), (13), up to the time t1 and t2, respectively. In

the following, we shall set t1 = t2 = t, and simply call ρA(t) ≡ ρA(t, t) the

evolution of (14) up to proper time t.

Consider then the state |ψ+〉 which is as in (11) but with a plus sign be-

tween the two terms in parenthesis; it is an entangled state which is orthogonal

to |ψA〉. The following quantity

∆(t) = 〈ψ+|ρA(t)|ψ+〉 , (16)

being a mean value, must be positive for all times. In particular, since ∆(0) =

0, its time evolution must start at t = 0 with a positive derivative, otherwise

4We stress that this choice is the only natural possibility if one requires that
after tracing over the degrees of freedom of one particle, the resulting dynamics
for the remaining one be positive, of semigroup type and independent from the
initial state of the other particle.



it would become negative as soon as t > 0. In other terms, presevation of

positivity of the density matrix ρA(t) implies the condition

d

dt
∆(0) ≡ a+ α− γ ≥ 0 . (17)

By substituting for |ψ+〉 the most general entangled state orthogonal to |ψA〉,
one can show that the preservation of the positivity of the matrix ρA(t) de-

scribing correlated kaons is equivalent to the following inequalities:

2R ≡ α+ γ − a ≥ 0 , RS ≥ b2 , (18)

2S ≡ a+ γ − α ≥ 0 , RT ≥ c2 , (19)

2T ≡ a+ α− γ ≥ 0 , ST ≥ β2 , (20)

RST ≥ 2 bcβ +Rβ2 + Sc2 + Tb2 , (21)

that in turn are equivelent to the positivity of the Kossakowski matrix Cij

appearing in (5).

These constraints on the dissipative parameters a, b, c, α, β, γ are more

stringent than those in (10); indeed, with the above conditions the master equa-

tion (3) generates not just a positive, but a completely positive evolution.1)− 6)

This conclusion can be formalized in a Theorem: 18) the dynamics γt⊗ γt, de-

scribing the dissipative evolution of correlated neutral kaons, is positive if and

only if the single kaon dynamics γt is completely positive.

It should be stressed that it is the intimate structure of quantum mechan-

ics, i.e. the existence of entangled states, that require any physically consistent

dissipative dynamics to be completely positive. 6) Any attempt to model noisy

effects induced by a weakly coupled external environment via a positive, but not

completely positive time evolution will unavoidably lead to unphysical results.

As we shall see in the next section, such a conclusion can be experimentally

exposed at a φ-factory.

3 Test of complete positivity at a φ-factory

As discussed in the previous section, a consistent statistical description of the

initial single kaon density matrix ρ as a state requires the positivity of its

eigenvalues that are interpreted as probabilities: for this description to hold

for all times, the evolution map γt must be positive, i.e. it must preserve the

positivity of the eigenvalues of ρ(t), for any t.



On the other hand, complete positivity is a more stringent condition; it

guarantees the positivity of the eigenvalues of density matrices describing states

of correlated kaons, as those produced in φ-meson decays. We have seen that

states of entangled, but not dynamically interacting kaons, evolve according

to the factorized product γt ⊗ γt of the single-kaon dynamical maps. If γt is

not completely positive, there are instances of correlated states that develop

negative eigenvalues; in such cases, their statistical and physical interpretation

is lost.

Therefore, the issue of complete positivity is not only theoretical, but can

be given experimental relevance. Indeed, in the following we shall give explicit

examples of experimentally accessible kaon observables, defined to be positive,

that would return, in absence of complete positivity, negative mean values. 45)

Let us consider again the dissipative evolution of two initially correlated

neutral kaons coming from the decay of a φ-meson, as given in (15), with

t1 = t2 = t. Recalling the definitions (12), (13), the statistical description of

ρA(t) ≡ ρA(t, t) allows us to give a meaningful interpretation of the quantities

Pij(t) = Tr[ρA(t)Pi ⊗ Pj ] , i, j = 1, 2 , (22)

as the probabilities to have one kaon in the state |Ki〉 at proper time t, while

the other is in the state |Kj〉 at the same proper time. When i, j = 3, 4, the

quantities Pij(t) are complex and do not represent directly joint probabilities.

However, as we shall see, they can still be obtained from data accessible to

experiments.

On the basis of rough dimensional estimates,54), 55), 44) the parameters

a, b, c, α, β and γ appearing in (8) are expected to be very small, since they

are suppressed by at least one power of a very large energy scale, the one

that characterizes the dynamics of fundamental objects (strings or branes).

Assimilating this scale with the Planck mass MP , one finds that the above

dissipative parameters, being of dimension of energy, can be estimated to be at

most of order m2
K/MP ∼ 10−19 GeV, with mK the kaon mass. This value is

roughly of the same order of magnitude of ǫS∆Γ and ǫL∆Γ; therefore, in finding

explicit solutions of the evolution equation (3) for the kaon density matrix

ρ(t) one can use an expansion in all these small parameters, and approximate

expressions for the entries of ρ(t) can be explicitly worked out.38), 41)



Up to first order in all small parameters, one then finds:

P11(t) =
γ

∆Γ
e−2Γt

(
1 − e−∆Γt

)
, (23)

P12(t) =
e−2Γt

2
, (24)

P13(t) = 2 e−2Γt c+ iβ

∆Γ+

(
1 − e−t∆Γ+/2

)
, (25)

P22(t) =
γ

∆Γ
e−2Γt

(
e∆Γt − 1

)
, (26)

P23(t) = 2 e−2Γt c+ iβ

∆Γ−

(
1 − et∆Γ−/2

)
, (27)

P33(t) = e−2Γt 2b+ i(α− a)

2∆m

(
1 − e−2it∆m

)
, (28)

P34(t) = −e
−2Γt

2

(
1 − 2(α+ a− γ)t

)
. (29)

The remaining quantities Pij(t) can be derived from the previous expressions

by using the following properties:

Pij(t) = Pji(t) , i, j = 1, 2, 3, 4 , (30)

Pi3(t) = P∗
i4(t) , i = 1, 2 , (31)

P44(t) = P∗
33(t) . (32)

Putting a = b = c = α = β = γ = 0, one obtains the standard quantum me-

chanical effective description that evidentiates the singlet-like anti-correlation

in ρA(t): Pii(t) ≡ 0.

We emphasize that none of the above expressions contain the standard

CP , CPT -violating parameters ǫS, ǫL. This fact makes possible, at least in

principle, a direct determination of the non-standard parameters irrespectively

of the values of ǫS , ǫL; one needs to fit the previous expressions of the quantities

Pij(t) with actual data from experiments at φ-factories.

To be more specific, we shall now explicitly show how the quantities Pij
can be directly related to frequency countings of decay events. First, notice

that, given any single-kaon time-evolution ρ 7→ ρ(t), the matrix elements of

the state ρ(t) at time t can be measured by identifying appropriate orthogonal

bases in the two-dimensional single kaon Hilbert space. The choice of the

CP -eigenstates |K1〉 , |K2〉 is rather suited to experimental tests. Indeed,

since a two-pion state has the same CP eigenvalue of |K1〉, the probability



Pt(K1) = 〈K1|ρ(t)|K1〉 of having a kaon state K1 at time t is directly related

to the frequency of two-pion decays at time t. Possible direct CP violating

effects, the only ones allowing K2 → 2π, can be safely neglected; they are

proportional to the phenomenological parameter ε′, that has been found to be

very small. 62)

On the other hand, while the decay state π0π0π0 has CP = −1, the state

π+π−π0 may have CP = ±1. Thus, the probability Pt(K2) = 〈K2|ρ(t)|K2〉 to

have a kaon state K2 at time t is not as conveniently measured by counting

the frequency of the three-pion decays. To avoid the difficulty, the following

strangeness eigenstates can be used:

|K0〉 =
|K1〉 + |K2〉√

2
, |K0〉 =

|K1〉 − |K2〉√
2

. (33)

Then, the probabilities Pt(K
0) = 〈K0|ρ(t)|K0〉 and Pt(K0) = 〈K0|ρ(t)|K0〉,

that the kaon state at time t be a K0, respectively a K0, may be experimentally

determined by counting the semileptonic decays K0 7→ π−ℓ+ν, respectively

K0 7→ π+ℓ−ν, the exchanged decays being forbidden by the ∆S = ∆Q rule.

(In the Standard Model, this selection rule is expected to be valid up to order

10−14. 63)) Further, the probability Pt(K2) = 〈K2|ρ(t)|K2〉 of having a kaon

state K2 at proper time t can be expressed as Pt(K2) = Pt(K
0) + Pt(K0) −

Pt(K1), by writing

|K2〉〈K2| = |K0〉〈K0| + |K0〉〈K0| − |K1〉〈K1| . (34)

Hence, Pt(K2) can be measured by counting the frequencies of semileptonic

decays and of decays into two pions.

In order to measure the off-diagonal elements 〈K1|ρ|K2〉, 〈K2|ρ|K1〉, we

use the identity

|K0〉〈K0| − |K0〉〈K0| = |K1〉〈K2| + |K2〉〈K1| , (35)

and extract |K1〉〈K2| from it. To do this, we need a third orthonormal basis

of vectors whose projectors are measurable observables in actual experiments.

An interesting possibility is based on the phenomenon of kaon-regeneration (see

Refs.[64, 65] and references therein). The idea is to insert a slab of material

across the neutral kaons path; the interactions of the K0, K0 mesons with the

nuclei of the material “rotate” in a known way the initial kaon states entering



the regenerator into new ones. As initial states, consider the orthogonal vectors

|K̃S〉 =
|K1〉 − η∗|K2〉√

1 + |η|2
, |K̃L〉 =

η|K1〉 + |K2〉√
1 + |η|2

, (36)

where η is a complex parameter which depends on the regenerating material.

By carefully choosing the material and the tickness of the slab, one can tune

the modulus and phase of η in such a way to completely suppress the K̃L

component and to regenerate the K̃S state into a K1, just outside the material

slab. Thus, the probability Pt(K̃S) = 〈K̃S |ρ(t)|K̃S〉 that a kaon, impinging

on a slab of regenerating material in a state ρ(t) at time t, be a K̃S , can

be measured by counting the decays into 2π just beyond the slab. Now, the

projector onto the state |K̃S〉 reads

|K̃S〉〈K̃S | =
1

1 + |η|2 |K1〉〈K1| +
|η|2

1 + |η|2 |K2〉〈K2|

− η

1 + |η|2 |K1〉〈K2| −
η∗

1 + |η|2 |K2〉〈K1| . (37)

Then, from (33)–(35) and (37) it follows that

|K1〉〈K2| = ζ1 |K1〉〈K1| + ζ2 |K̃S〉〈K̃S |
+ ζ3 |K0〉〈K0| + ζ4 |K0〉〈K0| , (38)

where

ζ1 =
1 − |η|2
2iIm(η)

, ζ2 = − 1 + |η|2
2iIm(η)

, (39)

ζ3 =
|η|2 − η∗

2iIm(η)
, ζ4 =

|η|2 + η∗

2iIm(η)
. (40)

In this way, the determination of the off-diagonal elements of ρ(t) amounts to

counting the frequencies of decays into two pions with or without regeneration

and the frequencies of semileptonic decays:

〈K1|ρ(t)|K2〉 = ζ1 Pt(K1) + ζ2 Pt(K̃S)

+ ζ3 Pt(K
0) + ζ4 Pt(K0) . (41)

The application of these results to the case of correlated kaons is now

straightforward. For sake of compactness, we identify the various kaon states



with the projections Qµ, µ = 1, 2, 3, 4, where:

Q1 = |K1〉〈K1| , Q3 = |K0〉〈K0| , (42)

Q2 = |K̃S〉〈K̃S | , Q4 = |K0〉〈K0| . (43)

As discussed, these operators can be measured by identifying 2π final states,

in absence and presence of a regenerator (Q1 and Q2), and semileptonic decays

(Q3 and Q4); the same holds for the projectors in (12) and (13), since:

P1 = |K1〉〈K1| ≡ Q1 , (44)

P2 = |K2〉〈K2| = Q3 +Q4 −Q1 , (45)

P3 = |K1〉〈K2| ≡ P †
4 =

4∑

µ=1

ζµQµ . (46)

Further, we denote by Pt(Qµ, Qν) the probability that, at proper time t after a

φ-decay, the two kaons be in the states identified by Qµ and Qν , respectively.

Then, the determination of the quantities Pij(t) reduces to measuring joint

probabilities, i.e. to counting frequencies of events of certain specificied types.

Indeed, one explicitly finds:

P11(t) = Pt(Q1, Q1) , (47)

P12(t) = Pt(Q1, Q3) + Pt(Q1, Q4) − Pt(Q1, Q1) , (48)

P13(t) =
4∑

µ=1

ζµ Pt(Q1, Qµ) , (49)

P22(t) = Pt(Q1, Q1) + Pt(Q3, Q3) + Pt(Q4, Q4)

+2
[
Pt(Q3, Q4) − Pt(Q1, Q4) − Pt(Q1, Q4)

]
, (50)

P23(t) =
4∑

µ=1

ζµ

[
Pt(Q3, Qµ) + Pt(Q4, Qµ) − Pt(Q1, Qµ)

]
, (51)

P33(t) =

4∑

µ=1

4∑

ν=1

ζµ ζν Pt(Qµ, Qν) . (52)

As a result of the previous analysis, the inconsistencies of models without

complete positivity, besides being theoretically unsustainable, turn out to be

experimentally exposable. Let Pϕ+
and Pψ+

project onto the correlated states

|ϕ+〉 =
1√
2

(
|K1〉 ⊗ |K1〉 + |K2〉 ⊗ |K2〉

)
, (53)



|ψ+〉 =
1√
2

(
|K1〉 ⊗ |K2〉 + |K2〉 ⊗ |K1〉

)
, (54)

that are orthogonal to the state |ψA〉 in (11) produced in a φ decay. The

averages of these two positive observables with respect to the state ρA(t) read

Φ(t) = Tr[ρA(t)Pϕ+
] ≡ 〈ϕ+|ρA(t)|ϕ+〉

=
1

2

(
P11(t) + P22(t) + P33(t) + P44(t)

)
(55)

Ψ(t) = Tr[ρA(t)Pψ+
] ≡ 〈ψ+|ρA(t)|ψ+〉

=
1

2

(
P12(t) + P21(t) + P34(t) + P43(t)

)
, (56)

and, as explained before, can be directly obtained by measuring joint proba-

bilities in experiments at φ-factories. On the other hand, (23)–(29) give, up to

first order in the small parameters,

Φ(t) = e−2Γt

[
γ

∆Γ
sinh(t∆Γ) +

b

∆m

(
1 − cos(2t∆m)

)

+
a− α

2∆m
sin(2t∆m)

]
, (57)

Ψ(t) = e−2Γt
(
a+ α− γ

)
t . (58)

Thus, Φ(0) = Ψ(0) = 0, whereas

dΦ(0)

dt
= a+ γ − α ,

dΨ(0)

dt
= a+ α− γ , (59)

are both positive because of conditions (19) and (20). More in general, the mean

values (55) and (56) are surely positive, for the complete positivity of the single-

kaon dynamical maps γt implies ρ(t) =
∑

j Vj(t) ρ V
†
j (t),1) − 6) where the Vj(t)

are 2 × 2 matrices such that
∑
j V

†
j (t)Vj(t) is a bounded 2 × 2 matrix.5 Then,

the complete evolution ρA → ρA(t) =
∑
i,j [Vi(t)⊗Vj(t)] ρA [V †

i (t)⊗V †
j (t)] will

never develop negative eigenvalues.

5Notice that, in absence of the extra contribution L in (3), the time evolution
ρ(t) is realized with a single matrix V , i.e. j = 1, and V1(t) = e−iHeff t; in other
words, in ordinary quantum mechanics the condition of complete positivity is
trivially satisfied.



On the other hand, if the single-kaon dynamical map ωt is not completely

positive, inconsistencies may emerge. As an example, take the phenomeno-

logical models studied in Refs.[55, 56], where the non-standard parameters a,

b, c are set to zero and α 6= γ, αγ ≥ β2. The corresponding dynamics is not

completely positive: the inequalities (18)–(21) are in fact violated. In this case,

one still has Φ(0) = Ψ(0) = 0, but

dΦ(0)

dt
= γ − α = −dΨ(0)

dt
. (60)

Therefore, one of the mean values (55), (56) starts assuming negative values

as soon as t > 0. The inconsistence is avoided only if α = γ, which is a

necessary condition for getting back the property of complete positivity. As

explictly discussed above, planned set-ups at φ-factories can measure, at least

in principle, the two mean values in (55) and (56) and therefore directly check

the positivity of the two combinations in (59), thus clarifying also from the

experimental point of view the need of complete positivity for the description

of the dissipative dynamics of neutral kaons.

4 Tests of dissipative effects in kaon dynamics

From the discussion of the previous section, it is apparent that a physically con-

sistent description of the dissipative dynamics of neutral kaons weakly coupled

to an external environment can be realized only through the use of completely

positive dynamical semigroups; these are generated by master equations of the

form (3) and (5), with a positive Kossakowski matrix C. Indeed, only evo-

lutions of this type satisfy the physical requirements that are at the basis of

the statistical interpretation of quantum mechanics, so that the eigenvalues of

the kaon density matrix can be correctly interpreted as probabilities. Mod-

elling dissipative kaon evolutions with linear maps that are not completely

positive will unavoidably lead to the appearence of negative values for some of

those probabilities when correlated kaons are involved, thus spoiling the phys-

ical consistency of the whole treatment. Indeed, only completely positive time

evolutions are compatible with the presence of entanglement. 6)

In view of these considerations, it is apparent that the form (3), (5) of

the kaon time-evolution is very general and quite independent from the detailed

mechanism leading to the phenomena of noise and dissipation, that can be of



gravitational, stringy or fluctuating medium origin. Indeed, the evolution of

any quantum open system, immersed in a weakly coupled environment can

be effectively modeled using quantum dynamical semigroups. In this respect,

the equations (3), (5) should be regarded as phenomenological in nature, and

therefore quite suitable to experimental test: any signal of non-vanishing value

for some of the parameters in (8) would certainly attest in a model independent

way the presence of non-standard, dissipative effects in kaon physics.

Physical observables of the neutral kaon system are associated with the

decays of the kaons into suitable final state f , typically pion states, and semilep-

tonic states. In the language of density matrices, these final decay states are

described by suitable hermitian operators Of ; taking the trace of these opera-

tors with ρ(t), solution of the master equation (3), (5), allows computing the

explicit time dependence of various experimentally relevant observables (e.g.

see Refs.[38, 40, 41, 51, 52]).6

For instance, the operators O+− and O00 that describe the π+π− and

2π0 final states have the form:

O+− ∼
[

1 r+−

r∗+− |r+−|2
]
, O00 ∼

[
1 r00
r∗00 |r00|2

]
. (61)

To lowest order in all small parameters, the complex constants r+− and r00,

can be written as:

r+− = ε− ǫL + ε′ , r00 = ε− ǫL − 2ε′ , (62)

where ε and ε′ are the familiar phenomenological parameters signaling direct

CP and CPT violating effects.57)− 60) Similar results hold for the matrices

Oπ+π−π0 , O3π0 , Oℓ− and Oℓ+ that describe the decays into π+π−π0, 3π0,

π+ℓ−ν̄ and π−ℓ+ν; for explicit expressions, see Refs.[39, 40, 50, 51].

With the help of these matrices, one can compute the time-dependence

of various useful observables of the neutral kaon system, like decay rates and

asymmetries. These quantities are accessible to the experiment, so that they

can be used to obtain bounds on the dissipative effects, encoded in the pa-

rameters in (8); using the most recent available results on single kaon experi-

6Similar appraoches are employed also in Refs.[55, 56, 66, 67], where how-
ever, as discussed in the previous section, a physically inconsistent time evolu-
tion is adopted.



ments, 62), 68), 69) one can indeed obtain estimates on some of them:

a ≤ 5.0 × 10−17 GeV ,

c ≤ 2.0 × 10−17 GeV ,

α ≤ 6.0 × 10−17 GeV , (63)

β ≤ 1.0 × 10−17 GeV ,

γ ≤ 22.0 × 10−20 GeV .

Unfortunately, the precision of the present experimental results on single

neutral kaons is not high enough, so that only rough upper bounds can be

obtained. Although more complete and precise data will surely be available

in the future, the most promising venues for studying the consequences of the

dissipative dynamics in (3), (5) are certainly the experiments on correlated

neutral kaons at φ-factories.

The typical observables that can be studied in such physical situations

are double decay rates, i.e. the probabilities that a kaon decays into a final

state f1 at proper time t1, while the other kaon decays into the final state f2

at proper time t2:

G(f1, t1; f2, t2) ≡ Tr
[(

Of1 ⊗Of2

)
ρA(t1, t2)

]
; (64)

as before, the operators Of1 and Of2 are the 2× 2 hermitian matrices describ-

ing the final decay states. By studying these observables in a high-luminosity

φ-factory it will be possible to determine the values of the non-standard pa-

rameters a, b, c, α, β, γ.7 For instance, the long time behaviour (t≫ 1/γS) of

the three pion probability gives direct informations on the parameter γ:

G(π+π−π0, t ;π+π−π0, t) ∼ γ

∆Γ
e−2γLt . (65)

Similarly, the small time behaviour of the ratio of semileptonic probabilities,

G(ℓ±, t; ℓ±, t)

G(ℓ±, t; ℓ∓, t)
∼ 2 a t , (66)

7As observed before, notice that the time-behaviour of these decay rates
is completely different from the one required by ordinary quantum mechanics,
which for instance predicts G(f, t; f, t) ≡ 0 for all final states f , due to the
antisymmetry of the initial state ρA.



is sensitive to the parameter a. 41)

However, much of the analysis at φ-factories is carried out using integrated

distributions at fixed time interval t = t1 − t2.
70) One then deals with single-

time distributions, defined by:

Γ (f1, f2; t) =

∫ ∞

0

dτ G(f1, τ + t; f2, τ) , t > 0 . (67)

Starting with these integrated probabilities, one can form asymmetries that

are sensitive to various parameters in the theory. A particularly interesting

example is given by the following observable, involving two-pion final states,

Aε′ (t) =
Γ (π+π−, 2π0; t) − Γ (2π0, π+π−; t)

Γ (π+π−, 2π0; t) + Γ (2π0, π+π−; t)
; (68)

it is used for the determination of the ratio ε′/ε. The clear advantage of

using the asymmetry Aε′ to determine the value of ε′/ε in comparison to the

familiar “double ratio” method, 62) is that, at least in principle, both real and

imaginary part can be extracted from the time behaviour of (68). 70) Due to

the presence of the dissipative parameters however, this appears to be much

more problematic than in the standard case; a meaningful determination of ε′/ε

is possible provided independent estimates on c, β and γ are obtained from the

measure of other independent asymmetries. This is particularly evident if one

looks at the large-time limit (t ≫ 1/γS) of (68):

Aε′(t) ∼ 3Re
(
ε′

ε

) |ε|2 + 2Re
(
εC/∆Γ+

)

|ε|2 + D − 6 Im
(
ε′

ε

) Im
(
εC/∆Γ+

)

|ε|2 + D ,

(69)

where

D =
γ

∆Γ
− 4

∣∣∣∣
C

∆Γ+

∣∣∣∣
2

+ 4Re
(
εC

∆Γ+

)
− 4Re

(
ǫLC

∆Γ

)
, (70)

with C = c+iβ; only when c = β = γ = 0, the expression in (69) reduces to the

standard result: Aε′ ∼ 3Re(ε′/ε). Therefore, if the non-standard, dissipative

parameters in (8) are found to be non-zero, even neglecting the contribution

from the imaginary part, the actual value of Re(ε′/ε) could be significantly

different from the measured value of the quantity Aε′/3. 46)

In conclusion, dissipative effects in the dynamics of both single and cor-

related neutral kaon systems could affect the precise determination of various

relevant quantities in kaon physics; dedicated experiments, in particular those



involving correlated kaons, will certainly provide stringent bounds on these dis-

sipative effects, and possibly allow a definite clarification of the role played by

complete positivity in open quantum system dynamics.
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