

ISSN neutral Higgs bosons search with the ATLAS detector at LHC

Simonetta Gentile Università di Roma, La Sapienza, INFN

on behalf of ATLAS Collaboration

+ Motivation

INFN

stituto Nazionale di Fisica Nucleare

- Supersymmetric (SUSY) Higgs
- Signal production and properties
- + Among all channels studied from ATLAS focus on :
- + h/A/H $\rightarrow \mu\mu$
- + $h/A/H \rightarrow \tau\tau$
- + A/H $\rightarrow \chi^{0}_{2,3,4} \chi^{0}_{2,3,4}$ and A/H $\rightarrow \chi^{+}_{2} \chi^{-}_{1,2}$ + Conclusions

New results from recent detailed simulation

INFN Minimal Super Symmetric Model

- The MSSM is the most investigated extension of SM provides:
- The unification of coupling constants
- SUSY provides a ColdDarkMatter candidate
- Three neutral Higgs bosons: A, CP-odd, and CP-even H, h the lightest. Two charged H⁺, and H⁻.
- Large loop corrections depend on SUSY parameters

Unconstrained MSSM has huge number (105) of parameters in addition SM ones, making any phenomenogical analysis very complicated

A simplified version at some GUT scale: CMSSM/mSUGRA Most of phenomenogical analysis models are based on that.

INFN MSSM parameters constrains

- ✤ M_{susv},sfermion mass at EW scale
- + M_2 , $SU(2)_L$ gaugino mass at EW scale
- μ, supersymmetric Higgs boson mass parameter.
- + tan β, the ratio of the two Higgs fields doublets
- ★ A₀, a universal trilinear higgs-squarks coupling at EW scale. It is assumed to be the same for up-type squarks and for down types quarks.
- ✤ m_A, mass of CP-odd Higgs boson.
- $\star \mathbf{M}_{\mathbf{gluino}}$, it affects loop corrections for stop and bottom

> couplings: $gMSSM = \xi \cdot gSM$ no coupling of A to W/Z large tan β : large BR(h,H,A $\rightarrow \tau\tau$,bb)

ξ	t	b/ au	W/Z
h	$\cos \alpha / \sin \beta$	-sin α /cos β	$sin(\alpha - \beta)$
H	$sin \alpha/sin \beta$	cosα/cosβ	$cos(\alpha - \beta)$
A	$cot\beta$	$tan\beta$	

 $\alpha :$ mixing angle between CP even Higgs bosons (calculable from tan β and $M_{\text{A}})$

Simonetta Gentile, Engin Arik's memorial, October 27-31 2008, Istanbul.

Phenomenology decribed at Born level by tan β ,m_A

Masses

di Fisica Nucleare
For M_A < 135 GeV (M_h^{max} scenario)
The ligth MSSM Higgs is SM-like
M_A≈ M_h

INFN

stituto Nazionale

+ For $M_A > 150$ GeV (decoupling limit) The heavy MSSM Higgs: $M_A \approx M_H \approx M_H^{\pm}$

Main production mechanism ~SM
For high and moderate tanß the production with the product

•For high and moderate tanβ the production with b quarks is enhanced

•For $m_A >> m_Z$ A/H behave very similar \rightarrow decoupling region •A, H, H[±] cross section $\sim tan\beta^2$

di Fisica Nucleare

Production cross section

•At small tan β gg \rightarrow h,H,A dominant •Vector boson fusion process pp \rightarrow qq \rightarrow qq+WW/ZZ \rightarrow qq+h/ H important at m_h ~ m_{hmax}

- •Higgsstrahlung neglegible
- At high tanβ associated b quarks production dominates

 $pp \rightarrow bb \rightarrow h/H/A+bb$

Abdelhak Djouadi arXiv:hep-ph/0503173v2 (2005)

INFN

Istituto Nazionale di Fisica Nucleare

Branching ratio

•Decoupling region $M_A \ge 150 \text{ GeV } \tan \beta \approx 30$ or $M_A \ge 400-500 \text{ GeV } \tan \beta = 3$

Production rate

$$\Gamma(h, H, A) \propto m_f^2$$

Decay bb dominates,
 ττ lower background
 weaker sensitivy on
 SUSY parameters

Abdelhak Djouadi arXiv:hep-ph/0503173v2 (2005)

Branching ratio

•Intense coupling region tanb ≈ 30 M_A~ 120-140 GeV Coupling to W,Z up quarks suppressed Coupling down quark (b) and τ enhanced

Abdelhak Djouadi arXiv:hep-ph/0503173v2 (2005) Decay µµ possible

INF

stituto Nazionale di Fisica Nucleare

Benchmark scenarios

🗕 m_h ^{max} scenario

I N F h

ituto Nazionale Fisica Nucleare

> It allows the maximum value for $m_h(X_t = 2M_{SUSY})$. It can be obtained conservative tan β exclusion bounds

+ no-mixing scenario

No mixing in scalar top sector ($X_t = 0$)

+ small α_{eff} scenario

Hb coupling~ sin α_{eff} / cos β can be zero: $\alpha_{eff} \rightarrow 0$: Main decay mode vanishes, important search channel vanishes \checkmark gluophobic Higgs scenario hgg coupling is small: main LHC production mode vanishes.

Light higgs boson

INFN

Istituto Nazionale di Fisica Nucleare

Simonetta Gentile, Engin Arik's memorial, October 27-31 2008, Istanbul.

ATLAS

pioniering work See also: ATL-PHYS-PUB-2006-030, ATL-PHYS-PUB-2002-021, ATL-PHYS-PUB-2002-013 ATL-PHYS-PUB-2000-001

Background evaluation

 bbZ→bbµµ large cross section (σ≈ 22.8 pb) large theoretical uncertainties (≈ 25%)
 Proposed data driven method based on bbZ→bbee
 Rate of signal suppresed by Background same rate: same production diagram, and lepton universality different inner bremsstrahlung and detector reconstruction

INFN

bbh/Aµµ low mass region

 M_A =110.31 GeV, M_h = 110 GeV, tan β =45

LO order cross section Atlas : tanβ 15-50

- m_A 95-130 GeV
- 2 μ p_T>20GeV
- 2 jets $p_T > 10 GeV$
- 1 b-jet ($p_T > 15 \text{GeV}$)
- $M_{\mu\mu}$
- μ-isolation,no hadronic activity

Full detector simulation Corresponding to L=300fb⁻¹

•Background bbZ→bbµµ tt→bbµµ ZZ→bbµµ Simonetta Gentile, Engin Arik's memorial, October 27-31 2008, Istanbul. INFN

Istituto Nazionale di Fisica Nucleare

Discovery contours

$5 \sigma \text{ at } L = 30 \text{ fb}^{-1}$

 ➢ In the region M_A < 135GeV neutral MSSM Higgs production is dominated by h/A
 ➢ In the region M_A > 135GeV the production is dominated by H/A

preliminary

 $\tan\beta = 30$

	A boson mass (GeV)						
(GeV)	110	130	150	200	300	400	
Natural width	2.16	2.48	2.80	3.60	5.61	8.46	
Reconstructed σ	2.59 ± 0.02	3.83 ± 0.03	4.11 ± 0.04	6.29 ± 0.05	10.2 ± 0.2	15.0 ± 0.3	
Reconstructed	109.818	129.738	149.796	199.589	298.82	399.37	
mass	± 0.006	± 0.005	± 0.006	± 0.005	± 0.04	± 0.04	

Generators: •h/A/H SHERPA •tt MC@NLO •ZZ PYTHIA •bbZ AcerMC/PYTHIA

preliminary

ATLAS Collaboration, Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

Signature

400

^{1stituto} Preselection : Trigger One μ with $p_T > 20$ GeV and 2, $p_T \mu > 20$ GeV

INFN

High mass analysis

- di Asimaliysis divided in two independent branches:
- + A) events with 0 reconstructed b-jets in final state
- + B) events with at least one reconstructed b-jet in the final state.
- + Final discovery A)+B)

INFN

- + Signal events considered in $\Delta m = m_A \pm 2\sigma_{\mu\mu}$
 - Background sideband estimation from data

INFN

lstituto Nazionale di Fisica Nucleare

Discovery Potential

Signal cross section uncertainties 17%

- >Systematic experimental uncertainties based on detector expected performances:
- e.g. muon efficiency, muon PT scale, muon resolution, Jet energy scale,
- Jet energy resolution, btag efficiency, b-tagging fake rate.

Based on detector expected performance 10-20%

Large systematic uncertainties demand for data-driven method background estimation

$bb H/A \rightarrow bb \tau \tau$

➢High rate but difficult from background

t-iet

τ-jet

τ-jet

e,µ

e,µ

μ

τ

τ

stituto Nazionale di Fisica Nucleare

INFN

h/A/H-

h/A/H

h/A/H

> bb H/A \rightarrow bb $\tau\tau$ covers large tan β region

→Hadron/leptonic: bbH→bbττ→e/μ+jet +E_T^{miss} Higher rate of full leptonic channel (lepton Br(τ→ $\ell v_\tau v_\ell$) ~0.17)

- easier detection of full hadronic channel
- good coverage of MSSM parameter space.

► Full leptonic: bbH→bbtt→eµ+ E_T^{miss} Lower rate than full hadronic or hadronic/lepton Br($\tau \rightarrow \ell v_\tau v_\ell$) ~0.17 clean signal and easy to trigger

•Discussion on full leptonic channel See also ATL-PHYS-2003-009 New

$bb H/A \rightarrow bb \tau \tau \rightarrow \ell \ell$

Higgs mass reconstruction using collinear approximation

 Approximation method requires excellent missing E_T resolution + Main

background:Z+jet,ttbar,Zbb

+Analysis:

- Trigger Single or dilepton + At least one b-tagged jet
- Njet <3 cut tt background
- Dilepton-mass and missing energy cut to veto $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$
- $+ E_{T}^{Miss}$

INFN

- $\Delta \Phi_{\ell \ell}$
- $Z \rightarrow \tau \tau$ estimated from data
- Asymmetric mass window cut

ATLAS Collaboration. Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

$$\begin{array}{l} x = p_{T,\ell} \\ 0 < x < 1 \end{array}$$

$$1 m_{\tau\tau}$$

8

$bb H/A \rightarrow bb \tau \tau \rightarrow \ell \ell$

+ Discovery of Higgs boson in the m_h^{max} scenario is possible for $m_A = 150$ GeV and $\tan\beta > 20$, for $m_A = 275$ GeV $\tan\beta$ >35 and $m_{A>} 300$ GeV for $\tan\beta > 45$ with integrated L= 30fb⁻¹.

INF

Istituto Nazionale di Fisica Nucleare

SUSY & Higgs interplay

- If SUSY kinematically accessible, then real production of sparticles.
- Higgs can decay directly to or come from decay of SUSY particles
- + Associated production modes: e.g, squark-squark-Higgs
- ★ SUSY particles suppress or enhance loop induced production or decays Higgs into sparticle decay modes can compete with SM modes:
 H/A → $\chi^0_2 \chi^0_2 \rightarrow 4 \ell^{\pm} X$

Pioneering papers:

INFN

Istituto Nazionale di Fisica Nucleare

 $H^{\pm} \! \rightarrow \! \chi^0_{\ 2} \chi^{\pm}_{\ 1} \! \rightarrow 3 \ \ell^{\pm} \, X$

[1] ATLAS Coll., ATLAS detector and Physics Perfomance, Vol.2 p766
 [2] F. Moortgat, S. Abdullin, D. Denegri". hep-ph/0112046
 [3] M.Bisset, F. Moortgat and S. Moretti "Eur.Phys.J.C30:419-434,2003.
 [4] C. Hansen, N. Gollub, K. Assamagan, T. Ekelof Eur.Phys.J.C44S2:1-9,2005.
 [5] CMS Coll., CMS detector and Physics Perfomance, Vol.1

 A^0, H^0

>Assume a classical production Mechanism

Decays

4 isolated leptons (e,μ) + E_T miss

powerful signature against the SM + SUSY backgrounds at LHC

intermediate sleptons

2l

 χ^0_2

M.Bisset, N.Kersting, F.Moortgat, S.Moretti, arXi:0709.10029[hep-ph]

Choice of Bench mark points

To choose representative points in the search $A/H \rightarrow \chi_i^0 \chi_i^0 \rightarrow 4 \ \ell$ + m_{to} **The following characteristics** + m_b[±] + tan

 $\chi^0_2 \chi^0_2$

 $\chi^{0}_{2,3,4}\chi^{0}_{3,4}$

"High" branching ratio in

INFN

 $\succ \qquad \begin{array}{c} \chi_1^+ \chi_2^- \\ & \text{``High'' branching ratio in} \\ \chi_2^0 \rightarrow \chi_1^0 \ell^+ \ell^- \end{array}$

MSSM representative Points **MSugra** representative Points Point A $M_0=125$ GeV tan $\beta=20$ Point B $M_0=400$ GeV tan $\beta=20$ $M_{1/2}=165$ GeV sign(μ)=+1 $A_0=0$ + $m_{top} = 175 \text{ GeV}$

- + $m_b = 4.25 \text{ GeV}$
- + $\tan \beta = 10$
- + $m_A = 500 \text{ GeV}$

+
$$M_{squark} = 1 \text{ TeV}$$

+ $A_{tau} = 0$
+ $A_{f} = 0$

Point 1 $M_A = 500 \text{ GeV } \tan\beta = 20$ $M_1 = 90 \text{ GeV } M_2 = 180 \text{ GeV } \mu = -500 \text{ GeV}$ $M_{\tau} = M_{\tau} = 250 \text{ GeV } m_g = M_q = 1000 \text{ GeV}$

Point 2 M_A =600 GeV tan β =35 M_1 =100GeV M_2 =200 GeV μ =-200GeV M_{τ} =150GeV M_{τ} = 250GeV m_g =800GeV M_g =1000GeV

Sample of events

 $\begin{array}{l} \succ \text{ Signal} \\ H \rightarrow 4 \ \ell \\ A \rightarrow 4 \ \ell \end{array}$

Istituto Nazionale di Fisica Nucleare

INFN

Standard Mode Background •bbZ $\rightarrow 4 \ell$ • tt $\rightarrow 4 \ell$ •ZZ $\rightarrow 4 \ell$

 \tilde{q}, \tilde{g} $\widetilde{\ell},\widetilde{\nu}$ $\rightarrow 4\ell$ $\widetilde{\chi}\widetilde{\chi},\widetilde{q}/\widetilde{g}\widetilde{\chi}$ $tH^- + c.c.$

MSSM Background

Reference points: (same BKMM)

- 1) MSSM Point 1 $M_A = 500 \text{ GeV} \tan\beta = 20$
- **2) MSSM Point 2** M_A =600 GeV tan β =35
- **3) MSUGRA Point A** $tan\beta=20$
- **4) MSUGRA Point B** $tan\beta=20$

Main selections: •ℓ Isolation charge and flavour constrains $\ell_1^- \ell_1^+ \ell_2^- \ell_2^+$ •Impact significance •35 GeV $< E_T^{miss} < 130 \text{ GeV}$ •Z veto : $|Minv (\ell + \ell -) - Mz|$ •1st high energy lepton $p_T^{\ell 1}$, 2nd high energy lepton $p_T^{\ell 2}$ • P_T JetMin > 20 GeV $N_{iet} \le 5 P_T^{jet} > 20 GeV$ (with 1 track)

Set 1 Discovery plots at $L = 100 \, fb^{-1}$

Istituto Nazionale di Fisica Nucleare

> + The discovery region for $A/H \rightarrow \chi_2^0 \chi_2^0 \rightarrow 4 \ell + E_T^{miss}$ can be accessible only after L=300fb⁻¹. + No clear discovery possibilty at lower luminosity + The background are mainly **ZZ and slepton pair** and tt pair.

>Discovery accessible also with L=100fb-1. The remaing background are mainly ZZ and tt pair, direct $\chi \chi$, tH[±] production is not neglegible

Conclusions

+ Atlas is preparing for first collision data.

INFN

- + The search for MSSM Higgs can full exploit the design of ATLAS experiment: excellent tracking, EM calorimeter, μ -spectrometer resolution, Missing energy reconstruction and b and τ tagging capabilities.
- Discovery potential of MSSM Higgs boson has been estimated by ATLAS .
- A early discovery of a neutral MSSM boson in some channels (e.g.bb h/A→μμ, ττ) looks possible with integrated luminosity =10 fb⁻¹, i.e. after only 1-2 year of data taking.
- First data has the possibility to exclude/or confirm the entire MSSM
- + Others decay channel (as $\chi_{2,3,4}^{0} \chi_{2,3,4}^{0}$) can be explored later for unexplored region of parameter plane and first results can be achieved with L =100 fb⁻¹.