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some introductory remarks on the “QG problem”

General reasons of interest in the description of n-particle systems in Quantum 
Gravity

The illustrative example of noncommutative geometry



Where is the problem?

●Quantum Mechanics and GR are very successful in their respective
domains

●Nearly impossible to gain experimental access to the domain when both must 
be taken into account, but the “QM+GR theory” predicts that this “common 
domain” exists (this domain includes, e.g., early stages of evolution of Universe)

●Quantum Mechanics limits measurability of pairs of observables. It 
never limits the measurability of a single observable. BUT combining the 
Heisenberg Uncertainty Principle with Einstein’s Equivalence Principle 
various arguments suggest that certain observables (distance between two 
events?) could never be measured sharply



How should “Quantum Gravity” look like?

●Quantum Mechanics works well with dimensionless coupling constants
(needed for perturbative renormalizability).  The GR description of 
gravity involves a dimensionful coupling constant

●Quantum Mechanics works well when it can assume a given background 
spacetime. In the GR description of gravity a crucial ingredient is the 
background independence (diffeomorphism invariance)

●Quantum Mechanics describes most things in terms of noncommuting
observables with discrete spectrum. The GR description of gravity is 
based on a classical commutative continuous picture of spacetime



Some proposals (must all be viewed as mere speculations, without any 
support in data, but perhaps capturing some aspects of the nature of the 
quantum-gravity problem)

String Theory: key issue is the dimensionful coupling constant. Keep a 
classical continuous background spacetime, but replace fundamental point 
particles with fundamental extended objects in such a way that the 
dimensionful quantity really is the characteristic size of the objects, while 
the true coupling constant is dimensionless. Background independence will 
somehow (how?) emerge at some point in the development of the theory

Loop Quantum Gravity: key issue is background independence. 
Dimensionful coupling somehow (how?) will not be a problem. Spacetime
discreteness emerges naturally

Noncommutative geometry: key issue is noncommutativity, even of 
spacetime itself. Allows straightforward introduction of an uncertainty 
principle for the measurability of the distance between two events, but the 
problems associated with background independence and the dimensionful
coupling will have to somehow find a cure as we develop the theories



“QG problem” still completely open, but we have strong “theoretical evidence” 
that Planck scale is characteristic scale (modulo large extra dim….)

Planck-scale effects can be “striking”
•small extra dimensions
•violations of EP
•violations of Poincarè/Lorentz symmetry
•violations of CPT symmetry…

but these effects are always very small because EP =1028 eV is much 
greater than energies accessible to us

Most of the relevant phenomenology focuses on one-particle states (e.g. laws of 
propagation of a particle)



General observations for the two-particle state in quantum gravity

2+1D QG is a topological theory!!!
Chern-Simons theory
2-particle states are not described by elements of the space of 
tensor products of one-particle states
Not surprising that such theories could exist in 2+1D: the winding of world lines
is meaningful in 2+1D

Some approaches to 3+1D QG, notably some formulations of LoopQG, reflect 
rather strongly the properties of the 2+1D limit (topological theory plus 
nontopological terms)

Recent approaches to quantum mechanics in non-Minkowski backgrounds:
quantum field theory in deSitter spacetime is problematic....rather than assuming
deSitter symmetries it appears to help if one assumes “q-deSittersymmetries”,
But then something analogous to kappaMinkowski occurs



Problematic aspects of two-particle states in noncommutative geometry
The example of  “kappa-Minkowski”

The idea of NCgeometry can be viewed in analogy with the noncommutative geometry
of (x,p) phase space for ordinaryQM. Let us consider the specific example

Some recent papers advocate a role in String Theory
(nonconstant backgrounds…) for
“Lie-algebra noncommutative spacetimes”
of which kappa-Minkowski is an example

[Xµ,Xν] = ENC 
-1 Cα

µν Xα

Key role in the analysis of theories in kappa-Minkowski played by the Fourier transform
which is essentially standard (see, e.g., Madore+Schraml+Schupp+Wess, EPJC16,161)

( )tikikx eekkdxf 0)()( 4 ϕ∫=
Any f(x), function of kappa-Minkowski coordinates, can be written as the Fourier
transform of a (commutative) (k)

( )tikikxekkdxf 0)()( 4 +∫= ϕNotice the alternative (an ambiguity?)



Translation generators in kappa-Minkowski:
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µµ = < classical action
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Nontrivial coproduct!!
Translations are not really classical in kappa-Minkowski
IS THE ENERGY OF THE TWO-PARTICLE STATE
NOT SYMMETRIC UNDER PARTICLE EXCHANGE??

then



Rotation generators in kappa-Minkowski:
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Trivial coproduct!!
Rotations are really classical in k-M

then

< classical action



Boosts in kappa-Minkowski:
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Modified action needed for consistency with Hopf algebra structure….
IF one adopted unmodified (classical) action then the would-be coproduct
requires operators external to the algebra…
Modification of boosts was expected since commutators involve a length scale…
With this modified action the coproduct is OK (can be expressed in terms of P,R,N)
Note that:
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and the “mass Casimir” for these deformed transformations is
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For one-particle states most of the familiar equations can be generalized
to the kappaMinkowski case

Klein-Gordon equation:
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BUT the description of multi-particle states is still not well understood

The possible “ordering ambiguity”, mentioned earlier, must still be fully 
analyzed, and one could think it has a role 

But in Roma1 we are presently following a path based on the properties
of the “differential calculus”

Translations and differential calculus:
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When this is done we should have testable predictions for two-particle states


