ELEMENTARY PARTICLE PHYSICS Current Topics in Particle Physics Laurea Magistrale in Fisica, curriculum Fisica Nucleare e Subnucleare Lecture 11

Simonetta Gentile*

* Università Sapienza,Roma,Italia.

December 10, 2017

Simonetta Gentile terzo piano Dipartimento di Fisica *Gugliemo Marconi* Tel. 0649914405 e-mail: simonetta.gentile@roma1.infn.it pagina web:http://www.roma1.infn.it/people/gentile/simo.html

Bibliography

- \blacklozenge Bibliography
- K.A. Olive et al. (Particle Data Group), *The Review of Particle Physics*, Chin. Phys. C, 38, 090001 (2014)(PDG) update 2015, http://pdg.lbl.gov/
- F. Halzen and A. Martin, *Quarks and Leptons: An introductory course in Modern Particle Physics*, Wiley and Sons, USA(1984).
- \blacklozenge Other basic bibliography:
 - A.Das and T.Ferbel, *Introduction to Nuclear Particle Physics* World Scientific, Singapore, 2nd Edition(2009)(DF).
 - D. Griffiths, *Introduction to Elementary Particles* Wiley-VCH, Weinheim, 2nd Edition(2008), (DG)
 - B.Povh *et al.*, *Particles and Nuclei* Springer Verlag, DE, 2nd Edition(2004).(BP)
 - D.H. Perkins, *Introduction to High Energy Physics* Cambridge University Press, UK, 2nd Edition(2000).

- ♠ Particle Detectors bibliography:
- William R. Leo Techniques for Nuclear and Particle Physics Experiments, Springer Verlag (1994)(LEO)
- C. Grupen, B. Shawartz *Particle Detectors*, Cambridge University Press (2008)(CS)
- The Particle Detector Brief Book,(BB) http://physics.web.cern.ch/Physics/ParticleDetector/Briefbook/

Specific bibliography is given in each lecture

Lecture Contents - 1 part

- 1. Introduction. Lep Legacy
- 2. Proton Structure
- 3. Hard interactions of quarks and gluons: Introduction to LHC Physics
- 4. Collider phenomenolgy
- 5. The machine LHC
- 6. Inelastic cros section pp
- 7. W and Z Physics at LHC
- 8. Top Physics: Inclusive and Differential cross section $t\bar{t}$ W, $t\bar{t}$ Z
- 9. Top Physics: quark top mass, single top production
- 10. Dark matter
 - Indirect searches
 - Direct searches

\blacklozenge Bibliography of this Lecture

- O. Lahav and A.R. Liddle *The Cosmological parameters* The Review of Particle Physics (2017) C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update. (PDG-Rev-Cosmo) rpp2016-rev-cosmological
- M. Drees and G. Gerbier *Dark Matter* The Review of Particle Physics (2017) C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update. (PDG-Rev-dark) rpp2016-rev-dark-matter Katherine Freese*Status of dark matter in the universe*,Proceedings of 14th Marcel Grossman Meeting, MG14, University of Rome "La Sapienza", Rome, July 2015,arXiv:1701.01840

Specific Bibliography

- \blacklozenge Bibliography of this Lecture
- Bertone, Particle Dark Matter: *Observations, Models and Searches*, Cambridge
- Freese, Lisanti and Savage, Rev. Mod. Phys. 85 (2013) 1561
- Kurylov and Kamionkowski, Phys. Rev. D 69 (2004) 063503
- Classic papers:
 - Lewin and Smith, Astrop. Phys. 6 (1996) 87
 - Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195 Gondolo, arXiv: hep-ph/9605290
 - Spergel, Phys. Rev. D 37 (1988) 1353
 - Drukier, Freese and Spergel, Phys. Rev. D 33 (1986) 12 Goodman and Witten, Phys. Rev. D 31 (1985) 12.

Dark matter. Direct Detection

æ

Our dark halo

The Sun is moving through the Milky Way's dark matter halo. So we expect a "WIMP wind" coming towards us on the Earth!

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

December 10, 2017

Direct detection of WIMPs

Billions of WIMPs may be passing through the Earth each second, but they very rarely interact.

Figure : Schematic

Direct detection experiments operate underground and search for WIMPs via their scattering with atomic nuclei in the detector.

- WIMP velocity $\sim 10^{-3}$ c \Rightarrow non-realtivistic
- Expected recoil energies $\sim 10 \text{ keV}$
- Expected < 1event/kg/year

WIMP-nuceus interaction

• WIMP-nucleus elastic collision

M : mass of nucleus

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

December 10, 2017

WIMP-nucleus interaction

• Energy-momentum conservation

48

$$\frac{1}{2}mv^2 = \frac{1}{2}mv'^2 + \frac{q^2}{2M}$$
$$mv'\cos\theta' = mv - q\cos\theta$$
$$mv'\sin\theta' = q\sin\theta$$

 \bullet Eliminate θ' and v'

$$q = 2\mu v \cos \theta \qquad \mu = \frac{mM}{m + M} \text{Reduced mass}$$
S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017 12

WIMP-nuceus interaction

$$q = 2\mu v \cos \theta$$

• Magnitude of recoil momentum varies in the range:

$$0 \leq q \leq q_{\max} \equiv 2\mu v$$
 $E_{\max} \equiv \frac{2\mu^2 v^2}{M}$

• Minimum WIMP speed required to produce a recoil energy E:

$$v_m = \frac{q}{2\mu} = \sqrt{\frac{ME}{2\mu^2}}$$

S. Gentile (Sapienza)

December 10, 2017

The expected event rate

• The strongly simplified expected event rate :

 $R \propto N\Phi_\chi\sigma$

- $\bullet~N=$ number of target nuclei in the detector,
- $\Phi_{\chi} =$ flux of WIMPs,
- $\sigma = \text{WIMP-nucleus cross section}$

 $\Phi_{\chi} = n < v >$

• n : WIMP number density $n = \frac{\rho}{m}$, ρ local DM mass density • < v>:average WIMP velocity with respect to the detector

۵

December 10, 2017

• Let's estimate the expected flux of WIMPs on Earth assuming:

$$\rho = 0.3 \ GeV/cm^3, < v > = 220 \ km/s, \ m = 100 \ GeV$$

$$\Phi_{\chi} = \frac{\rho}{m} \times \langle v \rangle = 6.6 \cdot 10^4 cm^{-2} s^{-1}$$

• The **flux is large enough** that even though WIMPs are weakly interacting, we would have a small but blue **potentially measurable rate** in direct detection experiments.

The expected event rate

• Strongly semplified **event rate per unit detector mass**, assuming¹ :

$$\sigma = 10^{-38} cm^2, M = 100 GeV$$

 $R = \frac{N}{NM} \Phi_{\chi} \sigma \sim 0.12 \text{ events/kg/yr}$

- M = number of nuclei in the detector
- NM = detector mass
- More realistic and proper calculation of the event rate are necessary.

¹1 $kg = 15.6 \cdot 10^{26}$ GeV, Xenon atom weight $2.1810 \cdot 10^{-22}g$. $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \rangle$ S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017 16 / 48

- To find the differential event rate, we need the following ingredients:
 - WIMP-nucleus scattering cross section which describes the interaction of a WIMP with the nucleus. (particle physics input)
 - Local DM density and velocity distribution in the detector reference frame (astrophysics input).

• The differential event rate per unit detector mass is determined from differential cross section²

$\frac{d\sigma}{dE}$

- Multiply the number N of the nuclei in the detector. Divide by the detector mass MN.
- Multiply the flux of WIMPs with velcity \vec{v} in the velocity space elment d^3v :

$$nvf(\vec{v})d^3v, \qquad n = \frac{\rho}{m}$$

• $f(\vec{v})$ WIMP velocity distribution in the detector reference frame.

The differential event rate per unit detector mass 3 :

$$\frac{dR}{dE} \; = \; \frac{\rho}{m} \frac{1}{M} \int_{v > v_m} d^3 v \frac{d\sigma}{dE} v f(\vec{v})$$

Recap: Many **unknowns** enter in event rate:

- R, expected event rate
- E, recoil energy of detector nucleus
- $\frac{\rho}{m}$ DM number (ρ =DM density, m = DM mass)
- $\bullet~v$, DM speed
- v_m , minimum DM speed required to produce a recoil energy E
- $f(\vec{v})$, DM velocity distribution in the detector reference frame.
- σ , DM-nucleus scattering cross section

³The divided by M

Particle physics input: cross section

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017

The WIMP-nucleus differential cross section encodes how DM interacts with ordinary matter:

- WIMP-quark interaction:strongly depends on the DM model, and is calculated in terms of an effective Lagrangian which describes the interaction of the WIMP candidate with quarks and gluons.
- WIMP-nucleon cross section:calculated using hadronic matrix elements which describe the nucleon content in quarks and gluons \implies subject to large uncertainties.
- Total WIMP-nucleus cross section: calculated by adding the spin and scalar components of nucleons.

- The standard theoretical framework assumed for **direct detection experiments** is inspired by models of **supersymmetric DM**.
- It assumes interactions mediated by heavy particles (i.e. *contact interactions*), and includes only the **leading-order interactions** in the non-relativistic limit.

• Differential **WIMP-nucleus scattering cross section** for standard contact interactions:

$$\frac{d\sigma}{dE} = \frac{\sigma_0}{E_{\text{max}}} F^2(E) = \frac{M}{2\mu^2 v^2} \sigma_0 F^2(E)$$

- σ_0 : total scattering section with point-like nucleus.
- $F^2(E)$: nuclear form factor (normalized to 1); takes into account the finite size of the nucleus and encode the dependence e on momentum transfer ($q = \sqrt{2ME}$).

• When momentum transfer is small, the DM doesn't probe the size of the nucleus and coherently scatters off the entire nucleus:

$$F^2(E) \to 1$$

• As momentum transfer increases, the DM becomes sensitive to the spatial structure of the nucleus:

$$F^2(E) < 1$$

• The effect is strong for heavy target nuclei. \implies Event rate suppression.

Two relevant contributions to the cross section:

- Spin-independent (SI): coherent interaction of the WIMP with all nucleons; no dependence on nuclear spin.
- **Spin-dependent (SD)**: the WIMP interacts with the spin of the nucleus.

Considering both spin-independent and spin-dependent WIMP-nucleus interactions in the non-relativistic limit:

$$\frac{d\sigma}{dE} = \frac{M}{2\mu^2 v^2} \big[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \big]$$

- The SI contribution to the cross section can arise from scalar couplings of DM to quarks, which occurs through the operator $(\bar{\chi}\chi)(\bar{q}q)$
- For a WIMP with scalar interactions, the SI **WIMP-nucleus** cross section is:

$$\sigma_0^{SI} = \frac{4\mu^2}{\pi} [Z f_p + (A - Z) f_n]^2$$

• where f_p , f_n are couplings of the WIMP with point- like protons and neutrons, respectively.Z and A-Z are the number of protons and neutrons in the nucleus. • To compare data from different direct detection experiments which have different target nuclei, it is convenient to consider the **WIMP-proton cross section**:

$$\sigma_{SI}~=~rac{4\mu_p^2}{\pi}{(f_p)}^2$$

 $\mu_p :$ WIMP proton reduced mass, $\frac{mM}{m+M}$ Reduced mass; M: mass of nucleus.

• Then we have:

$$\sigma_0^{SI} = \sigma_{SI} \left[Z + (A - Z) \left(\frac{f_n}{f_p} \right) \right]^2 \left(\frac{\mu}{\mu_p} \right)^2$$

Spin-independent interaction

• For most WIMP candidates one can assume $f_n \simeq f_p$ and the SI scattering cross section of WIMPs with protons and neutrons are roughly comparable. For identical couplings, $f_n = f_p$, and

$$\sigma_0^{SI} = \sigma_{SI} A^2 \left(\frac{\mu}{\mu_p}\right)^2$$

- The SI cross section increases rapidly with nuclear mass $A^2 \implies$ heavy target are favored.
- The A^2 dependence comes from the fact that the contributions to the total SI cross section of a nucleus is a coherent sum over the individual protons and neutrons.

Spin-independent interaction

• The SI form factor is essentially a Fourier transform of the mass distribution of nucleus: the mass distribution of the nucleus:

$$F(\boldsymbol{q}) = \int d^3x \rho(\boldsymbol{x}) e^{i \boldsymbol{q} \cdot \boldsymbol{x}}$$

• An accurate approximation⁴

$$F(q) = 3e^{-q^2 s^2/2} \frac{\sin(qr) - qr\cos(qr)}{(qr)^3}$$

s= 1 fm skin ticness, a solid sphere, approximating spin-independent interaction with the whole nucleus (single outer shell nucleon for spin dependent) effective nuclear radius $r \approx A^{1/3}$

⁴J.D.Lewin, P.F. Smith For a complete review: Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil Astroparticle Physics 6 (1996), 87 Form factor, protected

Spin-independent interaction

Figure : Nuclear form factor

•Uncertainties in the determination of the nuclear form factor will affect the theoretical prediction for event rate.

Spin-dependent interaction

- SD scattering is due to the interaction of a WIMP with the spin of the nucleus. It can arise from axial vector couplings of DM to quarks⁵ It happens only in detector nuclei with an odd number of protons and/or neutrons.
- Unlike the SI case, the two SD couplings may be quite different, and we cannot simplify the cross section as we did for the SI case.
- No A^2 enhancement of SD cross section as SI case.
- The SD is not as significant as SI scattering in direct detection experiments.
- The SD form factor depends on the spin structure of a nucleus

₩

I will consider **only SI interactions** in my lecture.

⁵ which occurs through the operator $(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)$.

$$\frac{dR}{dE} = \frac{\rho}{m} \frac{1}{M} \int_{v > v_m} d^3 v \frac{d\sigma}{dE} v f(\vec{v})$$
$$\frac{d\sigma}{dE} = \frac{M}{2\mu^2 v^2} \sigma_0 F^2(E)$$
$$\frac{dR}{dE} = \rho \underbrace{\frac{\sigma_0 F^2(E)}{2m\mu^2}}_{\text{particle physics}} \underbrace{\int_{v > v_m} d^3 v \frac{\vec{v}}{v}}_{\text{astrophysics}}$$

- astrophysics
- particle physics

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017

• Let's define **halo integral** as:

$$\eta(v_m) \equiv \int_{v>v_m} d^3 v {ec v\over v}$$

• The event rate can be written as 6

$$\frac{dR}{dE} = \frac{\rho\sigma_0 F^2(E)}{2m\mu^2} \underbrace{\eta(v_m)}_{\text{astrophysics}}$$

For SI case :
$$\frac{dR}{dE} = \frac{\rho A^2 \sigma_{SI} F^2(E)}{2m\mu_p^2} \underbrace{\eta(v_m)}_{\text{astrophysics}}$$

 ${}^{6}\sigma_{0}^{SI} = \sigma_{SI}A^{2} \left(\frac{\mu}{\mu_{p}}\right)^{2}$ S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

December 10, 2017

Astrophysics input input: DM distribution

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017

• The dark matter halo in the local neighborhood is most likely dominated by a smooth component with an **average density**:

 $\rho_{\chi} \approx 0.3 \text{ GeV cm}^{-3}$

• The simplest model for this smooth component is often taken to be the SHM, Standard Halo Model an isothermal sphere with an isotropic, Maxwellian velocity distribution and rms velocity dispersion σ_v .⁷

⁷Freese, Lisanti and Savage, Colloquium: Annual modulation of dark matter Rev. Mod. Phys. 85 (2013) 1561 ??

Standard Halo Model

$$f_{\text{gal}}(\vec{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2}, \left[e^{-3\vec{v}^2/2\sigma_v^2} - e^{-3\vec{v}^2/2\sigma_v^2}\right] & \text{for } |\vec{v}| < v_{\text{esc}} \\ 0, & \text{otherwise} \end{cases}$$
$$N_{\text{esc}} = \text{erf}(z) - \frac{2}{\sqrt{\pi}} z e^{-z^2}$$
$$z \equiv v_{\text{esc}}/v_0 \text{ is a normalization factor}$$
$$v_0 = \sqrt{2/3}\sigma_v$$

- $v_0 \approx 235 \text{ km/s}$ is the most probable speed.
- The Maxwellian distribution is truncated at the escape velocity v_{esc} to account for the fact that WIMPs with sufficiently high velocities escape the Galaxy's potential well and, thus, the high-velocity tail of the distribution is depleted.

The Dark Matter velocity distribution depends on the halo model.

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC December 10, 2017 37 / 48

DM velocity distribution

To compute the event rate, we need the WIMP velocity, \vec{v} , distribution in the **detector reference frame**. Need to transform from the galactic frame to the detector frame.

 $f_{
m det}(ec{m{v}},t) \;=\; f_{
m det}ig(ec{m{v}}\;+\;ec{m{v}}_e(t)ig) \;=\; f_{
m gal}ig(ec{m{v}}\;+\;ec{m{v}}_s(t)\;+\;ec{m{v}}_e(t)ig)$

- $\vec{v}_e(t)$, Earth's velocity wrt the Sun
- $\vec{\boldsymbol{v}}_s(t)$, Sun's velocity wrt the Galaxy

S. Gentile (Sapienza)

December 10, 2017

Sun's orbit around the Galaxy

Galactic coordinate system:

Origin at the position of the Sun.

x-axis points towards the Galactic Center.

y-axis points towards the direction of the Galactic rotation. z-axis points to the North Galactic pole

$$\vec{v}_s(t) = (0, 220, 0) + (10, 13, 7) \text{km/s}$$

Earth's orbit around the Sun

Sun's ecliptic longitude $\lambda(t)$ changes from 0 to 360 degrees as the Earth orbits the Sun.

Earth?s orbit around the Sun

• In the approximation of circular orbit, we have

$$\lambda(t) = \frac{2\pi}{1yr}(t - 0.218)$$

- t is the time during the year running from 0 to 1 year, with t=0 on January first
- 0.218 is the fraction of year before the spring equinox (March 21).
- The position vector of the Earth is:

$$\vec{\boldsymbol{r}}_{\boldsymbol{e}}(t) = -\left[\cos\lambda(t)\hat{\boldsymbol{e}}_{1} + \sin\lambda(t)\hat{\boldsymbol{e}}_{2}\right]AU$$

• 1 AU is the average distance between the Earth and the Sun.

• Earth's velocity around the Sun is time dependent:

$$\vec{v}_e(t) = v_e \left[\sin \lambda(t) \hat{e}_1 - \cos \lambda(t) \hat{e}_2 \right]$$

- $v_e = 29.8 \text{ km/s}$
- Orthogonal vectors spanning the plane of the plane of the Earth's orbit:

$$\hat{e}_1 = (-0.0670, 0.4927, -0.8676)$$

 $\hat{e}_2 = (-0.9931, 0.1170, -0.01032)$

DM velocity distribution

- Comparison of two different model in the lab frame(on the earth)after accounting the motion of Solar System relative to Galactic center:
 - SHM, Standard Halo Model an isothermal sphere with an isotropic, Maxwellian velocity distribution and rms velocity dispersion σ_v .
 - Tidal stream, the material in the stream has not had the time to spatially mix, the stream has a small velocity dispersion in comparison: $f_{\rm str}(\vec{v}) = \delta^3(\vec{v})$

The recoil spectrum falls off exponentially in the galactic rest framefor the SHM (neglecting form factors), due to the exponential drop-off with velocity ⁸ Even when form factors and the motion of the Earth through the halo are accounted for, the spectrum sstill approximately exponential in the laboratory frame:

 $\frac{\mathrm{dR}}{\mathrm{dE}} \sim e^{-E/E_0}$ $E_0 \sim \mathcal{O}(10 keV)$ For typical WIMP and target mass

•Large contribution to the rate is at low energies.

8

$$f_{\rm gal}(\vec{v}) = \begin{cases} \frac{1}{N_{\rm esc}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2}, \left[e^{-3\vec{v}^2/2\sigma_v^2} - e^{-3\vec{v}^2/2\sigma_v^2}\right] & \text{for } |\vec{v}| < v_{\rm esc} \\ 0, & \text{otherwise} \end{cases}$$
$$N_{\rm esc} = \operatorname{erf}(z) - \frac{2}{\sqrt{\pi}} z e^{-z^2}$$
$$z \equiv v_{\rm esc}/v_0 \text{ is a normalization factor}$$
$$v_0 = \sqrt{2/3}\sigma_v$$

Figure : Event rate

- Spectrumis featureless: exponentially falling off.
- Spectrum is shifted to low energies for low WIMP masses.To detect light WIMPs, need low energy threshold (and light target nuclei).
- Expect different rates for different targets.
- Rate depends on A² ⇒ heavier targets are favored in direct detection experiments.

December 10, 2017

Nuclear form factor is less important for light WIMPs

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

December 10, 2017

- We discussed the different ingredients which enter in the expected event rate in direct detection experiments.
 - particle physics input: cross section. SI cross section scales as A^2
 - **astrophysics input**: local DM density and velocity distribution. Maxwell distribution in the Standard Halo Model.
- Recoil spectrum exponentially falling off and featureless.
- Direct detection experiment need to achieve low energy threshold.