



# Detection and measurement of γ rays with the AMS02 detector

# Simonetta Gentile

Università di Roma La Sapienza, INFN

on behalf of AMS Collaboration

Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006







## ≻AMS detector

- $\succ \gamma$  detection performances:
- Energy resolution
- Angular resolution
- > Physics: Dark matter  $\gamma$
- Minimal Supersymmetric Standard Model
- ➢ Conclusions

### INFN Istitute Name Alpha Magnetic Spectrometer





Total statistics expected above 10<sup>10</sup> events

> Indirect search for Dark Matter .

XX ECRS ,Lisbon, 5th September, 2006

## Dimensions 3m x 3mx3m,7 t

## Sector Se TRD. M-Structure Shiri AGC Photomatignets Transferrer. Track-p niter officiants Radator Perform Photomultipliers otomultalian Lood / Piter Paricales

TRD: Transition Radiation Detector

TOF: (s1,s2) Time of Flight Detector

MG: Magnot TR: Silicon Tracker ACC: Anticoincidence

Counter AST:

Amiga Star Tracker

TOF: (s1,s2) Time of Flight Detector

• Rich Imaging Poster Cerenkov detect

superconducting

magnet

- RICH: Ring Image Cherenkov Counter
- EMC; Electromagnetic Calorimeter

# • Electromagnetic calorimeter

Transition Radiation
 Detector

Large acceptance ~  $0.5m^2sr$ .



8 layers of Si strips on

**5** supporting planes in



M.L. Arruda

AMS: A TeV Magnetic Spectrometer in Space

2000/sec





| 0.3 TeV     | <b>e</b> - | <b>e</b> +  | + <b>Ρ <del>Π</del>e</b> γ |          | γ       |
|-------------|------------|-------------|----------------------------|----------|---------|
| TRD         |            | ***         |                            |          | £       |
| TOF         | т          | т           | T                          | $\gamma$ | ٢       |
| Tracker     | /          | $\setminus$ | $\setminus$                | /        | $\land$ |
| RICH        | 0          | 0           | 0                          | Q        | 0       |
| Calorimeter |            |             |                            | I        |         |

y2K025 \_5 Gamma

#### Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006



### 2500 Liters Superfluid He

 $BL^{2} = 0.9 Tm^{2}$ 

Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006



## **Silicon Tracker**





•Rigidity (*∆R/R* < 2% up 20 GeV Protons) with Magnet •Signed Charge (*dE/dx*) •8 Layers in 5 planes, ~6.7m<sup>2</sup> •Pitch (Bending): 110 μm (coord. res.  $10 \mu m$ ) •Pitch (Non-Bending): 208µm (coord. res.  $30 \mu m$ ) •Charge magnitude up Z  $\sim 26$ 



## **3D** sampling calorimeter

INFN

•9 superlayers of 10 fiber/lead planes each alternate in x and y scintillating fibers viewed by PMT

- 16.4 X<sub>0</sub> radiation length
- Measure energy (few % resolution) and angle (1°  $0.5^{\circ}$  angular resolution) of  $\gamma$ , e<sup>+</sup>,e<sup>-</sup>



# 10<sup>-3</sup> p<sup> $\pm$ </sup> Rejection with 95% e<sup> $\pm$ </sup> Efficiency Via Shower Profile 1 GeV - 1 TeV

# Istituto Nazional Electromagnetic Calorimeter



Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006

### Photons in AMS: Istituto Nazionale di Fisica Nucleare Two complementary modes







**Single photon mode**: detection In the electromagnetic calorimeter. Criteria: "electromagnetic shape" No activity in the rest of detector **Conversion mode**: γ conversion In upstream layers of the detector Criteria:very small invariant mass, no TRD Activity in top layer, no particle activity in the rest of detector



Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006



# Performances γ-rays detection



### **Effective Area of Tracker and ECAL**



 Acceptance ECAL (TRK) ~ 5 (3)·10<sup>-2</sup> m<sup>2</sup>·sr from 10 GeV.
 Proton rejection 10<sup>5</sup>; e ~ 10<sup>4</sup> XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006 Istituto Nazional di Fisica Nucleare est beam (conversion mode)



- Test beam with electrons (producing  $\gamma$  up to 7 GeV).
- Dominant systematic multiple scattering of electrons









- Energy range : 1-300 GeV
- Sources in scope of AMS:
  - Galactic : pulsars, nebulas (VELA, CRAB,...)
  - Extra-Galactic : GRBs
- > Diffuse  $\gamma$  emission : interaction of Charged rays with galactic medium produce  $\gamma$  ( $\pi^0$ )
- ≻Dark Matter

R. Pereira Poster



## Cosmic Ray Fluxes



Number of particles inside geometrical acceptance ( assuming 0.45 m<sup>2</sup>sr )2.8

- Cosmic Rays Composition :
  - p:88%
  - He nuclei : 9 %
  - e<sup>-</sup> : 2 %
  - γ : < 1%</p>
- Standard CR spectra follows a "power law"  $E^{-\beta}$  with  $\beta = 2-3$
- DM signal : exponential cutoff in the spectra

Simonetta Gentile XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006





### EGRET map Ey>100 MeV











### AMS expectations









One of the most popular candidates for Dark matter is the neutralino χ<sup>0</sup>, the Lightest Supersymmetric Particle (LSP), neutral, weak-interacting and stable in R-parity conserving SUSY models.
 NOT YET OBSERVED!

$$\widetilde{\chi}_{1}^{0} = a_{0}\widetilde{B} + b_{0}\widetilde{W} + c_{0}\widetilde{H}_{1}^{0} + d_{0}\widetilde{H}_{2}^{0} + \Longrightarrow$$
 Mixture of superpartners of  
Higgs boson and W-boson and Z/ $\gamma$  bosons (B)

• Direct detection – elastic interaction on nucleus (CDMS, DAMA, EDELWEISS)

## Indirect detection - Neutralino annihilation

$$\chi^{0}_{1}\chi^{0}_{1} \rightarrow q \ \bar{q}, W^{+}W^{-}, ZZ, ...$$
  
 $\rightarrow \bar{p}, \bar{D}, \gamma \text{ (continuum), } e^{+}$   
XX ECRS ,Lisbon, 5<sup>th</sup> September, 2006



## Indirect searches with AMS: detection channels



Possible detectable products from:  $\chi\chi \rightarrow xx$  with small physical backgrounds

- ➢ Gamma rays:
  - They are originated either from annihilation into a final state containing  $Z\gamma$  or  $\gamma\gamma$  (line signal) or from the decay of other primary annihilation products (continuum signal).

### > Positrons:

- Primarily from the decay of gauge bosons (e.g., W<sup>+</sup>W<sup>-</sup>) as primary annihilation products; or from heavy quark/lepton decay
- > Antiprotons and antideuterons:
  - Production in WIMP annihilations by hadronization of quark and gluon subproducts.



telesco

ray

Balloons

satellit

and



### Gamma sensitivity to different DM halo Istituto Nazionale di Fisica Nucleare profiles





### Gamma rays

- Many experiments will be covering the little known 1-300 GeV range in the next decade.
- Case considered: Galactic center treated as point source. Favorable conditions to detect or exclude AMSB scenarios; benchmark points of parameter space accesible in case of cuspy profile as well as several KK candidates.
  MSSM Minimal SuperSumetrie Model

A.Jacholkwska et al. Astro-ph/0508349, Phys. Rev D.74 vol 2



## NFN Predictions for benchmark fluxes Galactic Centre



- mSUGRA models MC simulation
- Accelerators & WMAP constraints
- Various DM halo profiles

J. Ellis et al. Eur. Phys. J. C24 (2002) 311

| Model                    | В    | G     | Ι     | Κ     | L     |
|--------------------------|------|-------|-------|-------|-------|
| $m_{\chi}$               | 98.3 | 153.6 | 143.0 | 571.5 | 187.2 |
| m <sub>0</sub>           | 59.0 | 116.0 | 178.0 | 999.0 | 299.0 |
| tan β                    | 10.  | 20.   | 35.   | 38.2  | 47    |
| $\Omega_{ m relic}$      | 0.12 | 0.13  | 0.13  | 0.09  | 0.10  |
| n <sub>γ</sub> (NFW)     | 0.2  | 0.1   | 0.8   | 0.3   | 2.1   |
| $n_{\gamma}$ (NFW cuspy) | 5.5  | 3.5   | 24.5  | 9.1   | 64.7  |
| n <sub>γ</sub> (Moore)   | 15.8 | 10.2  | 70.4  | 26.2  | 185.4 |

A.Jacholkwska et al. Astro-ph/0508349, Phys. Rev D. 74 vol2 3 years of operation



## CONCLUSIONS



AMS02 is magnetic spectrometer on International Space Station, ready in 2008:

- Large Acceptance
- Long term operation
- AMS02 will provide:

>Precise Cosmic Ray elemental and isotopic fluxes in a wide energy range

>Direct search for antimatter (antihelium)

➢Indirect search for Dark Matter (positrons, antiprotrons, gamma).

**>**Good γ performance detection through conversion and and calorimetric mode:

Angular resolution under ~3° (~0.1°) over 10 GeV.
Energy resolution ~3 % over 10 GeV

XX ECRS ,Lisbon, 5th September, 2006



## CONCLUSIONS



- Using Si-Tracker and EM Calorimeter, AMS-02 will provide new γ measurements in the range 1-300 GeV.
- > AMS-02 will study several galactic and extragalactic γ sources as Pulsars, GRBs...
- (At least) constraints in various Cold Dark Models will be provided.

Effective area (normal incidence)



$$\gamma$$
-rays - AMS vs.

Photon energy (GeV)

- Similarities: Silicon for Tracker, Coverage 1-100 GeV
- GLAST: quasi-independent detector operation, charged particle vetoing, conversion-optimized



