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Abstract

The possibility to test the basic assumptions of quantum field theories, and
in particular the CPT theorem, by means of unitarity relations in the neutral
kaon system (Bell-Steinberger relation) is reviewed. The present status of these
tests and their future prospects are also briefly outlined.

1 Introduction

The three discrete symmetries of charge conjugation (C), parity (P) and time
reversal (T) are known to be violated in nature, both separately and in any bi-
linear combination. Only CPT, namely the product of the three (in any order),
seems to be an exact symmetry in nature. This fact is not surprising: exact
CPT invariance is expected in any quantum field theory respecting the general
hypotheses of Lorentz invariance, locality and unitarity [1]. For this reason,
testing the validity of CPT invariance is equivalent to probe some of the most
fundamental assumptions on which the present description of particle physics
is based. Interestingly enough, these hypotheses are likely to be violated at
very high energy scales, where the quantum effects of gravitational interactions
cannot be ignored [2]. On the other hand, since we still miss a consistent theory
of quantum gravity, it is hard to predict at which level CPT-violating effects
may show up in experimentally accessible systems.



The neutral kaon system offers a unique possibility for phenomenological
studies of CPT invariance. One of the most significant tests is the one obtained
by means of the Bell-Steinberger (BS) relation [3]. This relation makes use of
unitarity (or the conservation of probability) to connect a possible violation
of CPT invariance in the time-evolution of the K0–K

0
system (mK0 �= m

K
0

and/or ΓK0 �= Γ
K

0) to the observable CP-violating interference of KL and KS

decays into the same final state f . Because of the involvement of the unitarity
hypothesis, the BS relation cannot be considered as model-independent test of
CPT invariance. However, this does not diminish the role of this relation in
testing the basic assumptions of quantum field theories (we recall that unitarity
is also one of the main hypothesis of the CPT theorem).

2 Theoretical framework

Within the Wigner-Weisskopf approximation, the time evolution of the neutral
kaon system is described by [4]

i
∂

∂t
Ψ(t) = HΨ(t) = (M − i

2
Γ)Ψ(t) , (1)

where M and Γ are 2 × 2 time-independent Hermitian matrices and Ψ(t) is a
two-component state vector in the K0–K

0
space. Denoting by mij and Γij the

elements of M and Γ in the K0–K
0

basis, CPT invariance implies

m11 = m22 (or mK0 = m
K

0) and Γ11 = Γ22 (or ΓK0 = Γ
K

0) . (2)

The eigenstates of eq. (1) can be written as

KS,L =
1√

2 (1 + |εS,L|2)
[
(1 + εS,L)K0 ± (1 − εS,L) K̄0

]
, (3)

εS,L =
−iIm (m12) − 1

2 Im (Γ12) ± 1
2

[
m

K
0 − mK0 − i

2

(
Γ

K
0 − ΓK0

)]
mL − mS + i(ΓS − ΓL)/2

= ε ± δ , (4)

such that δ = 0 in the limit of exact CPT invariance.
Unitarity allows us to express the four entries of Γ in terms of appropriate

combination of kaon decay amplitudes:

Γij =
∑

f

Ai(f)Aj(f)∗, (5)



where the sum runs over all the accessible final states. Using this decomposition
in eq. (4) leads to the BS relation: a link between Re(ε), Im(δ) and the physical
kaon decay amplitudes. In particular, without any expansion in the CPT-
conserving parameters and neglecting only O(ε) corrections to the coefficient
of the CPT-violating parameter δ, we find
[
ΓS + ΓL

ΓS − ΓL
+ i tan φSW

] [
Re(ε)

1 + |ε|2 − iIm(δ)
]

=
1

ΓS − ΓL

∑
f

AL(f)A∗
S(f) , (6)

where φSW = arctan[2(mL − mS)/(ΓS − ΓL)]. We stress that, contrary to
similar expressions which can be found in the literature, eq. (6) is exact and
phase-convention independent in the exact CPT limit: an evidence for a non-
vanishing Im(δ) resulting from this relation can only be attributed to violations
of: i) CPT invariance; ii) unitarity; iii) the time independence of M and Γ in
eq. (1).

The advantage of the neutral kaon system is that only few decay modes
give significant contributions to the r.h.s. in eq. (6): in practice, only the ππ(γ),
πππ and π�ν modes turn out to be relevant up to the 10−7 level. The product
of the corresponding decay amplitudes are conveniently expressed in terms of
the αi parameters defined below.

2.1 Two-pion modes

Starting from two pion states, we define

αi =
1

ΓS
〈AL(i)A∗

S(i)〉 = ηi BR(KS → i) , i = π0π0 , π+π−(γ) (7)

where π+π−(γ) denotes the inclusive sum over bremsstrahlung photons, and
〈〉 indicates the appropriate phase-space integrals. By construction, the ηi

appearing in eq. (7) can also be expressed in terms non-integrated amplitude
ratios: ηi = AL(i)/AS(i).

The contributions from π+π−γ direct-emission (DE) amplitudes not in-
cluded in the απ+π−(γ) parameter are encoded in

αππγDE = αππγE1−S + αππγE1−L + αππγDE×DE , (8)



where

αππγE1−S + αππγE1−L = (9)

=
1

ΓS
[〈AL(ππγ)A∗

S(ππγE1)〉 + 〈AL(ππγE1)A∗
S(ππγ)〉]

= ΔB(KS → ππγDE) η+− + (η+−γ − η+−) BR(KS → ππγ)

Here AL,S(ππγ) and AL,S(ππγE1) denote the leading bremsstrahlung and the
electric-dipole DE amplitudes, respectively. Their interference cannot be triv-
ially neglected. BR(KS → ππγ) indicates the branching fraction for a real
photon emission, with minimum photon-energy cut equivalent to the one used
in the corresponding η+−γ measurement. ΔB(KS → ππγDE) = BR(KS →
ππγ)exp − BR(KS → ππγ)th−IB is the deviation of the observed KS → ππγ

decay distribution from the one inferred from a pure bremsstrahlung spectrum.
We have generically denoted by αππγDE×DE the contribution arising from

the interference of two DE amplitudes (either electric or magnetic ones). Given
the strong experimental suppression of DE amplitudes, this term turns out to
be safely negligible up to the 10−8 level [5].

2.2 Three-pion modes

For the three pion states we define

αi =
1

ΓS
〈AL(i)A∗

S(i)〉 =
τKS

τKL

η∗
i BR(KL → i) i = 3π0 , π0π+π−(γ) . (10)

Note that in this case the amplitudes are not necessarily constant over the
phase space. As a result, the ηi appearing in eq. (10) should be interpreted as
appropriate Dalitz-plot averages. In practice, given the poor direct experimen-
tal information on η000, in the neutral case it turns out to be more convenient
to set a bound on |απ0π0π0 | by means of the relation

|απ0π0π0 |2 =
τKS

τKL

BR(KL → 3π0)BR(KS → 3π0) . (11)



2.3 Semileptonic channels

In the case of semileptonic channels, introducing the standard decomposition [6]

A(K0 → l+νπ−) = A0(1 − y) ,

A(K0 → l−νπ+) = A∗
0(1 + y∗)(x+ − x−)∗ ,

A(K̄0 → l−νπ+) = A∗
0(1 + y∗) ,

A(K̄0 → l+νπ−) = A0(1 − y)(x+ + x−) , (12)

assuming lepton universality, and expanding to first non-trivial order in the
small CP- and CPT-violating parameters, leads to

∑
πlν〈AL(πlν)A∗

S(πlν)〉 = 2Γ(KL → πlν) {Re(ε) − Re(y) − i [Im(x+) + Im(δ)]}
= 2Γ(KL → πlν) {(AS + AL)/4 − i [Im(x+) + Im(δ)]} . (13)

The dependence of Re(y) has been eliminated taking advantage of the relation
Re(ε) − Re(y) = (AS + AL)/4 [6], where AL,S are the observable semileptonic
charge asymmetries. The parameter Im(x+) can be measured by appropriate
time-dependent distributions [7], while Im(δ) is one of the two output of the BS
relation. In order to get rid of the explicit Im(δ) dependence, it is convenient
to define

απlν =
1

ΓS

∑
πlν

〈AL(πlν)A∗
S(πlν)〉 + 2i

τKS

τKL

BR(KL → πlν)Im(δ)

= 2
τKS

τKL

BR(KL → πlν) [(AS + AL)/4 − iIm(x+)] . (14)

2.4 Determination of Re(ε) and Im(δ)

The αi defined in eqs. (7), (10), (8), and (14) can be determined (or bounded)
in terms of measurable quantities. Taking into account these definitions (in
particular the non-standard expression of απlν), the solution to the unitarity
relation in eq. (6) is:

⎡
⎣ Re(ε)

1 + |ε|2
Im(δ)

⎤
⎦ =

1
N

[
1 + κ(1 − 2b) (1 − κ) tan φSW

(1 − κ) tan φSW −(1 + κ)

] [
ΣiRe(αi)
ΣiIm(αi)

]
,

(15)



where κ = τKS /τKL , b = BR(KL → π�ν), and

N = (1 + κ)2 + (1 − κ)2 tan2 φSW − 2bκ(1 + κ) . (16)

As anticipated, a non-vanishing Im(δ) resulting from this relation would
signal a major breakthrough in our understinding of fundamental interactions:
Im(δ) �= 0 could be attirbuted eiter to violations of CPT symmetry, or to
violations of unitary (including apparent violations due to undetected final
states), or to violations of the Wigner-Weisskopf approximation.

3 Present experimental status and future prospects

The experimental determination of the αi has recently been reviewed and up-
dated in Ref. [8], taking into account a series of new measurements of KL and
KS branching ratios by KLOE in conjunction with previous results by other
experiements. The complete updated list of inputs is summarized in Table 1.
As far as K → πlν amplitudes are concerned, the KLOE measurement of the
KS charge asymmetry and the PDG average of the KL asymmetry have been
combined with the time-dependent measurement of K0 and K

0
semileptonic

rates by CPLEAR [7]. This has allowed an improved determination of the
various parameters appering in K → πlν amplitudes (see Table 2), and in
particular of Im(x+), which is the main source of uncertainty in απlν .

A detailed discussion about the results for all the relevant αi can be found
in Ref. [8]. In Fig. 1 we show the two most representative examples, namely
απ+π− and απlν . Putting all the ingredients together, the values of Re(ε) and
Im(δ) obtained by means of the unitarity relation are (see Fig. 2):

Re(ε) = (159.6 ± 1.3) × 10−5 , Im(δ) = (0.4 ± 2.1) × 10−5 . (17)

Thanks to the new KLOE data, the error on Im(δ) is now completely dom-
inated by ππ states, and in particular by the the KL→π+π− channel. The
semileptonic term contributes only to about ∼ 10% of the error on Im(δ).

The limits on Im(δ) and Re(δ), which are perfectly compatible with exact
CPT invariance, can be translated into constrains on the K0–K0 mass and
width differences by means of the relation

δ =
i(mK0 − m

K
0) + 1

2 (ΓK0 − Γ
K

0)
ΓS − ΓL

cosφSWeiφSW [1 + O(ε)] . (18)



Table 1: Input values to the Bell-Steinberger relation used in Ref. [8]. For the
KLOE averages see Ref. [15].

Observable Value Source
τKS 0.08958±0.00005 ns PDG [9]
τKL 50.84±0.23 ns KLOE average

mL − mS (5.290 ± 0.016)× 109 s−1 PDG [9]
BR(KS→π+π−) 0.69186±0.00051 KLOE average
BR(KS→π0π0) 0.30687±0.00051 KLOE average
BR(KS → πeν) (11.77 ± 0.15)× 10−4 KLOE [10]
BR(KL→π+π−) (1.933 ± 0.021)× 10−3 KLOE average
BR(KL→π0π0) (0.848 ± 0.010)× 10−3 KLOE average

φ+− (43.4±0.7)◦ PDG [9]
φ00 (43.7±0.8)◦ PDG [9]

RS,γ (Eγ > 20MeV) (0.710 ± 0.016)× 10−2 E731 [11]
Rth−IB

S,γ (Eγ > 20MeV) (0.700 ± 0.001)× 10−2 KLOE MC [13]
|η+−γ | (2.359 ± 0.074)× 10−3 E773 [12]
φ+−γ (43.8±4.0)◦ E773 [12]

BR(KL→π+π−π0) 0.1262±0.0011 KLOE average
η+−0

(
(−2 ± 7) + i(−2 ± 9)

) × 10−3 CPLEAR [7]
BR(KL→3π0) 0.1996±0.0021 KLOE average
BR(KS→3π0) < 1.5 × 10−7 at 95% CL KLOE [14]

φ000 uniform from 0 to 2π
BR(KL → π�ν) 0.6709±0.0017 KLOE average

AL + AS (0.5 ± 1.0) × 10−2 K�3 average
Im(x+) (0.8 ± 0.7) × 10−2 K�3 average

The allowed region in the (mK0 − m
K

0), (ΓK0 − Γ
K

0) plane is shown in the
right panel of Fig. 2. The strong correlation reflects the high precision of Im(δ)
compared to Re(δ).

Since the total decay widths are dominated by long-distance dynamics, in
models where CPT invariance is a pure short-distance phenomenon it is useful
to consider the limit ΓK0 = Γ

K
0 . In this limit (i.e. neglecting CPT-violating

effects in the decay amplitudes), the following bounds on the neutral kaon mass
difference are obtained

−5.3 × 10−19 GeV < mK0 − m
K

0 < 6.3 × 10−19 GeV at 95 % CL . (19)



Table 2: Results of the combined (CPLEAR+KLOE+PDG) fit of K → πlν
amplitudes [8].

Amplitude Value Correlation coefficients
Re(δ) (3.4 ± 2.8) × 10−4 1
Im(δ) (−1.0 ± 0.7) × 10−2 -0.27 1
Re(x−) (−0.07 ± 0.25)× 10−2 -0.23 -0.58 1
Im(x+) (0.8 ± 0.7) × 10−2 -0.35 -0.12 0.57 1
AS + AL (0.5 ± 1.0) × 10−2 -0.12 -0.62 0.99 0.54 1
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Figure 1: Determination of απ+π− and απlν in the complex plane [8]. The two
ellipses represent the 68% and the 95% CL contours.

As often emphasized in the literature, this limit provide a significant constraint
on models where CPT violating effect scales linearly with the inverse of the
Plank mass (m2

K/mPlanck ∼ 10−19 GeV). While this fact should not be over
emphasized (in several models the power behavior in m2/mPlanck is not linear
and the proportionality coefficient is far from unity), there is no doubt that
this result is one of the most (if not the most) significant constraint on possible
violations of CPT symmetry. It would therefore be very interesting trying to
improve it in the future. To this purpose, the analysis of Ref. [8] demonstrates
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Figure 2: Left: allowed region at 68% and 95% C.L. in the Re(ε), Im(δ) plane.
Right: allowed region at 68% and 95% C.L. in the (mK0 −m
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plane.

that this is possible with new high-precision interference measurements of the
CP-violating phases of the ππ final states.
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