

Silicon Photon Multipliers light response properties: first results C.Bosio, S.Gentile, E.Kuznetsova, F.Meddi Università di Roma La Sapienza, INFN

Oct 27-Nov 2, 2007

Motivation

- Activity on silicon radiation detectors at Rome:
- Test setup
- SiPM samples
- Properties and characteristics measurements
- Conclusions and Perspectives

Motivation

- Solid state small photosensor segmenteted in n microcell
- Low bias voltage operation
- ≻ High gain
- Insenistivity to magnetic field
- Mechanical properties: compact dimension, low weight
- Fabrication technology compatible with standard processes of microelectronics industry
- Suitable to be used in medical application, astrophysics and **particle phyiscs.**
 - Electromagnetic and hadron calorimeter in future collider experiments :
- HCAL issues at ILC : understanding hadron showers using as active medium scintillators: new possibilities with SiPMs.
 IEEE 2007

- **Gain**: ~ Best to have 10^6 , at least 10^5
- Dynamic range: determined from number of pixel: for ideal 1000 pixel SiPM ~ 1-1000 p.e.
- Photon Detection Efficiency ~ 30 %
 - to distinguish MIP signal
- ≻ Noise rate : < 1 MHz
- **Good uniformity, small cross-talk**
- Timing Resolution < 1 nsec</p>
 - Necessary for bunch identification
- ≻ Pixel size: $(25 \times 25) \mu m^2$ (50 x 50) μm^2

- Development of a test set up and measurement procedure
- ➤ General of the SiPM response to LED light
- comparison of SiPM produced by different manufacturers

Measurements:

- Current-Voltage characteristics
- •Response to low intensity light (UV, green light)

Single electron spectrum

Parameters:

- Gain
- Width of pedestal and single peak
- •Efficiency of light registration
- •Crosstalk between pixels

CPTA/Forimtech ITC/Irst Hamamatsu Sensl CPTA/Obninsk

Different packages

Different names

Silicon Photo-Multiplier (SiPM: used by MEPHI, SPM: used by SensL) Multi-Pixel Photon Counter (MPPC) is a trademark of Hamamatsu Photonicsfor short here we use as achronime SiPM

Oct 27-Nov 2, 2007

Oct 27-Nov 2, 2007

IEEE 2007

Different faces

Measurements set up

INFN

Istituto Nazionale di Fisica Nucleare

Measurement set up

Oct 27-Nov 2, 2007

LED driver

- Low intensity fast light pulses : LED drive from Institute of Physics ASCR Prague (<u>Ivo Polak</u>)
- developed for Calibration and Monitoring Board (Calice Collaboration)
- external trigger

Istituto Nazionale di Fisica Nucleare

INFN

- variable current pulse width
- variable current pulse amplitude
- rise time 2ns

(*)

-CPTA distributed by Obninsk University, Russia

http://www.zao-cpta.ru

- CPTA distributed by Forimtech SA, Swiss

http://www.forimtech.ch.com

- HAMAMATSU, Japan 1.0 mm², 40x40=1600 cells, size (25µm)²

 $\sim 1.3 \text{ mm}^2$, $\sim 500 \text{ cells}$, size $\sim (50 \mu \text{m})^2$

http://www.hamamatsu.com

- ITC-irst, Italy

http://www.itc.it/irst

- SensL, Ireland

~ 1.3 mm², 25x25=625 cells, size ~ $(45\mu m)^2$ (*) (1)

(RUN2 del Maggio 2006)

~ 1.0 mm², 32x36=1152 cells, size ~ $(30\mu m)^2$ (*)

http://www.sensl.com

(*) Measured by microscope

-MEPhI/PULSAR (RUSSIA) (2)

NEW -Nov 2, 20⁽³⁾ (3) specimen kindly provided from **Prof. V.Saliev**

specimen kindly provided from Prof. (1) **R**.**B**attiston

(3)

specimen kindly provided from Prof. (2) **M.Danilov**

INFN Istituto Nationale urrent-Voltage characteristics

UCT 2/-INOV 2, 200/

Typical spectra for CPTA/Obninsk SiPM

Fit parameters :

- pedestal (µ₀)
- peak distance (g)
- gauss N_i
- gauss σ_i

Oct 27-Nov 2, 2007

$$\sum_{i} G(N_i, \mu_i, \sigma_i) = \sum_{i} G(N_i, \mu_0 + i \cdot g, \sigma_i)$$

(... no efficiency of light detection, nor x-talk consideration yet implemented ...)

Single photon spectra information

Intensity scan at U_{bias}=const.

fit parameters:

$$\sigma_{0\,fit}^{2} = 1.2 \cdot 10^{9} \pm 4.2 \cdot 10^{7}$$
$$\left\langle \sigma_{pix} \right\rangle_{fit}^{2} = 5.8 \cdot 10^{9} \pm 1.2 \cdot 10^{7}$$

<oppsize single pixel response dispersion averaged on SiPM matrix

Relative gain

INFN

Istituto Nazionale di Fisica Nucleare

Single photon information

Pedestal width

INFN

Istituto Nazionale di Fisica Nucleare

Average width of one cell response

Conclusions

- Some fundamental Silicon Photon Multipliers light response properties have been measured for few bench mark samples in Rome.
- A determination of interpixel x-talk and termogenaration from dark counting rate and deviation from Poissonian law peaks is in progress and the results will be ready shortly.
- \succ An improvement of the set up is in progress.
- The behaviour of such compact and robust device is astonishining and it is easy to forsee a large use in many fields in the next decades. In particularly its charateristics make it suitable to be used in large scale detectors generations high energy physics expertiments.