

Physics at hadron collider with Atlas 3rd lecture

Simonetta Gentile Università di Roma La Sapienza, INFN on behalf of Atlas Collaboration

Outline

- Introduction to Hadron Collider Physics
- LHC and ATLAS detector
- Test of Standard Model at LHC Parton distribution function

 - QCD + jet physics
 - Electroweak physics (Z/W –bosons)
- Top physics 2nd
- Search for Higgs boson 3rd
- Supersymmetry
 Conclusions 4th

INFN

• 3.5 million semileptonic events in 10 fb⁻¹ (first year of LHC operation)

 \Rightarrow Error on $m_t \approx \pm 1 - 2 \text{ GeV}$

Dominated by

- Jet energy scale (b-jets)
- Final state radiation

Linear with input Mtop
 Largely independent on Top P_T

Top Mass from Other Channels

Di-lepton events:

• BR $\approx 5\%$

INFN

Istituto Nazionale di Fisica Nucleare

- low background
- but two neutrinos in final state

 $\Rightarrow \Delta m_t \approx \pm 1.7 \text{ GeV}$

Fully hadronic events:

- BR $\approx 45\%$
- difficult jet enviroment

 $\Rightarrow \Delta m_t \approx \pm 3 \text{ GeV}$

Top Mass from J/ Ψ channel

1000 events/y @ 10³⁴

 Method: Partial reconstruction of top J/Ψ + lepton

•The lepton from W decay is rather sensitive to m_t

BR(tt \rightarrow Wb+qqJ/ $\psi \rightarrow \ell \ell$) $\approx 5 \ 10^{-5}$

- •efficiency ($\epsilon \sim 30\%$)
- •Low background

INFN

Istituto Nazionale di Fisica Nucleare

• Estimated ultimate

 $L = 100 fb^{-1}$

- indipendent of jet energy scale
- limited by b fragmentation & needs Simonetta Gentile Gomel School of Physics 2005

Top mass from J/ψ

INFN

Istituto Nazionale di Fisica Nucleare

systematics (almost no sensitivity to

Uncertainty on the b-quark fragmentation becomes the dominant error

Massive gauge bosons have three polarization states At LEP in $e^+e^- \rightarrow W^+W^-$: determine W helicity from lepton (quark) decay angle in W rest frame θ^*

• $(1 \pm \cos \theta^*)^2$ transverse

sin²θ*
 longitudinal

• Fraction of longitudinal W in $e^+e^- \rightarrow W^+W^ 0.218 \pm 0.031$ SM: 0.24 • Tevatron: Longitudinal W in top decays 0.91 ± 0.52 CDF 0.56 ± 0.31 D0 **SM: 0.7**

INFN W Polarization in Top Decays

➤Use tt events to study the Lorentz structure of tt
P ossible W configuration in top decays.

Within SM (V-A coupling) only 2 configuration are

► Lepton kinematical distribution are rather sensitive to W boson helicity

> A sensitive W spin analyser in top decays is the angle θ^* between the charged lepton in W rest frame and W in top rest frame

Simonetta Gentile Gomel School of Physics 2005

Systematic dominated by b-jet scale.
 Precision on fraction of long.polarization W~ 0.03 after 10fb⁻¹

tt Spin Correlation

- Very short lifetime, no top bound states
- Spin info not diluted by hadron formation
 Measure the correlation through the angular distribution of daughter of articles in top rest frame

$$\mathcal{A} = \frac{N(t_L \bar{t}_L + t_R \bar{t}_R) - N(t_L \bar{t}_R + t_R \bar{t}_L)}{N(t_L \bar{t}_L + t_R \bar{t}_R) + N(t_L \bar{t}_R + t_R \bar{t}_L)}$$

$$\frac{1}{N}\frac{d^2N}{d\cos\theta_{\ell^+}^*\,d\cos\theta_{\ell^-}^*} = \frac{1}{4}(1-\mathcal{A}\cos\theta_{\ell^+}^*\cos\theta_{\ell^-}^*)$$

Predicted value A=0.31

Use double leptonic decays tt \rightarrow bb lv lv

> Dilepton and -Semileptonic events analysis with same power to probe SM at 5σ in 10fb⁻¹

direct measurement of V_{tb}
 (observable by Tevatron in Run II)

tt final states (LHC,10 fb⁻¹) W $\rightarrow ev, \mu v$

• process 1 (0.5M) : $\ell + \nu + 4$ jets

• process 2 (0.12M) :
$$\ell + \nu + 3$$
 ets

• process 3 (0.02M) : $2\ell + \nu + 2jets$ Gomel School of Physics 2005

N Istituto Nazionale di Fisica Nucleare Single Top Production

Production mechanisms and cross sections:

INFN

Selection: t → bW → b ev (µv) b-jet + high p_T lepton reconstruction of top mass

Process	δV _{tb} (stat)	δV _{tb} (theory)
1	0.4%	6%
2	1.4%	6%
3	2.7%	5%

• Background from tt signal to bkgd. 3.5 : 1

experimental determination of V_{tb} to percent level (with 30 fb⁻¹)

Gomel School of Physics 2005

Simonetta

≥ 1 b-tagged jet Pt>50 GeV

Signal unambiguous, after 30 fb-1: Proc

Detector performance critical: Fake ℓ ,b-tag, jets calibrations

Process	Signal	Bckgnd	S/B
1	27k	8.5k	3.1
2	6.8k	30k	0.22
3	1.1k	2.4k	0.46

Top spin correlations

• Also study spin correlations in semi- leptonic events Least energetic jet from W decay: $\kappa \sim 0.5$

INFN

Istituto Nazionale di Fisica Nucleare

Results for S + B : 80500 S, S/B=15 with 10 fb⁻¹ C(lej) = $0.21 \pm 0.015 \pm 0.04 = \sim 5 \sigma$ from 0 with 10 fb⁻¹

 $t \rightarrow W^+b$

 $t \rightarrow W^-b$

Top charge:

Istituto Nazionale di Fisica Nucleare

INFA

- $Q_t = +2/3$ not yet established
- $Q_t = -4/3$ not yet excluded

Methods:

• jet charge determination. Measure the lepton charge from W decays and distinguish b-quark from anti-b with jet charge determination

 ttγ events . Final state photon radiation would be more likely if |Q| is larger.
 cross section proportional to Q₂^{top.}

Determine charge from rate of radiative tty events p_T spectrum of photons for 10 fb⁻¹:

 $\mathbf{p}_{\mathrm{T}}(\mathbf{\gamma})$

	Q=2/3	Q=-4/3
pp→ttγ	101 ± 10	295 ± 17
pp→tt ; t→Wbγ	6.2 ± 2.5	2.4 ± 1.5
Total background	38 ± 6	5

Istituto Nazionale di Fisica Nucleare Top Charge Determination ATL-PHYS-2003-035

$$\boldsymbol{q}_{bjet} = \frac{\sum_{i} q_{i} \left| \vec{j} \cdot \vec{p}_{i} \right|^{\kappa}}{\sum_{i} \left| \vec{j} \cdot \vec{p}_{i} \right|^{\kappa}}$$

- Determine charge of b-jet and combine with lepton
 - Use di-lepton sample
 Investigate 'wrong'
 combination b-jet charge
 and lepton charge
 - -Effective separation b and b-bar possible in first year LHC
 - -Study systematics in progress

Measurement of tt cross section di Fisica Nucleare

Total cross section:

- > At 14 TeV interesting in itself
- > Sensitive to top mass $\sigma_{tt} \propto 1/m_t^2$

Differential cross sections:

- \rightarrow d σ /dp_T checks pdf
- checks pdf dσ/dη
- $> d\sigma/dm_{tt}$ sensitive to production of heavy object

decaying to top-pairs $X \rightarrow tt$

A resonance could be discovered if $\sigma xBr > 830$ fb

SM physics at the LHC with ATLAS

- Very important in initial phase
 >to check detector
 - > to check generators (pdf)
 - > to prepare discoveries
- Large potential for precision measurements

 large cross sections
 precision limited by systematics
 use as many different strategies as possible

Standard Model

INFN

lstituto di Fisio

Higgs Search

Needed to generate particle massesMass not predicted by theory

Only best analysis from each decay mode, each experiment.

EPS95

Year	M _{top} [GEV]	M _{Higgs} [GEV]
2003	174.3±5.1	< 219
2004	178.0±4.3	< 251
2005 (june)	174.3±3.4	< 208
2005 (july)	172.7±2.9	?

Expected precision in 2007 at Tevatron: $\pm \sim 1 GeV$

Tevatron expected to cover up to 130 GeV/c²

S.Lammel, Fermilab, LP05

Gomel School of Physics 2005

Events Statistics at low luminosity (L=10³³ cm⁻² s⁻¹)

			A STATE OF
Process	Events/s	Events/year	• Other mac
$W \rightarrow ev$	15	108	10 ⁴ LEP / 10 ⁷ Tev.
$Z \rightarrow ee$	1.5	107	10⁷ LEP
tt	0.8	107	10⁴ Tevatron
$b\overline{b}$	10 ⁵	10 ¹²	10 ⁸ Belle/BaBar
$\widetilde{g}\widetilde{g}$ (m=1 TeV)	0.001	104	
H (m=0.8 TeV)	0.001	104	
QCD jets p _T > 200 GeV	10 ²	109	107

 \rightarrow LHC is a B-factory, top factory, W/Z factory, Higgs factory, SUSY factory

The Challenge

How to extract this...

IN

... from this ...

Higgs $\rightarrow 4\mu$

Simonetta Gentile Gomel School of Physics 2005

+30 MinBias

The Challenge

Knowing that there are 10 thousands billions of:

IN

for ONE of:

- · No hope to observe the fully-hadronic final states \rightarrow rely on ℓ, γ
- Fully-hadronic final states only with hard O(100 GeV) p_T cuts
- Mass resolutions of ~1% (10%) needed for ℓ , γ (jets)
- Excellent particle identification: e.g. $e/jet ratio p_T > 20 \text{ GeV}$ is 10⁻⁵
 Simonetta Gentile Gomel School of Physics 2005

4 production mechanisms key to measure H-boson parameters

- Direct production
 gg fusion
 gg fusion dominant
 WW/ZZ fusion
- VectorBosonFusion 20% of gg at 120 GeV
- •2 jets @ large η

- Associated production tt H, WH, ZH : 1-10% of gg fusion
 - •isolated lepton from W decay
 - reconstruct topquarks

The Higgs boson couples to particles proportionally their mass \rightarrow preferred decays in heaviest particle allowed.

•Lepton & photons are essential final state against QCD background bb decay mode only possible in associated production tt...

Higgs Discovery Channels at LHC

\succ Particle decaying in $X \rightarrow \mu \mu$

S > 5 : signal larger 5 times error on background.
 Gaussian probability that background fluctuates up more than 5 σ is 10⁻⁷ → DISCOVERY

Gomel School of Physics 2005

Considerations

Detector resolution

If the detector resolution became worst σ_{μ} . To keep the same number of signal events, N_s the region has to be 2 times larger to keep the same number of events.

If background flat $\rightarrow \rightarrow N_b$, increases ~ 2

$$S = \frac{N_s}{\sqrt{N_b}}$$
 decrease $\sqrt{N_b} \approx \sqrt{2} \approx \sqrt{\sigma_{\mu}}$

An high resolution detector has better chance for a discovery

• If $\Gamma_{\rm H} \ll \sigma_{\rm m}$ (if the width particle X is broad of detector resolution this comment is not important)

Remind :
$$m_H = 100 \text{ GeV} \rightarrow \Gamma_H \sim 0.001 \text{ GeV}$$

 $m_H = 200 \text{ GeV} \rightarrow \Gamma_H \sim 1 \text{ GeV}$
 $m_H = 600 \text{ GeV} \rightarrow \Gamma_H \sim 100 \text{ GeV} \Gamma_H \sim m^3$
Gomel School of Physics 2005

Considerations

≻Luminosity

$$\left| \begin{array}{c} \mathbf{N}_{s} \sim \mathbf{L} \\ \mathbf{N}_{b} \sim \mathbf{L} \end{array} \right| \implies \mathbf{S} \sim \sqrt{\mathbf{L}}$$

The Challenge

IN

Prospects for Standard Model Higgs searches

di Fisica Nucleare

•Discovery: several complementary channels.

• some channels with very **exclusiv topologies** (large bgd. suppression).

- Coupling measurements @ 30fb⁻¹
- Mass, width (direct and indirect).

•Detector performance is

crucial: b-tag, ℓ/γ , E-resolution, γ/j separation, E_T^{miss} resolution, forward jet tags, central jet-veto, τ -reconstruction.

Expected results discussed at Integrated Luminosity of 10fb⁻¹ 30fb⁻¹ 100fb⁻¹.

SM-like Higgs searches early reach

 \rightarrow H $\rightarrow \gamma\gamma$ relies only on electromagnetic calorimeter, (constant term < 0.7 %)

Gomel School of Physics 2005

SM-like Higgs searches early reach

Inter mass

m_H ~ 130 GeV

Istituto Nazionale di Fisica Nucleare

Signal significance

•observation of all channels important to extract convincing signal 6 σ significance in first year (Several channels give

 $<3 \sigma$ significance 10 fb⁻¹)

•4 complementary channels → robustness

 $\begin{array}{c} || \swarrow_{200} \rightarrow H \rightarrow 4\ell : \text{low rate but very} \\ & \stackrel{}{\scriptstyle m_{H}(GeV)} \text{clean (large S/B, narrow mass peak)} \\ & < 3\sigma \text{ significance per channel} \\ & (\text{except qqWW counting channel}) \end{array}$

Intemediate mass

10 fb⁻¹ complete detector

ł	$\mathbf{H} \rightarrow \gamma \gamma$	$qqH \rightarrow qq\tau\tau$ ($\ell\ell + \ell$ -had)	$H \rightarrow 4\ell$	$qqH \rightarrow qqWW$
S	120	~ 8	~ 5	18
B	2500	~ 6	< 1	15
S/B	0.05		~ 5	~ 1
Signif.	2.4	~ 2.7	3.2	3.9
CLb	9 10 ⁻³	4 10 -3	6 10-4	4 10 -5

Total S/ \sqrt{B} for 10 fb⁻¹ and complete detector: ~ 6.5 σ

Light Higgs Search: H -> ZZ* ->4 leptons

INFN

Istituto Nazionale di Fisica Nucleare

> σ Br = 5.7 fb (m_H =100 GeV) Example of

• P_T of 2 most energetic $\mu > 20$ GeV • P_T of 2 less energetic $\mu > 7$ GeV • $|\eta| < 2.5$ (barrel)

Invariant mass constraints

$$M(\ell \ \ell \) \sim M_z$$

$$M(\ell \ \ell \) < M_z$$

•Top production $tt \rightarrow W b W b \rightarrow l \gamma c l \gamma c l \gamma c l \gamma$ W b W b $\sigma Br \approx 1300 \text{ fb}$

•Associated production of Zbb $\sigma Br(Z \rightarrow \mu\mu) \approx 22.8 \text{pb}$ Zbb $\rightarrow \ell \ell c \ell v c \ell v$

To reject the background:

1.leptons from b-quarks decays are not isolated

2. don't originated from primary vertex ($\tau_b \sim 1.5 \text{ ps}$)

ZZ background

after isolation cut continuum $Br(Z \rightarrow \mu\mu) \approx 0.15 \text{pb}$

σ Br(Z→bb) Br(Z→μμ) ≈ 0.15pb

Discovery potential in mass range from $\sim 130 \; GeV$ to $600 \; GeV$

Gomel School of Physics 2005

TAN

VBF Higgs boson production at low mass

Distinctive Signature of:

- two high P_T forward jets
- little jet activity in the central region

⇒ Jet Veto

DEGLI STUDI DI ROMA LA SAPI ENZA

Rapidity distribution of tag jets VBF Higgs events vs. ttbackground

Hard leptons with distinctive kinematics; Full H->tt reconstruction possible

INFN

Istituto Nazionale di Fisica Nucleare

Rapidity distribution of tag jets VBF Higgs events vs. tt-background

Rapidity

INFN

Background el.weak background:

QCD backgrounds:

tt production

Background rejection:

• Lepton P_T cuts and tag jet requirements $(\Delta \eta, P_T)$

Z + 2 jets

- Require large mass of tag jet system
- Jet veto
- Lepton angular and mass cuts

el.weak WW ji

Z + 2 jets

WW jj production

$qqH \rightarrow qqWW^* \rightarrow qq l \nu l \nu$

m_T (GeV)

m_T (GeV)

INFN \rightarrow qq W W* \rightarrow qq $\ell \nu \ell \nu$ Istituto Naziona e di Fisica Nucleare

Transverse distribution excess On the background tt -production

INFN N Istituto Nazional $q \rightarrow qq WW^* \rightarrow qq \ell \nu \ell \nu$

qqH :Signal and background rates

SIGNAL: qq →qqH

 $\underline{m_{H}} = 120 - 180 \text{ GeV}$

 $\sigma(qqH) = 4.4 - 2.8 \text{ pb}$

 $\sigma \ x \ BR \ (qqH -> WW^*) \ = 530 - 2600 \ fb \\ \sigma \ x \ BR \ (qqH -> \ \tau\tau \) \ = 300 - \ 2 \ fb$

BKG

INFN

Istituto Nazionale di Fisica Nucleare

$$\begin{array}{ll} t\bar{t} & 55 \ \mathrm{pb} \\ \mathrm{QCD} \ WW + jets & 17 \ \mathrm{pb} \\ Z/\gamma^* + jets, \ Z/\gamma^* \rightarrow \tau\tau & 2600 \ \mathrm{pb} \\ \mathrm{EW} \ WW + jets & 82 \ \mathrm{fb} \\ \mathrm{EW} \ \tau\tau + jets & 170 \ \mathrm{fb} \\ \overline{Z/\gamma^* + jets, \ Z/\gamma^* \rightarrow ee/\mu\mu} & 5300 \ \mathrm{pb} \\ ZZ & 38 \ \mathrm{pb} \end{array}$$

Vector Boson Fusion

Low mass remarks

The 3 channels are complementary \rightarrow robustness:

- different production and decay modes
- different backgrounds
- different detector/performance

requirements:

- ECAL crucial for $H \rightarrow \gamma \gamma$

(in particular response uniformity) : $\sigma/m \sim 1\%$ needed

-- b-tagging crucial for ttH :

4 b-tagged jets needed to reduce combinatorics

-- efficient jet reconstruction over $|\eta| < 5$ crucial for qqH \rightarrow qq $\tau\tau$: forward jet tag and central jet veto needed against background Note :

all require "low" trigger thresholds. e.g. ttH analysis cuts : $p_T(\ell) > 20 \text{ GeV},$ $p_T(jets) > 15-30 \text{ GeV}$

$200 \text{ GeV} \le M_{\text{H}} \le 600 \text{ GeV}$

lstituto Nazionale di Fisica Nucleare

Large mass

complete detector

10 fb⁻¹

200 GeV < m(Higgs) < 600 GeV: - discovery in H \rightarrow ZZ $\rightarrow \ell^+ \ell^- \ell^+ \ell^-$

background smaller than signal, Higgs natural width larger than experimental resolution (m_{Higgs} > 300 GeV)

- confirmation in $H \rightarrow ZZ \rightarrow \ell^+ \ell^- jj$ channel

m(Higgs) > 600 GeV: 4 lepton channel statistically limited $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \nu$

 $H \rightarrow ZZ \rightarrow \ell^+ \ell^- jj$, $H \rightarrow WW \rightarrow \ell^+ \nu jj$ (150 times larger BR than 41 channel) Event signature: high p_T lepton, two high p_T jets

Combination of analyses allows Higgs discovery in full mass range

Gomel School of Physics 2005

Higgs signal in ATLAS

INFN

Istituto Nazionale di Fisica Nucleare

LHC can probe entire set of "allowed" Higgs mass values (100 GeV - 1 TeV)

 \checkmark at least 2 channels for most of range

Full mass range can be covered After few years at low

- For most of the mass range at least two channels available
- Good sensitivity over the full mass range from ~100 GeV to ~1TeV
- » m_H<180 GeV: several complementary channels (γγ, ttbb, 2ℓE_T^{miss}, 3ℓE_T^{miss}, 4ℓ, tt)
- → m_H >180 GeV: easy with gold-plated H → ZZ* → 4 ℓ

Challenging channels (multijets..., WH) not included

Once Higgs boson has been discovered measure its properties:

Measurement of the Higgs boson mass

di Fisica Nucleare

•Dominant systematic uncertainty: γ / ℓ , E scale. Assumed 1‰ 0.2‰ Goal Scale from $Z \rightarrow \ell \ell$ (close to light Higgs) Assumed 1% jets **Resolution for** $\gamma \gamma \& \ell \ell 1.5 \text{ GeV/c}^2$ bb 15 GeV/ c^2 At large masses decreasing precision due to large $\Gamma_{\rm H}$

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV / c²)

INF Measurement of Branching Ratios

Measurement of relative branching ratios

Fitting Br(H->XX) (assume Higgs production works as in SM)

• Fit of BR(H \rightarrow ZZ), BR(H \rightarrow WW), BR(H $\rightarrow \gamma\gamma$), BR(H $\rightarrow \tau\tau$) and BR(H $\rightarrow b\bar{b}$)

•
$$(\sigma \cdot \mathrm{BR})_j (\vec{x}) = \sigma_j \cdot \mathrm{BR}_j$$

Gomel School of Physics 2005

Higgs Searches at the LHC

- Measurement of coupling-parameters (110 GeV $\leq m_H \leq$ 190 GeV) -

Global Fit to all ATLAS studies

Maximum Likelihood Fit

INFN

Istituto Nazionale di Fisica Nuc

Systematic uncertainties are taken into account

Produc	tion	Decay	mass ranges
Second I	Gluon-Fusion	H ightarrow ZZ ightarrow 4l	110 GeV - 200 GeV
t t t	($gg ightarrow H$)	H ightarrow WW ightarrow l u l u	110 GeV - 200 GeV
788200- 9		$H ightarrow \gamma \gamma$	110 GeV - 150 GeV
· 9'	WBF	H ightarrow ZZ ightarrow 4l	110 GeV - 200 GeV
W, Z	(qq H)	H ightarrow WW ightarrow l u l u	110 GeV - 190 GeV
w z		H ightarrow au au ightarrow l u u	110 GeV - 150 GeV
		H ightarrow au au ightarrow l u u had $ u$	110 GeV - 150 GeV
		$H ightarrow \gamma \gamma$	110 GeV - 150 GeV
eeegee	$t\bar{t}H$	H ightarrow WW ightarrow l u l u (l u)	120 GeV - 200 GeV
t H		$H ightarrow b ar{b}$	110 GeV - 140 GeV
E.		H ightarrow au au (not included)	110 GeV - 150 GeV
ang t		$H ightarrow \gamma \gamma$	110 GeV - 120 GeV
W Z Z	WH	H ightarrow WW ightarrow l u l u (l u)	150 GeV - 190 GeV
		$H ightarrow \gamma \gamma$	110 GeV - 120 GeV
q' H	ZH	$H ightarrow \gamma \gamma$	110 GeV - 120 GeV

Gomel School of Physics 2005

Measurement of Higgs Boson Couplings

Global likelihood-fit (at each possible Higgs boson mass)
Input: measured rates, separated for the various production modes
Output: Higgs boson couplings, normalized to the WW-coupling

Inclusion of VectorBosonFusion channels improves SM Higgs discovery potential:

• ~10 fb⁻¹ needed for 5σ discovery over the full (interesting) mass range

•At least 3 channels with 3σ sign for 30 fb⁻¹ for each mass: more robust result

1 10²

> Simonetta Gentile **Gomel School of Physics 2005**

Inclusion of Vector **Boson Fusion** channels improves SM Higgs discovery potential:

~10 fb⁻¹ needed for **5**σ **discovery** over the full (interesting)

mass range **30 fb⁻¹** more robust

result

10

ATLAS

 $m_{\rm H} > 114.4 \text{ GeV}$ here discovery "easy"

with $H \rightarrow 4\ell$

(no K-factors)

5σ

10³

m_H (GeV)