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Sezione di Torino, I-10125 Torino, Italy

Dedicated to the memory of R.H.Dalitz
from whom we learnt the ‘strangeness’ of kaon physics.

Abstract

Recent proposals aiming to confront Local Realistic theories with Quantum Me-
chanics by performing Bell tests with entangled neutral kaons, such as those
produced by φ decays at Daphne, are reviewed. Some difficulties appear be-
cause of the reduced number of useful, non–commuting kaonic observables and
the low efficiency of the strangeness measurements. The possibilities to over-
come this and other loopholes are analyzed.

1 Introduction

A classical book by R. H. Dalitz 1) offers an accurate description of the de-

velopment of the ‘strange’ particle physics since its origin in the 1950s. The

‘strangeness’ of their behavior was associated with the fact that these particles

were copiously produced in ordinary, non–strange particle reactions always in

pairs. Present day examples of such ‘associated productions’ are the electron–

positron and the s–wave proton–antiproton annihilations into the state

1√
2

[

|K0〉l|K̄0〉r − |K̄0〉l|K0〉r
]

(1)

consisting of two strange, neutral kaons which, after collimation, form a left–

and a right–moving beam as indicated by the subindexes. Independently, an-

other classical book by D. Bohm, ‘Quantum Theory’, appeared in 1951 2). The



nowadays famous gedanken experiment by Einstein, Podolsky and Rosen 3) was

discussed there in its simplest form, i. e., in terms of the singlet state formed

by two spin–1/2 objects which is quite similar to the two–kaon state (1). In

the Bohm singlet state, each spin–1/2 points both into any given spatial di-

rection and its opposite one; similarly, each particle in (1) is both a kaon and

an antikaon at the very same time. According to quantum mechanics, each

separate spin–1/2 particle or kaon in the two–particle states just considered

cannot be represented by a wave function or state vector; only the global sys-

tem, such as that in Eq. (1), has a definite state vector and is thus the single,

indivisible quantum. In both considered cases, apparently one has to deal with

a rather simple two–particle (bipartite) quantum state, but the entanglement

or quantum correlations between its two partners adds to the ‘strangeness’ of

kaon physics the weirdness of quantum mechanics.

Indeed, one of the most counterintuitive and subtle aspects of quantum

mechanics refers to the correlations shown by the distant parts of composite

systems like the above mentioned two. This became evident in 1935, when

Einstein, Podolsky and Rosen (EPR) 3), discussing a gedanken experiment

with entangled states, arrived at the conclusion that the description of physical

reality given by the quantum wave function cannot be complete. Bohr, in his

famous response 4), noted that EPR’s criterion of physical reality contained an

ambiguity if applied to quantum phenomena and gave rise to one of the most

important and long standing debates in physics. According to Bohr, EPR’s

assumption that a quantum system has real and well defined properties also

when does not interact with other systems (including measuring apparata) is

contradicted by the basic axioms of quantum mechanics.

For about 30 years the debate triggered by EPR and Bohr remained

basically a matter of philosophical belief. Then, in 1964, Bell 5) interpreted

EPR’s argument as the need for the introduction of additional, unobservable

variables aiming to restore completeness, relativistic causality (or locality) and

realism in quantum theory. He established a theorem which proved that any

local hidden–variable (i. e., local realistic 6)) theory is incompatible with some

statistical predictions of quantum mechanics. Since then, various forms of

Bell inequalities 7)- 11) have been the tool for an experimental discrimination

between local realism (LR) and quantum mechanics (QM).

Such a discrimination is possible only if the predictions coming from QM



cannot be reproduced with LR models. These models allow the derivation of

Bell inequalities which necessarily relate the statistical results one has to expect

from a given entangled system when its two members are potentially subjected

to alternative joint measurements chosen by the experimenters. If such a choice

among experiments exists, we refer to them as active measurements. Each one

of these experiments projects then each measured kaon into one of the two states

of the chosen measurement basis. This is a common feature in Refs. 7)- 11) but

care has to be taken when extrapolating these considerations to unstable sys-

tems such as neutral kaons 12). Admittedly, this instability allows for different

decay modes, which effectively correspond to different quantum measurements.

But the inequalities involving these passive measurements, with no choice on

the experimenter part, are not Bell inequalities since they cannot discriminate

LR from QM, as we will discuss later on.

Many experiments confronting QM versus LR have been performed, mainly

with entangled optical photons 10, 13, 14, 15, 16) and, more recently, with

entangled ions 17). All these tests obtained results in good agreement with

QM but, according to several authors, they do not represent a conclusive proof

against LR. The tests are affected by another type of criticisms, which are

certainly less severe than that mentioned in the preceding paragraph but have

been discussed for many years 18). These tests only seem to show the violation

of the so called non–genuine Bell inequalities. Indeed, because of non–idealities

of the apparata and other technical problems, supplementary assumptions not

implicit in LR were needed in the interpretation of the experiments. Conse-

quently, no one of these tests has been strictly loophole free 10, 18, 19), i. e.,

able to test a genuine Bell inequality, which has to be a necessary consequence

of LR alone.

One of these criticisms, frequently referred to as the detection or efficiency

loophole, is particularly relevant for kaons. It has been proven 9, 10, 20) that

for any bipartite and entangled state one can derive Bell inequalities without

the introduction of (plausible but not testable) supplementary assumptions

concerning undetected events. In particular, the most appropriate inequality

for confronting LR vs QM has been derived long ago by Clauser and Horne 9).

For maximally entangled (non–maximally entangled) states, if one assumes that

all detectors have the same overall detection efficiency η, these genuine Clauser–

Horne inequalities are violated by QM only if η > 0.83 21) (η > 0.67 22)). Since



such detection thresholds cannot be presently achieved in photon experiments,

only non–genuine inequalities have been tested experimentally.

Several of these photonic tests violated non–genuine inequalities by the

amount predicted by QM but they could not overcome the detection loophole.

Indeed, local realistic models exploiting the detector inefficiencies and repro-

ducing the experimental results can be contrived 9, 23) for these tests. Only

the recent test with entangled beryllium ions of Ref. 17), for which η ≃ 0.97,

did close the detection loophole. On the other hand, an experiment with entan-

gled photons 14) closed the other main existing loophole, the locality loophole.

In this test, the measurements on the two photons were carried out under strict

space–like separation conditions, thus avoiding any possible exchange of sublu-

minal signals between the two measurement event regions. But this is not the

case for the high efficiency experiment 17) with two beryllium ions separated

only by a few microns. In other words, no experiment closing simultaneously

both the detection and locality loopholes has been performed till now.

Extensions to other kind of entangled systems are thus important. Over

the past ten years or so there has been an increased interest on the possibility to

test LR vs QM in particle physics,e. g., by using entangled neutral kaons 24)–
41). This is also a manifestation of the desire to go beyond the usually con-

sidered spin–singlet case and to have new entangled systems made of massive

particles with peculiar quantum–mechanical properties (apart from the classi-

cal book by Dalitz 1), other detailed reviews of neutral kaons are 29, 42, 43)).

Entangled K0K̄0 states (1) are copiously produced in the decay of the φ(1020)

resonance 44) and in proton–antiproton annihilation processes at rest 45, 46).

For kaons, the strong nature of hadronic interactions should contribute to close

the detection loophole, since it enhances the efficiencies to detect the prod-

ucts of kaon decays and kaon interactions with ordinary matter (pions, kaons,

nucleons, hyperons,...). Moreover, the two kaons produced in φ decays or pp̄

annihilations at rest fly apart from each other at relativistic velocities and can

fulfill the condition of space–like separation. Therefore, contrary to the experi-

ment with ion pairs of Ref. 17), the locality loophole could be closed with kaon

pairs by using equipments able to prepare, very rapidly, the alternative kaon

measurement settings.

In this contribution, our purpose is to review the Bell inequalities pro-

posed to test LR vs QM using K0K̄0 entangled pairs. The proposals are



discussed in the light of the basic requirements —specified in Section 2— nec-

essary to establish genuine Bell inequalities. Each measurement is associated

to a specific basis and the bases relevant for our discussion are studied in Sec-

tion 3. The alternative measurements one can perform on each neutral kaon at

a given time are rather reduced, as we show in Section 4. The preparation of

the two–kaon entangled state is discussed in Section 5 and can be performed

in many different ways; a given, fixed state, however, has to be used for all the

alternative measurements contemplated in a given Bell inequality. The various

forms of inequalities are derived and related in Section 6. In Section 7 the

different proposals with neutral kaons are discussed.

2 Requirements for a genuine Bell inequality

The requirements for deriving a Bell inequality from LR can be summarized as

follows:

(1) A non–factorisable or entangled state must be used. Here, as in most

cases, a two–particle (bipartite) state is considered. The simplest example

is the state (1);

(2) Alternative and mutually exclusive measurements, corresponding to non–

commuting observables, must be chosen at will and performed on both

members of that state;

(3) Each one of the different single measurements has to have dichotomic

outcomes. However, if the possibility of undetected events is considered,

they can count as a third outcome;

(4) The measurement process on each member of the two–particle state must

be space–like separated from the measurement on the other member.

At a φ–factory, or in proton–antiproton annihilations at rest, the first re-

quirement poses no serious problems. Indeed, entanglement has been confirmed

experimentally, over macroscopic distances, for K0K̄0 pairs at CPLEAR 45)

using active strangeness measurements and can be demonstrated at the DaΦne

φ–factory as well 47). However, care has to be taken to define the state at a

specific (proper) time τ , or specific times τl and τr if these are different for

the left– and right–moving members of the entangled state. Indeed, contrary



to what happens in photonic experiments, neutral kaons decay and oscillate in

time. Only when these times are fixed we have a well defined state to perform

Bell–tests.

Difficulties appear with requirement number (2). Indeed, among the dif-

ferences between the spin–singlet state of entangled photons and the K0K̄0

entangled state (1), the most important one is that while for photons one can

measure the linear polarization along any space direction chosen at will, mea-

surements on neutral kaons essentially reduce to only two kinds: one can chose

to detect either the strangeness or the lifetime of each kaon. These are then

two useful and direct measurement choices which can be somehow enlarged by

kaon regeneration effects before the final detection (see Section 3.3). But the

problem essentially remains and complicates considerably the possibilities of

Bell–tests with neutral kaons.

Another property of neutral kaons, not shared by photons, is that the

former are unstable and decay via different modes. Each one of these modes is

associated with a specific kaon basis and the observation of a kaon decay into

a given mode represents a passive measurement 12). Indeed, the experimenter

has no control on when the kaon decays nor into which of the various channels it

decays. In general, the information thus obtained does not refer to the specific

state under consideration (because of kaon time evolution), nor to a desired

basis actively chosen by the experimenter. As a result, the inequalities that

some authors have proposed, which make use uniquely of decay–mode observa-

tions, cannot discriminate between LR and QM and, in this sense, are not Bell

inequalities. The reason is quite obvious: since the experimenter is not allowed

to exert his/her free will, a LR model can immediately be constructed which

always gives the same predictions as QM and violates the proposed inequality.

But this is an absurdity since, by definition, a Bell inequality has to contra-

dict some QM prediction. Since there are no active changes of measurements,

the LR model is constructed by just adopting the set of decay distributions

predicted by QM as the complete set of hidden–variables. This point was first

discussed in a related context by Kasday time ago 48) but has been ignored by

many authors when deriving Bell inequalities in the domain of particle physics.

In the case of entangled B0B̄0 pairs, for which only decay mode measurements

can be performed, the situation is then more unfortunate than with kaon pairs.

Neutral kaons are then unique among pseudo–scalar mesons: the lack of active



measurement procedures for B–mesons makes impossible the derivation of rel-

evant Bell inequalities 12, 49). In this review, centered in discriminating QM

from LR, we do not discuss these Bell–tests based on passive measurements,

although most of them are of clear interest showing, among other things, the

entanglement between pairs of separated particles.

The requirement (4) on locality deserve also some comments. Kaons move

at relativistic velocities and can travel macroscopic distances away from the

production point before decaying. These distances are certainly much shorter

than those involved in photonic experiments (a recent one has shown two–

photon entanglement over 144 km 50)) but much larger than those for ions

(separated only some microns in Ref. 17)). During these survival distances each

kaon has to be submitted to either one or another measurement and this implies

changing the experimental setup, typically, by placing or removing material

pieces (kaon regenerators). Actively changing from one setup to another in

such a way that the two (left and right) distant measurement events are space–

like separated could imply serious technical difficulties. For this reason, some

authors 51) prefer to consider static measurements setups (fixed pieces acting

as different absorbers) which, even if they will not be able to close the locality

loophole, look more feasible and still of interest.

Finally, in order to establish the feasibility of the real test, one has to

derive the detection efficiencies necessary for a meaningful quantum mechanical

violation of the considered Bell inequality. With all this in mind and in the light

of the basic requirements (1)–(4), in Section 7 we proceed to analyse various

proposals of Bell–tests with entangled kaon–antikaon pairs. Before, we present

a general discussion on measurement bases, quantum states and genuine and

non–genuine Bell inequalities for neutral kaons.

3 Bases in ‘quasi–spin’ space

Thanks to the analogy with spin–1/2 particles, neutral kaon states can be

conveniently described with the formalism of ‘quasi–spin’. The strangeness

eigenstates K0 and K̄0 (specified in subsection 3.1) are considered as members

of a quasi–spin doublet, with |K0〉 ≡
(

1
0

)

having ‘spin up’ and |K̄0〉 ≡
(

0
1

)

having ‘spin down’. A particular superposition, with unitary norm, of these



strangeness eigenstates together with the corresponding orthogonal state:

|Kα〉 = α|K0〉 + ᾱ|K̄0〉, (2)

|K⊥

α 〉 = −ᾱ∗|K0〉 + α∗|K̄0〉,

with 〈Kα|Kα〉 = 〈K⊥
α |K⊥

α 〉 = |α|2 + |ᾱ|2 = 1 and 〈Kα|K⊥
α 〉 = 0, define the

generic basis {Kα, K⊥
α } along the quasi–spin axis α. Any operator acting on

the quasi–spin space can be expressed in terms of the Pauli matrices, σx, σy

and σz . The formalism is appropriate for all two–level quantum systems or

‘qubits’ in the novel language of quantum information.

3.1 Strangeness basis: {K0, K̄0}

Neutral kaons are spinless and s–wave quark–antiquark bound meson states,

K0 ∼ ds̄ and K̄0 ∼ sd̄. They define the ‘strangeness’ or ‘strong–interaction’

basis which consists of the two eigenstates |K0〉 and |K̄0〉 with strangeness S =

+1 and S = −1, respectively. This is the suitable basis to analyze S–conserving

electromagnetic and strong interaction processes, such as the creation of K0K̄0

systems from non–strange initial states (e. g.., e+e− → φ(1020) → K0K̄0,

pp̄ → K0K̄0), and the detection of neutral kaons via strong kaon–nucleon

interactions. This ‘strangeness’ basis is orthonormal, 〈K0|K̄0〉 = 0. In the

quasi–spin picture, the strangeness operator evidently corresponds to σz :

σz |K0〉 = +|K0〉, σz |K̄0〉 = −|K̄0〉.

Weak interaction phenomena —such as K0–K̄0 mixing, K0–K̄0 oscilla-

tions and neutral kaon evolution in time—, as well as kaon propagation in a

medium —with the associated regeneration effects— introduce other relevant

bases.

3.2 Free–space basis: {KS, KL}

The so called K–short and K–long states, |KS〉 and |KL〉, are the normalized

eigenvectors of the effective weak Hamiltonian Hfree governing neutral kaon

time evolution in free–space:

i
d

dτ
|KS,L(τ)〉 = Hfree|KS,L(τ)〉, Hfree =

(

λ+ λ−/r
rλ− λ+

)

, (3)



where r ≡ (1− ǫ)/(1+ ǫ), ǫ is the CP–violation parameter 42, 52) and τ is the

kaon proper time.

The (complex) eigenvalues of the previous (non–hermitian) Hamiltonian

are

λS = λ+ + λ− = mS − i

2
ΓS , (4)

λL = λ+ − λ− = mL − i

2
ΓL,

where mS,L are the KS,L masses and ΓS,L ≡ 1/τS,L their decay widths, with

lifetimes τS = (0.8953±0.0005)× 10−10 s and τL = (5.18±0.04)× 10−8 s 52).

We also introduce ∆m ≡ mL − mS ≃ 0.475 ΓS and ∆Γ ≡ ΓL − ΓS ≃ −ΓS , to

be used later on.

The corresponding K–short and K–long eigenstates are:

|KS〉 =
1

√

2(1 + |ǫ|2)
[

(1 + ǫ)|K0〉 + (1 − ǫ)|K̄0〉
]

, (5)

|KL〉 =
1

√

2(1 + |ǫ|2)
[

(1 + ǫ)|K0〉 − (1 − ǫ)|K̄0〉
]

,

or, ignoring an irrelevant global phase:

|KS,L〉 =
1

√

1 + |r|2
[

|K0〉 ± r|K̄0〉
]

. (6)

The proper time propagation of the short– and long–lived states, having

well–defined masses and decay widths, shows no oscillation between these two

states and, according to Eqs. (3), is simply given by

|KS,L(τ)〉 = e−imS,Lτe−
1

2
ΓS,Lτ |KS,L(τ = 0)〉 ≡ e−iλS,Lτ |KS,L〉. (7)

The τ = 0 states |KS,L〉 define a quasi–orthonormal basis with 〈KS|KS〉 =

〈KL|KL〉 = 1 and

〈KS |KL〉 = 〈KL|KS〉 =
1 − |r|2
1 + |r|2 =

ǫ + ǫ∗

1 + |ǫ|2 ≃ 0,

due to the smallness of the CP–violation parameter ǫ with modulus |ǫ| ≃
(2.284 ± 0.014)× 10−3 and phase φ ≃ 43.5◦ 52).



In the quasi–spin space, the weak interaction eigenstates are indeed very

‘similar’ to the CP eigenstates |K1〉 (CP = +1) and |K2〉 (CP = −1):

|KS〉 =
1

√

1 + |ǫ|2
[|K1〉 + ǫ|K2〉] , (8)

|KL〉 =
1

√

1 + |ǫ|2
[|K2〉 + ǫ|K1〉] .

But, while the KS,L basis is useful to discuss free–space propagation, the CP–

basis describes weak kaon decays either into two or three final pions from the

K1 and K2 states, respectively. These two CP = ± states are the eigenstates of

σx, σx|K1〉 = +|K1〉 and σx|K2〉 = −|K2〉. Thus, the limit of CP–conservation

corresponds to the invariance under quasi–spin rotations around the x axis. In

this limit one has

|KS〉 → |K1〉 =
1√
2

[

|K0〉 + |K̄0〉
]

, (9)

|KL〉 → |K2〉 =
1√
2

[

|K0〉 − |K̄0〉
]

,

and strict orthogonality between the KS and KL states is recovered.

3.3 Inside–matter basis: {K ′

S, K ′

L}

The dynamics of neutral kaons propagating inside a homogeneous medium of

nucleonic matter, which we can consider as a ‘regenerator’ and/or an ‘absorber’,

is governed by the Hamiltonian

Hmedium = Hfree −
2πν

mK

(

f0 0
0 f̄0

)

, (10)

showing an additional, strong interaction term where mK is the mean KS,L

mass, f0 and f̄0 are the forward scattering amplitudes for K0 and K̄0 on

nucleons and ν is the nucleonic density of the homogeneous medium.

The eigenvalues of Hmedium are

λ′

S = λ+ − πν

mK
(f0 + f̄0) + λ−

√

1 + 4ρ2, (11)

λ′

L = λ+ − πν

mK
(f0 + f̄0) − λ−

√

1 + 4ρ2,



and the corresponding eigenstates

|K ′

S〉 =
1

√

1 + |rρ̄|2
[

|K0〉 + rρ̄|K̄0〉
]

, (12)

|K ′

L〉 =
1

√

1 + |r(ρ̄)−1|2
[

|K0〉 − r(ρ̄)−1|K̄0〉
]

,

where we have introduced the dimensionless regenerator parameter ρ, as well

as the auxiliary parameter ρ̄ and its inverse (ρ̄)−1,

ρ ≡ πν

mK

f0 − f̄0

λS − λL
, (13)

ρ̄ ≡
√

1 + 4ρ2 + 2ρ , (ρ̄)−1 =
√

1 + 4ρ2 − 2ρ. (14)

The proper time propagation of these K ′

S,L states inside matter is given

by

|K ′

S,L(τ)〉 = e−iλ′

S,Lτ |K ′

S,L〉, (15)

and shows no K ′

S–K ′

L oscillations but a decreasing intensity in time given by

the imaginary part of λ′

L,S. The latter comes from weak decays, essentially as

in free–space propagation, plus absorption via strong kaon interactions with

the medium driven by the imaginary part of f0 + f̄0. In this sense, the medium

acts as an ‘absorber’. The difference between f0 and f̄0 appearing in ρ is

responsible for ‘rotations’ in the quasi–spin space and transitions between KS

and KL states. For surviving kaons, the medium acts as a ‘regenerator’, giving

rise to the well known ρ–dependent regeneration effects.

Again, the τ = 0 states form a quasi–orthonormal basis,

〈K ′

S |K ′

L〉 = 〈K ′

L|K ′

S〉∗ =
1 − |r|2(ρ̄∗/ρ̄)

√

1 + |rρ̄|2
√

1 + |r/ρ̄|2
, (16)

due to the smallness of ǫ (r ≃ 1), as before, and to the low efficiency of usual

regenerators (ρ ≃ Re ρ ∼ 10−2 and ρ̄ ≃ ρ̄∗ 26, 42)), in spite of the strong

character of the induced kaon–nucleon interactions.

Two limiting cases illustrate the relationships among the three bases we

have considered: i) for a very low density medium: ν, ρ → 0 and ρ̄ → 1 imply

|K ′

S,L〉 → |KS,L〉, thus recovering the states in Eq. (6) and ii) for extremely

high density media (absorbers): ν, |ρ|, |ρ̄| → ∞ implies |K ′

S〉 → |K̄0〉 and

|K ′

L〉 → |K0〉.



4 Dichotomic measurements on neutral kaon states

4.1 Strangeness measurements

When a kaon–nucleon reaction occurs at a given place of a medium, the dis-

tinct strong interactions of the S = +1 and S = −1 neutral kaons on the

bound nucleons inside the medium project the arbitrary state of an incom-

ing kaon into one of the two orthogonal members of the strangeness basis

{K0, K̄0} 1, 29, 42). The quantum number S of the incoming kaon state is

determined by identifying the products (usually pions, kaons, nucleons and

hyperons) of the strangeness conserving kaon–nucleon strong interaction. Sim-

ple examples of K̄0 identifying reactions at low energies are K̄0p → Λπ+,

K̄0p → Σπ and K̄0n → Λπ0, while the lowest threshold reaction K0p → K+n

identifies incoming states as K0’s. This strangeness measurement is then analo-

gous to the projective von Neumann measurements with two–channel analyzers

for polarized photons or Stern–Gerlach setups for spin–1/2 particles.

Unfortunately, the efficiency for such strangeness measurements at mod-

erate kaon energies as in φ → K0K̄0 and pp̄ → K0K̄0 is certainly less than

what people have been naively expecting from the strong nature of these inter-

actions 45). The reason, rather than being the difficulty in detecting the final

state particles (for which one can have rather high efficiencies), stems from the

low probability in initiating the strong reaction. Indeed, the efficiency to induce

either a K̄0–nucleon or a K0–nucleon interaction at a given time τ turns out to

be close to 1 only for infinitely dense absorber materials or for ultrarelativistic

kaons, where, by Lorentz contraction, the absorber is seen by the incoming

kaon as extremely thin and dense (ν → ∞). In this case, kaon–nucleon strong

interactions occur and the incident kaons are immediately projected into one

member of the inside–matter or the strangeness basis which are coincident in

the present limit; i. e., the incident kaon is projected into either |K ′

S〉 → |K̄0〉
or |K ′

L〉 → |K0〉. But in ordinary cases, when a thin absorber is placed to

measure strangeness, the incident kaon likely fails to interact with a nucleon

and, although the kaon can be efficiently detected beyond the absorber, the

desired strangeness measurement has not been performed. Ordinary matter is

too transparent for kaons. This contrasts with the polarization measurements

where the low efficiency corresponds to the final detection of photons having

passed through the efficient analyzers. It would be highly desirable to identify



very efficient kaon absorbers. Since this does not seem to be viable at present,

one has to play with small strangeness detection efficiencies, which originate

both conceptual and practical difficulties when discussing Bell–type tests for

entangled kaons 37, 38, 39, 41).

4.2 Lifetime measurements

To measure if a kaon is propagating in free–space as a KS or KL at a given time

τ , one has to allow for further propagation in free–space and then detect at

which time it subsequently decays. Kaons which show a decay vertex between

times τ and τ+∆τ have to be identified as KS ’s, while those decaying later than

τ + ∆τ have to be identified as KL’s. Since there are no KS–KL oscillations,

such subsequent decays do really identify the state at the desired previous time

τ . The probabilities for wrong KS and KL identification are then given by

exp(−ΓS ∆τ) and 1 − exp(−ΓL ∆τ), respectively. By choosing ∆τ = 4.8 τS,

both KS and KL misidentification probabilities reduce to ≃ 0.8%, which can be

further reduced if the decay mode is also identified (see appendix of Ref. 41)).

Recall that the KS and KL states are not strictly orthogonal to each other,

〈KS |KL〉 = 2Re ǫ/(1+ |ǫ|2) 6= 0; thus their identification cannot be exact even

in principle. However, ǫ is so small [|ǫ| ≃ (2.284 ± 0.014) × 10−3 52)] and the

decay probabilities of the two components so different (ΓS ≃ 579 ΓL) that the

KS vs KL identification can effectively work 37). Note also that, contrary to

strangeness measurements, KS vs KL identifications are not affected by the

previous low inefficiencies: by using detectors with very large solid angles, one

can play with rather high efficiencies for the detection and proper identification

of the kaon decay products.

4.3 Active vs passive measurements

The methods described in the last two subsections to discriminate K0 vs K̄0

and KS vs KL are fully appropriate to establish Bell inequalities and tests.

On the one hand, the two measurements correspond to complementary and

non–commuting observables with dichotomic outcomes in both cases (essen-

tially, σz and σx in quasi–spin space). On the other hand, they are clearly

active measurement procedures since they are performed by exerting the free

will of the experimenter, another crucial ingredient to establish genuine Bell

inequalities. Indeed, at the chosen measurement time τ , either one places a



dense slab of matter or allows for free–space propagation. Needless to say, one

measurement excludes the other. In the former case, strangeness is measured

and no information is obtained on the lifetime of the observed kaon. Con-

versely, if free propagation is allowed, one identifies KS vs KL but nothing is

learned on the strangeness quantum number. As previously discussed, the ac-

tive strangeness measurement is monitored by strangeness conservation, while

the active lifetime measurement is possible thanks to the smallness of ΓL/ΓS .

Contrary to what happens with other two–level quantum systems such as

spin–1/2 particles or photons, passive measurements of lifetime and strangeness

for neutral kaons are also possible 12), by randomly exploiting the quantum–

mechanical dynamics of kaon decays. To this aim, one has to allow for complete

free–space propagation and observe the various kaon decay modes. By neglect-

ing the (small) CP–violation effects (ǫ → 0), non–leptonic kaon decays into

two and three pions permit the identification of KS ’s and KL’s, respectively.

Alternatively, the strangeness of a given neutral kaon state is measured by ob-

serving their semileptonic decays. These decays obey the well tested ∆Q = ∆S

rule, which allows the modes K0 → π−l+νl and K̄0 → π+l−ν̄l, with l = e, µ,

but forbids decays into the respective charge–conjugate final states. These

procedures for the passive KS vs KL and K0 vs K̄0 discriminations are unam-

biguous in the approximations given by CP–conservation and the ∆Q = ∆S

rule, respectively.

However, in passive measurement procedures the experimenter has no

control on the time when the lifetime or the strangeness measurement occurs,

nor on the basis in which the measurement is performed, in contrast with the

previous active, von Neumann projection measurements requiring the interven-

tion of the experimenter, who is free to chose between the two complementary

measurements. As discussed in sect.2, for experiments performed with passive

measurements only, Kasday construction 48, 49) is therefore possible, thus

preventing the derivation of Bell inequalities.

5 Entangled states of neutral kaon pairs

5.1 Maximally entangled states

The simplest and most often discussed two–party or bipartite states are the

spin–singlet states consisting of two spin–1/2 particles, as first proposed by



D. Bohm 2). Let us then first consider the two–kaon entangled state which

is the analogous 32, 34, 40, 53) to this standard Bohm state. From both φ–

resonance decays 44) or s–wave proton–antiproton annihilation 45), one starts

at time τ = 0 with an initial state |φ(0)〉 with global spin, charge conjugation

and parity JPC = 1−−:

|φ(0)〉 =
1√
2

[

|K0〉l|K̄0〉r − |K̄0〉l|K0〉r
]

(17)

=
1√
2

1 + |ǫ|2
|1 − ǫ2| [|KL〉l|KS〉r − |KS〉l|KL〉r] ,

where l and r denote the ‘left’ and ‘right’ directions of motion of the two

separating kaons. The weak, CP–violating effects enter only in the last equality.

Note that this state is antisymmetric and maximally entangled in the two

observable bases. The corresponding measurements will always lead to left–

right anticorrelated results.

After production, the left and right moving kaons evolve according to

Eq. (7) up to (proper) times τl and τr, respectively. Formally, this leads to the

‘two–times’ state

|φ(τl, τr)〉 =
e−(ΓL τl+ΓS τr)/2

√
2

(18)

×
{

|KL〉l|KS〉r − ei∆m(τl−τr)e∆Γ(τl−τr)/2|KS〉l|KL〉r
}

in the lifetime basis, with ǫ → 0. Equivalently,

|φ(τl, τr)〉 =
1

2
√

2
e−(ΓL τl+ΓS τr)/2 (19)

×
{(

1 − ei∆m(τl−τr)e∆Γ(τl−τr)/2
)

[

|K0〉l|K0〉r − |K̄0〉l|K̄0〉r
]

+
(

1 + ei∆m(τl−τr)e∆Γ(τl−τr)/2
)

[

|K0〉l|K̄0〉r − |K̄0〉l|K0〉r
]

}

in the strangeness basis.

Most usually, one considers two–kaon states at a unique time τl = τr ≡ τ .

One then has

|φ(τ, τ)〉 =
1√
2
e−(ΓL+ΓS)τ/2

[

|K0〉l|K̄0〉r − |K̄0〉l|K0〉r
]

(20)

=
1√
2
e−(ΓL+ΓS)τ/2 [|KL〉l|KS〉r − |KS〉l|KL〉r] ,

showing the same maximal entanglement and anticorreations at any time τ .



5.2 Non–maximally entangled states

Apart from the previous maximally entangled state of kaons, other non–maxi-

mally entangled states are of interest for testing LR vs QM. To prepare these

states we start with the initial state (17). A thin, homogeneous regenerator

is fixed on the right beam (say), as close as possible to the point where the

two–kaon state originates. If the regenerator is very close to this origin and

the proper time ∆τ required by the right moving neutral kaon to cross the

regenerator is short enough, ∆τ << τS , weak decays can be ignored and the

state leaving the thin regenerator is

|φ(∆t)〉 =
1√
2

[|KS〉|KL〉 − |KL〉|KS〉 + η|KS〉|KS〉 − η|KL〉|KL〉] , (21)

where the indexes l and r referring to the kaon propagation directions are

omitted from now on. The complex parameter η characterizes the regeneration

effects and is defined by 42):

η ≡ iρ(λS − λL)∆τ = i
πν

mK
(f0 − f̄0)∆τ = i

πν

pK
(f0 − f̄0)d, (22)

where mK is the average neutral kaon mass, pK the kaon momentum and d

the total length of the regenerator.

The states (20) at τ = 0 and (21) only differ in the terms linear in the

small parameter η. Indeed, for typical regenerators and at DaΦne energies one

has |η| = O(10−3) when d = 1 mm 26, 42), thus allowing to neglect higher

order terms in the state (21). To enhance that difference, we now allow the

state (21) to propagate in free space up to a proper time T in the wide range

τS << T << τL ≃ 579 τS. One thus obtains the state:

|φ(T )〉 =
e−(ΓL τl+ΓS τr)/2

√
2

[|KS〉|KL〉 − |KL〉|KS〉 (23)

−ηe−i∆mT e
1

2
(ΓS−ΓL)T |KL〉|KL〉 + ηei∆mT e

1

2
(ΓL−ΓS)T |KS〉|KS〉

]

,

where the KLKL component has survived against weak decays much better

than the accompanying terms KSKL and KLKS and has thus been enhanced.

On the contrary, the KSKS component has been strongly suppressed and can

be neglected if T/τS >> 1.

The normalization of state (23) to the surviving pairs leads then to:

|Φ〉 =
1

√

2 + |RL|2 + |RS |2
(24)



[|KS〉|KL〉 − |KL〉|KS〉 + RL|KL〉|KL〉 + RS |KS〉|KS〉] ,

where:

RL ≡ −re[−i∆m+ 1

2
(ΓS−ΓL)]T , RS ≡ re[i∆m−

1

2
(ΓS−ΓL)]T . (25)

Note that the quantity |RL| ≃ |r|e 1

2
ΓST is not necessarily small with an expo-

nential factor compensating the smallness of |r|, but we take RS → 0 from now

on. The non–maximally entangled state Φ describes all kaon pairs with both

left and right partners surviving up to the common proper time T . Because

of the particular normalization of Φ, kaon pairs showing the decay of one (or

both) member(s) before time T have to be detected and excluded. Since this

occurs prior to any measurement eventually used for a Bell–type test, ours

is a ‘pre–selection’ (as opposed to ‘post–selection’) procedure which poses no

problem when confronting LR with QM.

Once the state is prepared as in Eq. (24), alternative joint measurements

on each one of the corresponding kaon pairs have to be considered for a Bell–

type test. In Section 7 we will see how one can utilize this state for such

tests.

6 Bell inequalities with neutral kaon pairs

In the present Section, our first aim is to show how the Clauser–Horne inequal-

ity can be derived from LR and adapted for a generic entangled state of kaon

pairs. The obtained CH inequality, equivalent to an inequality which Eberhard

proved in a different way, is a genuine Bell inequality in the sense that it follows

from LR with no need of extra assumptions. When supplementary assumptions,

not implicit in LR, are introduced, other, non–genuine Bell inequalities can be

derived which allow to design more feasible experimental tests of LR vs QM.

The potentialities of a Bell inequality derived by Clauser–Horne–Shimony–Holt

and of another simple one, due by Wigner, are thus illustrated.

6.1 Clauser–Horne inequalities

In the interpretation with hidden–variables, a generic two–kaon entangled state

corresponds to a statistical ensemble of kaon pairs specified by different values

of these additional, unobservable, deterministic or stochastic variables, which

are here globally denoted by the symbol λ. In principle, λ can contain the



same information of the quantum mechanical two–kaon state or wave–function

but can be further completed, for instance to restore classical determinism

in measurement processes. Moreover, in λ one could also include apparatus

random hidden–variables, which can influence, locally, the outcomes of mea-

surements. In a general hidden–variable (i. e., realistic) theory, the joint prob-

ability to observe particular kaon quasi–spin states |Kα〉 = α|K0〉+ ᾱ|K̄0〉 and

|Kβ〉 = β|K0〉 + β̄|K̄0〉 along the ‘left’ and ‘right’ beams, respectively —when

measurements along the α and β quasi–spin axes are performed— is given by:

P (Kα, Kβ) =

∫

dλ ρ(λ) p(Kα, Kβ|λ), (26)

where ρ(λ) is the hidden–variable probability distribution (normalized to unity,
∫

dλ ρ(λ) = 1) and p(Kα, Kβ|λ) the conditional probability that a joint mea-

surement produces the outcome (Kα, Kβ) when the kaon pair (and eventually

the measuring devices) is in the state specified by λ. Note that, since each kaon

pair is assumed to be emitted by the source in a way which is independent of

the ‘adjustable parameters’ α and β characterizing the chosen measurement

axes, the hidden–variable distribution function ρ(λ) is independent of α and β.

By enforcing the locality condition, the previous conditional probability

p(Kα, Kβ|λ) can be written in the following factorized form:

p(Kα, Kβ |λ) = p(Kα, ∗|λ) p(∗, Kβ|λ), (27)

where, for instance:

p(Kα, ∗|λ) ≡ p(Kα, Kγ |λ) + p(Kα, K⊥

γ |λ) + p(Kα, Uγ |λ), (28)

taking values between 0 and 1, is independent of the choice of the states |Kγ〉
and |K⊥

γ 〉 forming an orthogonal basis in the quasi–spin space, 〈Kγ |K⊥

γ 〉 = 0.

Note that, in particular p(∗, ∗|λ) = 1 for any λ. Note also that the last term of

the previous equation takes into account eventual undetected events or events

for which the proposed measurement failed, denoted by the Uγ argument, due

to the various non–perfect efficiencies in measurements along the ‘axis’ γ in the

quasi–spin space. It is important to remark that in the present scheme, the

measurement fails or not depending on the values of the hidden–variables. In

other words, the possibility of performing or not the desired measurement is

correlated with the values of λ. It is also important to emphasize that for fixed



λ, the single–side probabilities p(Kα, ∗|λ) and p(∗, Kβ|λ) entering equation (27)

are independent of the measurement that one chooses to perform on the other

member of the pair: the kaon quasi–spin outcome Kα (Kβ) observed along the

left (right) beam when measuring along the quasi–spin axis α (β) is independent

of the quasi–spin axis β (α) employed to detect the right (left) going kaon.

To derive the Clauser–Horne (CH) inequality, the mathematical lemma

of Ref. 9) can be used. It asserts that for any value between 0 and 1 of the real

numbers x1, x2, x3 and x4, the inequality x1x2 −x1x4 +x2x3 +x3x4 ≤ x3 +x2

holds. By assigning x1 = p(Kα, ∗|λ), x2 = p(∗, Kβ|λ), x3 = p(Kα′ , ∗|λ) and

x4 = p(∗, Kβ′|λ), using the factorisable (locality) condition (27) and integrating

over the hidden–variable λ as in Eq. (26), one easily obtains the CH inequality:

−1 ≤ S ≡ P (Kα, Kβ) − P (Kα, Kβ′) + P (Kα′ , Kβ) + P (Kα′ , Kβ′) (29)

−P (Kα′ , ∗) − P (∗, Kβ) ≤ 0,

with single–side probabilities given by:

P (Kα′ , ∗) = P (Kα′ , Kγ) + P (Kα′ , K⊥

γ ) + P (Kα′ , Uγ), (30)

P (∗, Kβ) = P (Kδ, Kβ) + P (K⊥

δ , Kβ) + P (Uδ, Kβ),

for an arbitrary choice of the quasi–spin axes γ and δ. As noted by Clauser

and Horne in Ref. 9), the right–hand side of the CH inequality, S ≤ 0, has the

advantage of being independent of the hidden–variable normalization condition,
∫

dλρ(λ) = 1, thus canceling the influence of the size of the ensemble of detected

events.

6.2 Eberhard inequalities

If we chose γ = β and δ = α in Eqs. (29), (30), the right–hand side of the CH

inequality (29) can be rewritten in the form of the following Bell–like inequality

first derived by Eberhard 22):

P (Kα′ , Kβ′) ≤ P (Kα′ , K⊥

β ) + P (K⊥

α , Kβ) (31)

+P (Kα, Kβ′) + P (Kα′ , Uβ) + P (Uα, Kβ).

The right–hand side CH and Eberhard inequalities just introduced are

both genuine Bell inequalities in the sense discussed in Section 2. Unfortu-

nately, due to their specific form, they hardly provide feasible experimental



tests able to discriminate between LR and QM. As explained in Refs. 21, 22),

the main shortcoming is originated by the existence of thresholds for the rel-

evant measurement efficiencies which have to be overcome in order to attain

violations of the considered inequalities by QM. Since in both performed (pho-

ton) and proposed (kaon) experiments such thresholds turn out to be hardly

reachable within the current experimental capabilities, additional hypotheses

beyond realism and locality must be made in order to obtain testable, but

non–genuine, inequalities.

6.3 Clauser–Horne–Shimony–Holt inequalities

We then come to an important example of experimentally testable but non–

genuine inequality which has been widely adopted in photon experiments, thus

allowing the refutation of a restricted class of LR models. Here we will not re-

peat its derivation, which is due to Clauser, Horne, Shimony and Holt (CHSH)

and can be found in Refs. 8, 10). Our interest is to illustrate the differences

with respect to the previously discussed CH inequality, especially concerning

the role played by the supplementary assumptions when testing LR.

First, the CHSH inequality refers to expectation values instead of prob-

abilities. In a local hidden–variable theory, the expectation value for a joint

kaon measurement along the quasi–spin axes α and β is defined as:

E(α, β) =

∫

dλρ(λ)A(α|λ)B(β|λ), (32)

where the locality requirement is evident in the factorized form of the left and

right beam outcomes A(α|λ) and B(β|λ), for a given state λ, which do not

depend on the other–side measurement axis β and α, respectively.

The result of each single–side measurement can take one of the three

possible outcomes, 0 or ±1. For deterministic hidden–variables, we assume

that A(α|λ) takes the following values: +1 when the measurement outcome

is Kα, −1 when the outcome is the state K⊥

α orthogonal to Kα and 0 when

the particle is not projected into the {|Kα〉, |K⊥
α 〉} measurement basis. This

third outcome 0 presupposes the ability of the experimenter to know when a

particular kaon fails to be measured in the chosen basis. In photon experiments

the outcome 0 correspond to undetected photons. Since in this case their

number is unknown, in 1971 Bell proposed (see Ref. 10)) to use what he called

‘event–ready’ detectors in order to enumerate the photon pairs emitted by the



source which really reach the regions where they are then subject to Bell–

measurements. Only if these undetected or ‘unmeasured’ pairs are included in

the ensemble which defines the hidden–variable distribution ρ(λ), one is sure

that ρ(λ) does not depend on the measurement parameters α and β 10, 20).

In practical cases with photons, any conceivable ‘event–ready’ detector fatally

disturb if not destroy the particles. For kaons, good ‘event–ready’ detectors

seems to be at our disposal: one has to detect kaon decays occurring along the

beams prior to the measurement times used in the Bell–test and all the initial

two–kaon pairs showing (at least one of) such decays have to be excluded from

the sample. This amounts to the previously discussed renormalization of the

states. Also, kaons which fail to initiate a kaon–nucleon interaction in a thin

absorber when trying to measure their strangeness —this is the low efficiency

measurement at our energies— can be further detected to decay as a KS or

KL state and be properly included in the analysis as ‘unmeasured’, outcome 0

events.

In the lack of ‘event–ready’ detectors, as in photon experiments, to be sure

that ρ(λ) does not depend on α and β, one can follow another approach and in-

troduce an additional assumption 8), not inferable in the hypothesis of realism

and locality, which is plausible but untestable. For photons, this hypothesis

amounts to require that ‘if a particle passes through a spin analyser, its prob-

ability of detection is independent of the analyser’s orientation’ 8). For kaons,

with essentially only two possible ‘orientations’ (strangeness or lifetime), the

situation is quite different: it is the low probability of inducing the initial kaon–

nucleon interaction in strangeness measurements, rather than the detection of

the final state products, what contrasts with highly efficient lifetime measure-

ments. Rather than adapting the previous CHSH additional assumption to the

kaon case, one can resort to the so–called ‘fair sampling’ hypothesis 10). It

amounts to assume that the set of effectively measured events represent a fair

or undistorted sample of the whole set of states emitted from the source; in

other words, the kaon hidden–variables are not correlated with the efficiencies

of the measuring apparata. Under this assumption, the efficiency factors in the

Bell inequalities are assumed to be 1 and thus no undetected or unmeasured

event appears.

Coming back to Eq. (32), in the most general case of stochastic hidden–

variables, for the functions A(α|λ) and B(β|λ) we have the obvious constraints:



|A(α|λ)| ≤ 1 and |B(β|λ)| ≤ 1. These last expectation values can be seen as

averages of the previous deterministic expectation values. One can thus obtain

the CHSH inequality in the form:

|E(α, β) − E(α, β′) + E(α′, β) + E(α′, β′)| ≤ 2, (33)

where, unlike the case of the right–hand side CH inequality, the hidden–variable

normalization condition,
∫

dλρ(λ) = 1, has been employed in the derivation.

In terms of joint probabilities, each expectation values can be expressed

as:

E(α, β) = P (Yα, Yβ) + P (Nα, Nβ) − P (Yα, Nβ) − P (Nα, Yβ), (34)

both in QM and LR, where Yα(β) (Yes) and Nα(β) (No) answer to the question

whether the incoming kaon projects into the state Kα (Kβ) or otherwise when

measuring along the quasi–spin axis α (β). To establish a complete link with the

joint probabilities entering the CH inequality (29), or the Eberhard inequality

(31), we have to specify the following relations:

P (Yα, Yβ) = P (Kα, Kβ), (35)

P (Nα, Nβ) = P (K⊥

α , K⊥

β ) + P (K⊥

α , Uβ) + P (Uα, K⊥

β ) + P (Uα, Uβ),

P (Yα, Nβ) = P (Kα, K⊥

β ) + P (Kα, Uβ),

P (Nα, Yβ) = P (K⊥

α , Kβ) + P (Uα, Kβ),

which hold when undetected or unmeasured events, denoted by Uα,β , can re-

ally be identified by efficient ‘event–ready’ detectors. In such cases, the CHSH

inequality (33) is a genuine Bell inequality and is equivalent to the CH in-

equality (29). In the most common case in which ‘event–ready’ detectors are

not available, and one has to resort to the fair sampling hypothesis, all the

detection efficiencies are assumed to be 1, the right–hand sides of relations

(35) do not contain probabilities for undetected or unmeasured events and the

corresponding CHSH inequality (33) is of the non–genuine type.

6.4 Wigner inequalities

Let us now see how introducing supplementary hypotheses one can obtain

testable inequalities from the right–hand side CH inequality (29), or equiv-

alently the Eberhard inequality (31). The first is the fair sampling hypothesis,

for which the efficiency factors in the inequalities are assumed to be 1. The



corresponding inequality takes the form of what we may call a Wigner–like

inequality, but with four instead of three terms and measurement settings:

P (Kα′ , Kβ′) ≤ P (Kα′ , K⊥

β ) + P (K⊥

α , Kβ) + P (Kα, Kβ′). (36)

This Bell inequality is equivalent to the CHSH inequality (33) when the latter

is also considered together with the assumption of fair sampling.

If in addition one demands P (K⊥
α , Kβ) = 0, a standard (i. e., with three

terms and three different measurement settings) Wigner inequality 7) is ob-

tained. Note that this requirement restricts the derivability of the standard

Wigner inequality to deterministic local realistic theories only. On the con-

trary, the four–term Wigner inequality (36) is valid for both deterministic and

stochastic hidden–variable theories. For maximally entangled and perfectly–

anticorrelated states, P (K⊥

α , Kβ) = 0 is achieved when Kα ≡ K⊥

β , which corre-

sponds to require perfect anticorrelation for joint measurements along the same

generic quasi–spin axis α, thus obtaining the standard Wigner inequality:

P (Kα′ , Kβ′) ≤ P (Kα′ , Kα) + P (Kα, Kβ′). (37)

7 A review of the proposals

7.1 Assuming fair sampling and perfect anticorrelation

We start by reviewing those proposals of Bell–type tests using maximally en-

tangled two–kaon states and based on the Wigner inequality (37), which needs

three different quasi–spin measurement axes. These are non–genuine inequali-

ties since to be derived they require, in addition to the hypotheses of realism

and locality, the assumption of fair sampling and the condition of perfect anti-

correlation, as explained in Section 6.4.

7.1.1 A first proposal 27, 31)

For the maximally entangled kaon state (17), Uchiyama 27) derived the in-

equality:

P (KS , K0) ≤ P (KS , K1) + P (K1, K
0), (38)

which has been rediscussed in detail by Bertlmann and Hiesmayr 31). Here, the

joint probabilities are assumed to be measured at a proper time τ = τl = τr

very close to the instant of the pair creation, τ → 0. For this reason, the



above inequality would eventually test noncontextuality rather than locality.

Inserting the quantum–mechanical probabilities into Eq. (38), one obtains the

constraint Re ǫ ≤ |ǫ|2, which is violated by the presently accepted value of the

CP–violation parameter ǫ.

Note that the proposed inequality involves passive measurements along

the basis consisting of the two unphysical CP eigenstates. Moreover, the small-

ness of the parameter ǫ and Eq. (8) preclude any realistic attempt of discrim-

inating between lifetime (KS vs KL) and CP (K1 vs K2) eigenstates. In this

sense, the interest of inequality (38) reduces to that of a clear and well defined

gedanken experiment.

7.1.2 Improved proposal with strangeness detection and thin regenerators 32, 33)

The authors of Refs. 32, 33) based their study on the K0 vs K̄0 identification

and exploited the phenomenon of kaon regeneration to obtain the three different

quasi–spin measurement axes needed to establish a Wigner inequality. The

weak interaction eigenstates which emerge after crossing a thin, homogeneous

regenerator during a time interval ∆τ turn out to be 32, 33):

|K ′

S〉 = |KS〉 + η|KL〉, |K ′

L〉 = |KL〉 + η|KS〉, (39)

where

η ≡ i (λS − λL) ρ∆τ = −
(

i∆m +
1

2
∆Γ

)

ρ∆τ, (40)

and ρ, given by Eq. (13), accounts for the (small) regeneration effects. Eqs. (39)

are valid at lowest order in the regeneration parameter ρ.

The maximally entangled two–kaon state adopted in Refs. 32, 33) is the

one of Eq. (20), where a single time τ is considered for simultaneous left and

right measurements. At this time τ , one kaon enters a regenerator placed on

the left hand side and the other kaon enters a right hand side regenerator. The

proper time spent by each kaon to cross the corresponding regenerator is ∆τ .

The regenerator parameters are chosen at will by the experimenters: in order

to derive a Wigner inequality such as (37), a regenerator is chosen between two

available options, both along the left and right beams. The Wigner inequalities

thus derived are the following ones:

P (K0, 0; K̄0, ρ) ≤ P (K0, 0; K̄0, 2ρ) + P (K̄0, 2ρ; K̄0, ρ), (41)

P (K0, 0; K̄0, ρ) ≤ P (K0, 0; K0, 2ρ) + P (K0, 2ρ; K̄0, ρ), (42)



where, e. g., P (K0, ρ; K̄0, 2ρ) is the probability to detect, at time τ + ∆τ , a

K0 on the left after a thin regenerator with parameter ρ and a K̄0 on the

right after a double density (2ρ) regenerator. The absence of a regenerator is

denoted with a 0. Note that in the present case, each regenerator is considered

as part of the corresponding measurement process.

Quantum mechanics predicts a violation of one of the two previous in-

equalities. In fact, Eq. (41) and (42) imply:

Re [iρ(λL − λS)] ≥ 0 ⇐⇒ Re η ≤ 0, (43)

Re [iρ(λL − λS)] ≤ 0 ⇐⇒ Re η ≥ 0. (44)

Therefore, inequality (41) [(42)] has to be used for an actual test if the experi-

mental value of Re η is positive (negative).

The problem using thin regenerators is that the parameter η is small,

typically |η| ≃ 10−3 ÷ 10−2 26). This lowers the level of violation, by quantum

mechanics, of the inequalities to some %. Thick regenerators (say larger than a

few millimeters) worsen the detector performances and the event reconstruction

becomes more difficult because of multiple scatterings. Moreover, one is forced

to use thin regenerators since otherwise saturation effects in the regeneration

process occurs, due to inevitable KS–decays (note that the KS lifetime τS

corresponds to a distance covered by a KS coming from the decay φ → K0K̄0

of about 0.6 cm).

7.2 Assuming fair sampling

We now proceed to analyse those proposals based on the fair sampling hypoth-

esis, that is the CHSH inequality (33) or the Wigner inequality (36). Even

if these inequalities are non–genuine Bell inequalities, their use opens up the

possibility to test the family of both deterministic and stochastic local realistic

theories based on the fair sampling.

7.2.1 Proposal with strangeness detection 24)

The analogy between strangeness and linear polarization measurements has

been exploited by many authors. In the analysis by Ghirardi et al. 24) one

considers the state (19) and performs joint strangeness measurements at two

different times on the left beam (τ1 and τ2) and at other two different times



on the right beam (τ3 and τ4). The detection times can be chosen at will and,

at least ideally, in accordance with the locality requirement. The proposed

inequality, incorporating the fair sampling hypothesis, is in the CHSH form:

|E(τ1, τ3) − E(τ1, τ4) + E(τ2, τ3) + E(τ2, τ4)| ≤ 2, (45)

where the expectation value E(τr , τr) takes the value +1 when either two K̄0’s

or no K̄0’s are found in the left (τl) and right (τr) measurements, and −1

otherwise:

E(τl, τr) = P (Y, τl; Y, τr) + P (N, τl; N, τr) − P (Y, τl; N, τr) − P (N, τl; Y, τr).

(46)

The probabilities entering this correlation function, where Y (Yes) and N (No)

answer the question whether a K̄0 is detected at the considered time, can be

easily obtained in QM and one gets:

EQM(τl, τr) = − exp {−(ΓL + ΓS)(τl + τr)/2} cos[∆m (τl − τr)], (47)

where, having assumed fair sampling, the inefficiencies in strangeness detection

can be ignored.

Because of strangeness oscillations in free–space along both kaon paths,

choosing among four different times corresponds to four different choices of

measurement directions in the photon case. Unfortunately, the above CHSH

inequality is never violated by QM because strangeness oscillations proceed too

slowly and cannot compete with the more rapid kaon weak decays.

7.2.2 Proposals with lifetime detection and regenerators 25, 51)

An alternative option is based on KS vs KL identification and has been first

proposed by Eberhard in Ref. 25). Here, the two–kaon state of Eq. (20) is

considered. To observe if a neutral kaon in a beam is KS or KL at a given

point (i. e., instant), a kaon detector is located far enough downstream from

this point so that the number of undecayed KS’s reaching the detector is neg-

ligible. Since ΓL << ΓS , almost all KL’s can reach the detector, where they

manifest by strong nuclear interactions. In a complementary way, KS’s are

identified by their decays (mainly into two–pions) not far from that point of

interest. Misidentifications and ambiguous events will certainly appear, but at

an acceptably low level, as explained in Ref. 25).



Measurements of KS vs KL are thus performed for each one of four ex-

perimental setups. In a first setup, the two–kaon state is allowed to propagate

in free–space; its normalization is lost because of weak decays, but its perfect

antisymmetry is maintained. In the other three setups, regenerators —one thin

(4 mm), the other thick (5 cm)— are asymmetrically and alternatively located

along one beam, or along the other, or along both. The following interesting

inequality relating the number of KL’s and KS ’s detected in each experimental

setup is then derived from LR:

P (KL, ρ; KL, ρ′) ≤ P (KL, ρ; KL, 0)+P (KS , 0; KS, 0)+P (KL, 0; KL, ρ′). (48)

Again, ρ and ρ′ denote the regenerator parameters and 0 stands for the absence

of regenerators. Note that the above Bell inequality is a particular case of the

Wigner inequality (36). Due to a constructive interference effect between the

two regeneration processes, this Bell inequality turns out to be significantly

violated by QM predictions even if the above mentioned misidentifications and

ambiguous detection events are taken into account. These successful predic-

tions have some limitations, as already discussed by the author. In particular,

they are valid for asymmetric φ–factories (where the two neutral kaon beams

form a small angle and have a velocity larger than for kaons pairs from sym-

metric φ–factories), whose construction is not foreseen.

Fortunately, it has been recently shown that a measurable QM violation

of the previous Wigner inequality can also be achieved when the experiment

is performed at a symmetric e+e− machine. A proposal for such a test at the

Frascati φ–factory has been indeed put forward 51).

7.2.3 Proposal with both lifetime and strangeness detection 37)

We now discuss a way to use the non–maximally entangled state of Eqs. (24)

and (25), which is prepared with the help of a kaon regenerator and corresponds

to a proper time T along both kaon beams. Following the approach of Ref. 37),

for each kaon on each beam at time T we consider either a strangeness or a

lifetime measurement.

With the strategy illustrated in Section 4.2 for lifetime measurements,

requiring an extra interval time ∆T = 4.8 τS after T , care has to be taken

to choose T large enough to guarantee the space–like separation between left

and right measurements. Locality then excludes any influence from the exper-



imental setup encountered by one member of the kaon pair at time T on the

behaviour of its other–side partner between T and T +∆T . For kaon pairs from

φ decays, moving with velocity β ≃ 0.22, this implies T > (1/β − 1)∆T/2 =

1.77 ∆T , with a considerable reduction of the total kaon sample. Indeed, for

∆T = 4.8 τS one can choose T = 2 ∆T ≃ 9.6 τS, and only 1 in 15000 initial

events can be used, having both kaons surviving up to time T . For faster kaons,

as in CPLEAR, the situation improves considerably.

In Ref. 37) the following CH inequalities have been derived under the

assumption of perfectly efficient experimental apparata:

−1 ≤ P (K̄0, KL) − P (K̄0, K̄0) + P (KS, K̄0) (49)

+P (KS, KL) − P (KS , ∗) − P (∗, KL) ≤ 0,

−1 ≤ P (K̄0, KS) − P (K̄0, K̄0) + P (KL, K̄0)

+P (KL, KS) − P (∗, KS) − P (KL, ∗) ≤ 0,

where, for instance:

P (KS, ∗) ≡ P (KS, K0) + P (KS, K̄0). (50)

In this and the other one–side probabilities, the joint probabilities for the two

possible outcomes on the other side are added to guarantee that both kaons

have survived up to time T . This respects the particular normalization of the

state (24). Note that each one of the two previous inequalities follows from the

other by just inverting left and right measurements on the left–right asymmetric

state (24). The right–hand side CH inequalities can be rewritten as:

P (K̄0, KL) − P (K̄0, K̄0) + P (KS , K̄0) + P (KS , KL)

P (KS , ∗) + P (∗, KL)
≤ 1, (51)

P (K̄0, KS) − P (K̄0, K̄0) + P (KL, K̄0) + P (KL, KS)

P (∗, KS) − P (KL, ∗) ≤ 1.

The CH–like inequalities (49) and (51), actually incorporating the fair

sampling hypothesis, can be easily and equivalently rewritten as four–term

Wigner inequalities. By properly writing the single–side probabilities in (51),

the result can be put in the following form:

P (KS, K̄0) ≤ P (KS , KS) + P (K0, KL) + P (K̄0, K̄0), (52)

P (K̄0, KS) ≤ P (K̄0, K̄0) + P (KL, K0) + P (KS , KS).



By choosing T ≥ 9.6τS , as required by locality, the complex parameter

RS of Eq. (25) turns out to be negligible, while |RL| = O(1). By substituting

the QM predictions in the left–hand side CH inequalities (51), one easily finds:

2 −Re RL + 1
4 |RL|2

2 + |RL|2
≤ 1,

2 + Re RL + 1
4 |RL|2

2 + |RL|2
≤ 1, (53)

whose only difference is the sign affecting the linear term in Re RL. According

to the sign of Re RL, one of these two inequalities is violated if |Re RL| ≥
3|RL|2/4. The greatest violation occurs for a purely real value of RL, |RL| ≃
0.56, for which one of the two ratios in Eq. (53) reaches the value 1.14. This

14 % violating effect predicted by QM opens up the possibility for a meaningful

Bell–type test with neutral kaons which could refute those LR models based

on the fair sampling hypothesis.

Values for the parameter RL satisfying Im RL = 0 and |Re RL| = 0.56,

as required, are not difficult to obtain. Indeed, for kaon pairs from φ decays

and according to the values of the regeneration parameters 26), one can use

a thin beryllium regenerator 1.55 mm thick to prepare the state (21), which

then converts into the state (24) with the desired value of RL by propagating

in free–space up to T ≃ 11.1 τS.

7.3 An attempt of genuine test 38, 41)

We conclude our review by discussing a proposal which does not assume hy-

potheses which go beyond the reality and locality requirements. In our opinion,

it represent an interesting attempt for a loophole–free test of LR vs QM with

neutral kaons.

Hardy’s proof without inequalities of Bell’s theorem 55) has been applied

in Ref. 38) to the non–maximally entangled state of Eqs. (24) and (25). This

considerably improved the analysis of Ref. 37). In such an approach, alternative

measurements of strangeness or lifetime are considered, at time T , on each one

of the kaon pairs, according to the strategies for active measurement procedures

illustrated in Section 4. Hardy’s proof is then translated into an Eberhard

inequality 41), which could discriminate between LR and QM conditionally on

the detection efficiencies for strangeness and lifetime measurements at disposal

in the actual test.

Let us first concentrate on the ‘non–locality without inequalities’ proof of

Ref. 38). Neglecting CP–violation and KL–KS misidentification effects, from



state (24) with RS = 0 and RL = −1 (called Hardy’s state) one obtains the

following QM predictions:

PQM(K0, K̄0) = η η̄/12, (54)

PQM(K0, KL) = 0, (55)

PQM(KL, K̄0) = 0, (56)

PQM(KS, KS) = 0, (57)

where η (η̄) is the overall efficiency for K0 (K̄0) detection. We note that the

values RS = 0 and RL = −1 can be obtained by using, for instance, a beryllium

(carbon) regenerator with thickness d = 2.83 mm (d = 0.78 mm), a detection

time T = 11.1 τS (T = 11.3 τS) and kaon pairs created at a φ–factory (proton–

antiproton machine). It is found that the necessity to reproduce, under LR,

equalities (54)–(56) requires:

PLR(KS , KS) ≥ PLR(K0, K̄0) = η η̄/12 > 0, (58)

which contradicts Eq. (57). In principle, this allows for an ‘all–or–nothing’,

Hardy–like test of LR vs QM. In Ref. 38) it was concluded that, by requiring

a perfect discrimination between KS and KL states, an experiment measuring

the joint probabilities of Eqs. (54)–(57) closes the efficiency loophole even for

infinitesimal values of the strangeness detection efficiencies η and η̄. However,

since KL and KS misidentifications (due to the finite value of ΓS/ΓL ≃ 579) do

not permit an ideal lifetime measurement even when the detection efficiency ητ

for the kaon decay products is 100%, the original proposal must be reanalysed

paying attention to the inefficiencies involved in the real test 41).

Retaining the effects due to KS–KL misidentifications, for Hardy’s state

one obtains (see the Appendix of Ref. 41) for details):

PQM(K0, K̄0) = ηη̄/12, (59)

PQM(K0, KL) = 6.77 × 10−4 η ητ , (60)

PQM(KL, K̄0) = 6.77 × 10−4 η̄ ητ , (61)

PQM(KS , KS) = 1.19 × 10−5 η2
τ , (62)

which replace the results of Eqs. (54)–(57). In the standard Hardy’s proof of

non–locality 55), the probabilities corresponding to our (60), (61) and (62) are



perfectly vanishing. In our case they are very small but not zero. Nevertheless,

this does not prevent us from deriving a contradiction between LR and QM.

Indeed, as proved in Ref. 56), the well known criterion of physical reality of

Einstein, Podolsky and Rosen 3) can be generalized to include predictions

made with almost certainty, as it is required in the present case due to the

nonvanishing values of probabilities (60)–(62).

According to this generalization, the following Eberhard inequality must

be used to demonstrate the incompatibility between LR and QM:

H ≡ P (K0, K̄0)

P (K0, KL) + P (KS, KS) + P (KL, K̄0) + P (K0, ULif) + P (ULif , K̄0)
≤ 1.

(63)

Essentially, it is a different writing of the CH inequality:

Q ≡ P (KS , K̄0) − P (KS , KS) + P (K0, K̄0) + P (K0, KS)

P (K0, ∗) + P (∗, K̄0)
≤ 1, (64)

and the argument ULif refers to failures in lifetime detection. The QM expres-

sion for the probabilities containing lifetime undetection are:

PQM(K0, ULif) =
1

6
η (1 − ητ ) , PQM(ULif , K̄

0) =
1

6
η̄ (1 − ητ ) . (65)

Note that the use of an inequality 57) allows for deviations, existing in real

experiments, in the values of RS and RL required to prepare Hardy’s state and,

in addition, takes care of the difficulties associated to ‘almost null’ measure-

ments, as is the case of probabilities (60)–(62). Both previous inequalities are

actually derivable from LR for any value of RS and RL. However, Hardy’s proof

leads to inequality (63) only for Hardy’s state (RS = 0 and RL = −1). It is

important to stress that the previous Eberhard and CH inequalities have been

obtained without invoking supplementary assumptions on undetected events.

They are both genuine Bell inequalities and provide the same restrictions on

the efficiencies η, η̄ and ητ required for a detection loophole free experiment.

In order to discuss the feasibility of such an experiment, let us start

considering a few ideal cases. Assume first that perfect discrimination between

KS and KL were always possible (ητ = 1 and pL = pS = 1; see appendix of

Ref. 41)); one could then make a conclusive test of LR for any nonvanishing

values of η and η̄: Hητ =pL=pS=1
QM → ∞, ∀ η, η̄ 6= 0. In a second ideal case with

no undetected events, i. e. with η = η̄ = ητ = 1, the inequalities are strongly
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Figure 1: The four curves (corresponding to ητ = 1, ητ = 0.99, ητ = 0.98 and
ητ = 0.97) provide the values of η and η̄ for which HQM = QQM = 1 using
Hardy’s state. QM violates inequalities (63) and (64) for values of η and η̄
situated above the corresponding curve.

violated by QM, Hη=η̄=ητ =1
QM ≃ 60.0 and Qη=η̄=ητ =1

QM ≃ 1.25, even if one allows

for unavoidable KS and KL misidentifications. Finally, assuming that only

the detection efficiency of kaon decay products is ideal (ητ = 1), for η = η̄

(η = η̄/2) Eberhard and CH inequalities are contradicted by QM whenever

η > 0.023 (η > 0.017).

Let us now consider more realistic situations with small and possibly

achievable values of η and η̄. This implies that we have to consider large

decay–product detection efficiencies such as ητ = 0.97, 0.98, 0.99 and, ideally,

1. For each ητ , the values of η and η̄ that permit a detection loophole free

test (HQM, QQM > 1) lie above the corresponding curve plotted in Fig. 1. As

expected, when ητ decreases, the region of η and η̄ values which permits a

conclusive test diminishes and larger values of η and η̄ are required.



Note, however, that the strangeness detection efficiencies required for a

conclusive test of LR vs QM with neutral kaons are considerably smaller than

the limit (η0 = 0.67) deduced by Eberhard 22) for non–maximally entangled

photon states.

8 Conclusions

A series of proposals aiming to perform Bell inequality tests with entangled

neutral kaon pairs has been reviewed. The relativistic velocities of these kaons

and their strong interactions seem to offer the possibility of simultaneously

closing the so–called locality and detection loopholes which affect analogous

experiments performed with photons and ions. The real situation, however, is

not a simple one.

All the proposal we discussed suffer from difficulties coming from the fact

that the number of different complementary measurements on neutral kaons

one can use for a Bell–test is reduced. Essentially, only strangeness and life-

time measurements are possible. The situation can be improved if the well

known effects of kaon regeneration are taken into account. On the one hand,

this amounts to an effective increase in the number of non–compatible mea-

surements one can perform. On the other hand, by changing or removing the

regenerators, the active presence of the experimenter is guaranteed. A final

difficulty could still remain: the rather low efficiency of some of these neutral

kaon measurements. A detailed analysis suggests that a Bell–test with neutral

kaons free from the detection loophole would require a few % strangeness de-

tection efficiencies and very high efficiencies for the detection of the kaon decay

products.
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