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Our dark halo
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Direct detection of WIMPs

Billions of WIMPs may be pass-
ing through the Earth each sec-
ond, but they very rarely inter-
act.

Figure : Schematic

Direct detection experiments operate underground and search for
WIMPs via their scattering with atomic nuclei in the detector.

WIMP velocity ∼ 10−3c
=⇒ non-realtivistic
Expected recoil energies
∼ 10 keV
Expected < 1
event/kg/year Figure : Schematic
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WIMP-nuceus interaction

• WIMP-nucleus elastic collision
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WIMP-nucleus interaction

Energy-momentum
conservation

1

2
mv2 = 1

2mv
′2 + q2

2M

mv′ cos θ′ = mv − q cos θ

mv′ sin θ′ = q sin θ

Eliminate θ′ and v′

q = 2µv cos θ µ =
mM

m + M
Reduced mass
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WIMP-nuceus interaction

q = 2µv cos θ

Magnitude of recoil momentum varies in the range:

0 ≤ q ≤ qmax ≡ 2µv Emax ≡
2µ2v2

M

Minimum WIMP speed required to produce a recoil energy E:

vm =
q

2µ
=

√
ME

2µ2
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The expected event rate

The strongly simplified expected event rate :

R ∝ NΦχσ

N = number of target nuclei in the detector,
Φχ = flux of WIMPs,
σ = WIMP-nucleus cross section

Φχ = n < v >

n : WIMP number density n = ρ
m , ρ local DM mass density

< v>:average WIMP velocity with respect to the detector
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The expected event rate

Let’s estimate the expected flux of WIMPs on Earth assuming:

ρ = 0.3 GeV/cm3, < v > = 220 km/s, m = 100 GeV

Φχ =
ρ

m
× < v > = 6.6 · 104cm−2s−1

The flux is large enough that even though WIMPs are weakly
interacting, we would have a small but blue potentially
measurable rate in direct detection experiments.
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The expected event rate

Strongly semplified event rate per unit detector mass,
assuming1 :

σ = 10−38cm2,M = 100GeV

R =
N

NM
Φχσ ∼ 0.12 events/kg/yr

M = number of nuclei in the detector
NM = detector mass

More realistic and proper calculation of the event rate are
necessary.

11kg = 15.6 · 1026 GeV, Xenon atom weight 2.1810 · 10−22g .
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The differential event rate

To find the differential event rate, we need the following
ingredients:

WIMP-nucleus scattering cross section which describes the
interaction of a WIMP with the nucleus. (particle physics input)
Local DM density and velocity distribution in the detector reference
frame (astrophysics input).
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The differential event rate

The differential event rate per unit detector mass is determined
from differential cross section2

dσ

dE

Multiply the number N of the nuclei in the detector. Divide by the
detector mass MN .
Multiply the flux of WIMPs with velcity ~v in the velocity space
elment d3v:

nvf(~v)d3v, n =
ρ

m

f(~v) WIMP velocity distribution in the detector reference frame.

2R = N
NM

Φχσ and Φχ = ρ
m
× < v >
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The differential event rate

The differential event rate per unit detector mass 3:

dR

dE
=

ρ

m

1

M

∫
v>vm

d3v
dσ

dE
vf(~v)

Recap: Many unknowns enter in event rate:

R, expected event rate
E, recoil energy of detector nucleus
ρ
m DM number (ρ=DM density, m = DM mass)
v ,DM speed
vm, minimum DM speed required to produce a recoil energy E
f(~v), DM velocity distribution in the detector reference frame.
σ, DM-nucleus scattering cross section

3The divided by M
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Particle physics input:
cross section
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The differential cross section

The WIMP-nucleus differential cross section encodes how DM
interacts with ordinary matter:

WIMP-quark interaction:strongly depends on the DM model,
and is calculated in terms of an effective Lagrangian which
describes the interaction of the WIMP candidate with quarks and
gluons.
WIMP-nucleon cross section:calculated using hadronic matrix
elements which describe the nucleon content in quarks and
gluons=⇒ subject to large uncertainties.
Total WIMP-nucleus cross section:calculated by adding the
spin and scalar components of nucleons.
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The differential cross section

The standard theoretical framework assumed for direct detection
experiments is inspired by models of supersymmetric DM.
It assumes interactions mediated by heavy particles (i.e. contact
interactions), and includes only the leading-order interactions
in the non-relativistic limit.
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The differential cross section

Differential WIMP-nucleus scattering cross section for
standard contact interactions:

dσ

dE
=

σ0
Emax

F 2(E) =
M

2µ2v2
σ0F

2(E)

σ0: total scattering section with point-like nucleus.
F 2(E): nuclear form factor (normalized to 1); takes into account
the finite size of the nucleus and encode the dependence e on
momentum transfer (q =

√
2ME).
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The differential cross section

When momentum transfer is small, the DM doesn’t probe the size
of the nucleus and coherently scatters off the entire nucleus:

F 2(E)→ 1

As momentum transfer increases, the DM becomes sensitive to the
spatial structure of the nucleus:

F 2(E) < 1

The effect is strong for heavy target nuclei.=⇒ Event rate
suppression.
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The differential cross section

Two relevant contributions to the cross section:

Spin-independent (SI): coherent interaction of the WIMP with
all nucleons; no dependence on nuclear spin.
Spin-dependent (SD): the WIMP interacts with the spin of the
nucleus.

Considering both spin-independent and spin-dependent WIMP-nucleus
interactions in the non-relativistic limit:

dσ

dE
=

M

2µ2v2
[
σSI0 F 2

SI + σSD0 F 2
SD

]
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Spin-independent interaction

The SI contribution to the cross section can arise from scalar
couplings of DM to quarks, which occurs through the operator
(χ̄χ)(q̄q)

For a WIMP with scalar interactions, the SI WIMP-nucleus
cross section is:

σSI0 =
4µ2

π

[
Zfp + (A − Z)fn

]2
where fp, fnare couplings of the WIMP with point- like
protons and neutrons, respectively.Z and A-Z are the number of
protons and neutrons in the nucleus.
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Spin-independent interaction

To compare data from different direct detection experiments which
have different target nuclei, it is convenient to consider the
WIMP-proton cross section:

σSI =
4µ2

p

π

(
fp
)2

µp: WIMP proton reduced mass, mM
m + M Reduced mass;M: mass

of nucleus.
Then we have:

σSI0 = σSI
[
Z + (A − Z)

(fn
fp

)]2( µ
µp

)2
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Spin-independent interaction

For most WIMP candidates one can assume fn ' fp and the SI
scattering cross section of WIMPs with protons and
neutrons are roughly comparable. For identical
couplings,fn = fp , and

σSI0 = σSIA
2
( µ
µp

)2
The SI cross section increases rapidly with nuclear mass
A2.=⇒ heavy target are favored .
The A2 dependence comes from the fact that the contributions to
the total SI cross section of a nucleus is a coherent sum over the
individual protons and neutrons.
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Spin-independent interaction

The SI form factor is essentially a Fourier transform of the mass
distribution of nucleus: the mass distribution of the nucleus:

F (q) =

∫
d3xρ(x)eiq·x

An accurate approximation4

F (q) = 3e−q
2s2/2 sin(qr) − qr cos(qr)

(qr)3

s= 1 fm skin ticness, a solid sphere, approximating
spin-independent interaction with the whole nucleus (single outer
shell nucleon for spin dependent) effective nuclear radius r ≈ A1/3

4J.D.Lewin, P.F. Smith For a complete review: Review of mathematics, numerical factors, and
corrections for dark matter experiments based on elastic nuclear recoil Astroparticle Physics 6
(1996), 87 Form factor, protected
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Spin-independent interaction

Figure : Nuclear form factor

•Uncertainties in the deter-
mination of the nuclear form
factor will affect the theo-
retical prediction for event
rate.
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Spin-dependent interaction

SD scattering is due to the interaction of a WIMP with the spin of
the nucleus.It can arise from axial vector couplings of DM to
quarks5 It happens only in detector nuclei with an odd number
of protons and/or neutrons.
Unlike the SI case, the two SD couplings may be quite different,
and we cannot simplify the cross section as we did for the SI case.
No A2 enhancement of SD cross section as SI case.
The SD is not as significant as SI scattering in direct
detection experiments.
The SD form factor depends on the spin structure of a nucleus

⇓

I will consider only SI interactions in my lecture.

5which occurs through the operator (χ̄γµγ5χ)(q̄γµγ5q).
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The differential event rate

dR

dE
=

ρ

m

1

M

∫
v>vm

d3v
dσ

dE
vf(~v)

dσ

dE
=

M

2µ2v2
σ0F

2(E)

dR

dE
= ρ

σ0F
2(E)

2mµ2︸ ︷︷ ︸
particle physics

∫
v>vm

d3v
~v

v︸ ︷︷ ︸
astrophysics

astrophysics
particle physics
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Halo integral

Let’s define halo integral as:

η(vm) ≡
∫
v>vm

d3v
~v

v

The event rate can be written as 6

dR

dE
=

ρσ0F
2(E)

2mµ2
η(vm)︸ ︷︷ ︸

astrophysics

For SI case :
dR

dE
=

ρA2σSIF
2(E)

2mµ2p
η(vm)︸ ︷︷ ︸

astrophysics

6σSI0 = σSIA
2
(
µ
µp

)2
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Astrophysics input input:
DM distribution
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Standard Halo Model

The dark matter halo in the local neighborhood is most likely
dominated by a smooth component with an average density:

ρχ ≈ 0.3 GeV cm−3

The simplest model for this smooth component is often taken to be
the SHM, Standard Halo Model an isothermal sphere with an
isotropic, Maxwellian velocity distribution and rms velocity
dispersion σv. 7

7Freese, Lisanti and Savage,Colloquium: Annual modulation of dark matter Rev. Mod. Phys. 85
(2013) 1561 ??
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Standard Halo Model

fgal(~v) =

{
1

Nesc

(
3

2πσ2
v

)3/2
,
[
e−3~v

2/2σ2
v − e−3~v2/2σ2

v
]

for |~v|< vesc

0, otherwise

Nesc = erf(z) − 2√
π
ze−z

2

z ≡ vesc/v0 is a normalization factor
v0 =

√
2/3σv

v0 ≈ 235 km/s is the most probable speed.
The Maxwellian distribution is truncated at the escape
velocityvescto account for the fact that WIMPs with
sufficiently high velocities escape the Galaxy’s potential well
and, thus, the high-velocity tail of the distribution is depleted.
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Standard Halo Model

The Dark Matter velocity distribution
depends on the halo model.
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DM velocity distribution

To compute the event rate, we need the WIMP velocity,~v,
distribution in the detector reference frame. Need to transform
from the galactic frame to the detector frame.

fdet(~v, t) = fdet
(
~v + ~ve(t)

)
= fgal

(
~v + ~vs(t) + ~ve(t)

)

~ve(t), Earth’s velocity wrt the Sun
~vs(t), Sun’s velocity wrt the Galaxy
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Sun’s orbit around the Galaxy

Galactic coordinate system:

Origin at the position of the Sun.
x-axis points towards the Galactic Center.
y-axis points towards the direction of the Galactic rotation.
z-axis points to the North Galactic pole

~vs(t) = (0, 220, 0) + (10, 13, 7)km/s
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Earth’s orbit around the Sun

Sun’s ecliptic longitude λ(t) changes from 0 to 360 degrees as the Earth
orbits the Sun.
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Earth?s orbit around the Sun

In the approximation of circular orbit, we have

λ(t) =
2π

1yr
(t − 0.218)

t is the time during the year running from 0 to 1 year, with t=0 on
January first
0.218is the fraction of year before the spring equinox (March 21).
The position vector of the Earth is:

~re(t) = −
[

cosλ(t)ê1 + sinλ(t)ê2
]
AU

1 AU is the average distance between the Earth and the Sun.
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Earth’s orbit around the Sun

Earth’s velocityaround the Sun is time dependent:

~ve(t) = ve
[

sinλ(t)ê1 − cosλ(t)ê2
]

ve = 29.8 km/s
Orthogonal vectors spanning the plane of the plane of the Earth’s
orbit:

ê1 = (−0.0670, 0.4927,−0.8676)

ê2 = (−0.9931, 0.1170,−0.01032)
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DM velocity distribution

Comparison of two different model in the lab frame(on the
earth)after accounting the motion of Solar System relative to
Galactic center:

SHM,Standard Halo Model an isothermal sphere with an isotropic,
Maxwellian velocity distribution and rms velocity dispersion σv.
Tidal stream, the material in the stream has not had the time to
spatially mix, the stream has a small velocity dispersion in
comparison: fstr(~v) = δ3(~v)
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The differential event rate

The recoil spectrum falls off exponentially in the galactic rest
framefor the SHM (neglecting form factors), due to the exponential
drop-off with velocity 8 Even when form factors and the motion of the
Earth through the halo are accounted for, the spectrumis still
approximately exponential in the laboratory frame:

dR

dE
∼ e−E/E0 E0 ∼ O(10keV ) For typical WIMP and target mass.

•Large contribution to the rate is at low energies.
8

fgal(~v) =

 1
Nesc

( 3
2πσ2v

)3/2, [e−3~v2/2σ2v − e−3~v2/2σ2v
]

for |~v|< vesc

0, otherwise

Nesc = erf(z) −
2
√
π
ze

−z2

z ≡ vesc/v0 is a normalization factor

v0 =
√

2/3σv

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSICS December 10, 2017 44 / 48



The differential event rate

Figure : Event rate

Spectrumis featureless:
exponentially falling off.
Spectrum is shifted to low
energies for low WIMP
masses.To detect light
WIMPs, need low energy
threshold (and light target
nuclei).
Expect different rates
for different targets.
Rate depends on A2=⇒
heavier targets are favored
in direct detection
experiments.
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The differential event rate

Figure : Event rate
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The differential event rate

Nuclear form factor is less important for light WIMPs
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Summary

We discussed the different ingredients which enter in the expected
event rate in direct detection experiments.

particle physics input:cross section. SI cross section scales as A2

astrophysics input: local DM density and velocity distribution.
Maxwell distribution in the Standard Halo Model.

Recoil spectrumexponentially falling off and featureless.
Direct detection experiment need to achieve low energy
threshold.
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