

Detect MSSM neutral Higgs bosons at LHC

INFN

tituto Nazionale i Fisica Nucleare

Simonetta Gentile Università di Roma, La Sapienza, INFN

+ Motivation + Supersymmetric (SUSY) Higgs +Experimental status + Search at LHC, what can be done: few examples +Conclusions

INFN

tituto Nazionale Fisica Nucleare

INFN Minimal Super Symmetric Model

- The MSSM is the most investigated extension of SM provides:
- The unification of coupling constants
- SUSY provides a ColdDarkMatter candidate
- Three neutral Higgs bosons: A, CP-odd, and CP-even H, h the lightest. Two charged H⁺, and H⁻.
- Large loop corrections depend on SUSY parameters

Unconstrained MSSM has huge number (105) of parameters in addition SM ones, making any phenomenogical analysis very complicated

A simplified version at some GUT scale: CMSSM/mSUGRA Most of phenomenogical analysis models are based on that.

INFN MSSM parameters constrains

- ✤ M_{susy},sfermion mass at EW scale
- + M_2 , $SU(2)_L$ gaugino mass at EW scale
- + μ, supersymmetric Higgs boson mass parameter.
- + tan β, the ratio of the two Higgs fields doublets
- ★ A₀, a universal trilinear higgs-squarks coupling at EW scale. It is assumed to be the same for up-type squarks and for down types quarks.
- ★ m_A, mass of CP-odd Higgs boson.
- ★ M_{gluino}, it affects loop corrections for stop and bottom
 - >couplings: gMSSM = ξ · gSM
 no coupling of A to W/Z
 large tanβ: large
 BR(h,H,A→ττ,bb)

ξ	t	b/ au	W/Z
h	cosα/sinβ	-sinα/cosβ	$sin(\alpha - \beta)$
H	sinα∕sinβ	cosα/cosβ	$cos(\alpha - \beta)$
A	$cot\beta$	$tan \beta$	

 $\alpha :$ mixing angle between CP even Higgs bosons (calculable from tan β and $M_A)$

Simonetta Gentile, Les Rencontres de Physique de la Vallée d'Aoste, 29 February.

Phenomenology decribed at Born level by tan β,m_A

Masses

INFN

stituto Nazionale

MSSM Higgs Production uto Nazionale di Fisica Nuclear h/H*=W/Z0000000000 h/H/At/bh/H/A00000 ത്ത

•Main production mechanism ~SM

•For high and moderate $\tan\beta$ the production with b quarks is enhanced

•For $m_A >> m_Z$ A/H behave very similar \rightarrow decoupling region •A, H, H[±] cross section $\sim tan\beta^2$

INFN

lstituto Nazionale di Fisica Nucleare

Production cross section

•At small tan β gg \rightarrow h,H,A dominant Vector boson fusion process •pp \rightarrow qq \rightarrow qq+WW/ZZ \rightarrow qq+h/H important at $m_h \sim m_{hmax}$ •Higgsstrahlung neglegible •At high tanβ associated b quarks production dominates $pp \rightarrow bb \rightarrow h/H/A+bb$

Abdelhak Djouadi arXiv:hep-ph/0503173v2 (2005)

INFN

Istituto Nazionale di Fisica Nucleare

Branching ratio

•Decoupling region $M_A \ge 150 \text{ GeV} \text{ tanb } \approx 30$ or $M_A \ge 400\text{-}500 \text{ GeV} \text{ tan}\beta = 3$

Production rate

$$\Gamma(h, H, A) \propto m_f^2$$

Decay bb dominates,
 ττ lower background
 weaker sensitivy on
 SUSY parameters

Abdelhak Djouadi arXiv:hep-ph/0503173v2 (2005)

Branching ratio

•Intense coupling region tanb ≈ 30 M_A $\sim 120-140$ GeV Coupling to W,Z up quarks suppressed Coupling down quark (b) and τ enhanced

INFN

Istituto Nazionale di Fisica Nucleare

tuto Nazionale isica Nucleare

Benchmark scenarios

🕈 m_h ^{max} scenario

It allows the maximum value for $m_h(X_t = 2M_{SUSY})$. It can be obtained conservative tan β exclusion bounds

+ no-mixing scenario

No mixing in scalar top sector ($X_t = 0$)

+ small α_{eff} scenario

Hb coupling~ sin α_{eff} / cos β can be zero: $\alpha_{eff} \rightarrow 0$: Main decay mode vanishes, important search channel vanishes \checkmark gluophobic Higgs scenario hgg coupling is small: main LHC production mode vanishes.

MSSM

Constrained:

ituto Nazionale Fisica Nucleare

I N F h

- + Two Higgs doublets $\rightarrow h_0$, H, A, H⁺, H⁻
- Three neutral Higgs bosons: H, A, CP-odd, and h the lightest CP-even.
- Large loop corrections depend on SUSY parameters (expecially stop): M_{susy}, M₂, μ, tan β, A, m_A, m_{gluino}
- + $X_t \sim A = 6^{1/2} M_{susy}$, $|\mu| \ll M_{susy}$ for maximal top mixing
- + $X_t=0$ no mixing scenario
- + Measurement of Higgs masses, coupling and $Br \rightarrow test$ of theory

Varying $m_A \tan\beta$, keeping all other SUSY parameters fixed.

INFN

stituto Nazionale

di Fisica Nucleare

High tanβ area for search at LHC with pp->bb h/ H/A h/H/A->μμ, ττ decays

Simonetta Gentile, Les Rencontres de Physique de la Vallée d'Aoste Eur.Phys. J C 47, 547

Interpretation of the limits

Quest & strategy

Look for MSSM bosons in the entire parameter space. + Using the same analysis strategy for SM, MSSM Among all channels studied from ATLAS and CMS focus on: >pp→bb h/ H/ A– moderate and high tan β h/ H/ A ->μμ $h/H/A \rightarrow \tau\tau$ \rightarrow pp \rightarrow A at low tan β A→Zh $Z \rightarrow \ell \ell (\ell = e, \mu)$ h→bb $\rightarrow pp \rightarrow A/H \rightarrow \tilde{\chi}^{0}_{2,3,4} \tilde{\chi}^{0}_{2,3,4}$

ΙΝΓΝ

Fisica Nucleare

Light higgs boson

ATLAS

INFN

Istituto Nazionale di Fisica Nucleare

ituto Nazionale

di Fisica Nucleare

bb h/A→bbµµ

•Associated h/A/H production with b-jets \rightarrow large σ •The adayange of $\tau\tau$ channel due to the mass is counterbalanced by difficulty of identify τ decays Production rate $\propto \left(\frac{m_{\tau}}{m^{2}} \right)$ (smaller detector acceptance, v in final state) $h \rightarrow \mu \mu$ and $h \rightarrow \tau \tau$ • Excellent µ resolution of detectors

signal

background

S.G., H.Bilokon, V.Chiarella, G.Nicoletti, Eur. Phys. J. C. 52, 229-245 (2007)

SN-ATLAS-2007-063 17 May 2007

ATL-PHYS-PUB-2007-001 11 January 2007

ATL-PHYS-PUB-2006-019 03 July 2006

M_A =110.31 GeV, M_h = 110 GeV, tan β =45

INFN

Istituto Nazionale di Fisica Nucleare

Atlas : $tan\beta$ 15-50 m_A 95-130 GeV

- 2 μ p_T>20GeV
- 2 jets p_T>10GeV
- 1 b-jet (p_T>15GeV)
- M_{µµ}
- μ-isolation,no hadronic activity

•Background bbZ→bbµµ tt →bbµµ ZZ→bbµµ

Full detector simulation Corresponding to L=300fb⁻¹

Background evaluation

 ★ bbZ→bbµµ large cross section (σ≈ 22.8 pb) large theoretical uncertainties (≈ 25%)
 Proposed data driven method based on bbZ→bbee
 ★ Rate of signal suppresed by Background same rate: same production diagram, and lepton universality different inner bremsstrahlung and detector reconstruction

ΙΝΓΝ

 M_h^{max} scenario

INFN

Istituto Nazionale di Fisica Nucleare

Others channel: τ decays + Full leptonic: $bbH \rightarrow bb\tau\tau \rightarrow e\mu + E_T^{miss}$

- Clean signal and easy trigger
- + Higgs mass reconstruction using collinear approxomation
- Approssimation method requires excellent missing E_Tresolution
- Main background:Z+jet,ttbar,Zbb

INFN Higgs Search in A -> Zh channel

•Low tanβ region

- •Final state $Z \rightarrow \ell \ell (\ell = e,m) h \rightarrow bb$
- •Low $\tan\beta M_z + m_h \le MA \le 2m_{top}$ (highest Br)
- •Depends strongly on MSSM parameters
- •Main backgrounds: Zbb,ttbar and Z+jet

•Systematic can be important

At Large value of M_2 and μ can dominate $A \rightarrow \chi \chi$

Summary of CMS reach in M_A -tan β

di Fisica Nuclei Associated production

INFN

At least one Higgs boson observable
significant area where only h is observable

Difficult to distinguish from SM

whole plane covered in CP conserving benchmark scenarios

significant area where only h is observable

INFN Istitute Nazio And di Fisha Nychare C Searches for MSSM higgses

Other discovery channels possible .. :

- + $h \rightarrow \gamma \gamma$ inclusive production and production in association tth final states
- + h,A,H $\rightarrow \mu\mu$ inclusive and bb associated
- + $H \rightarrow bb$ in association with bb
- + h,A,H $\rightarrow \tau \tau$ with 2ℓ , ℓ + τ -jet and 2τ -jet final states.

```
    the gb → t H<sup>±</sup>, H<sup>±</sup> →τν
```

★ gg →tt → H[±] bWb

Note:

....

They only include SM-particles to Higgs interactions
This assumes no interaction between Higgs & sparticle sectors:
i.e., SUSY mass scales are heavy

SUSY & Higgs interplay

- If SUSY kinematically accessible, then real production of sparticles.
- Higgs can decay directly to or come from decay of SUSY particles
- + Associated production modes: e.g, squark-squark-Higgs
- SUSY particles suppress or enhance loop induced production or decays Higgs into sparticle decay modes can compete with SM modes:

 $H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow 4 \ \ell^{\pm} X$

 $H^{\pm} \rightarrow \chi^0_{\ 2} \chi^{\pm}_{\ 1} \rightarrow 3 \ \ell^{\pm} X$

Pioneering papers:

INFN

stituto Nazionale li Fisica Nucleare

[1] F. Moortgat, S. Abdullin, D. Denegri". hep-ph/0112046
[2] M.Bisset, F. Moortgat and S. Moretti "Eur.Phys.J.C30:419-434,2003.
[3] C. Hansen, N. Gollub, K. Assamagan, T. Ekelof Eur.Phys.J.C44S2:1-9,2005.

INFN tuto Nazionale

di Fisica Nucleare

A/H susy decays

CMS

$A/H \rightarrow \chi_2^0 \chi_2^0 \rightarrow 4 \ell + E_T^{miss}$

Chosen points in mSUGRA

Point	m_0 (GeV)	$m_{1/2} ({\rm GeV})$	A_0 (GeV)	$tan\beta$	$sign(\mu)$
А	60	175	0	10	+
В	80	200	0	5	+
С	50	150	0	5	+

+ Background + SUSY, SM: tt, ZZ, Zbb **+** Selections:

- + Lepton isolation
- + Jet veto
- + E_T^{miss} , $p_T^{4l} < 80 \text{ GeV}$

+ Z veto Simonetta Gentile, Les Rencontres de Physiq

Point C after selections

M.Bisset, N.Kersting, F.Moortgat, S.Moretti, arXi:0709.10029[hep -ph] Simonetta Gentile, Les Rencontres de Physique de la Vallée d'Aoste, 29 February.

INFN

Search in a LHC detector

Representive points studied:

MSSM representative Points
 MSugra representative Points

Point A M₀=125 GeV tan β =20 Point B M₀=400 GeV tan β =20 M_{1/2}=165GeV sign(μ)=+1 A₀=0

- Discovery potential in a typical LCH detector investigated with this selections:
- lepton Isolation
- + 2pairs of opposite sign
- + $|M_z \pm 10 \text{ GeV}|$ veto
- + 20 GeV< E_T^{ℓ} < 80 GeV
- $\star E_T^{jet} < 50 \text{ GeV}$

INFN Reach for MSSM Higgs bosons in Usituto Nazionale $\chi^{0}_{2,3,4}\chi^{0}_{2,3,4}$ or $\chi_{1,2}^{+}\chi_{2}^{-}$ pairs

Point 1 M_A =500 GeV tan β =20 M_1 =90GeV M_2 =180 GeV μ =-500GeV M_{ℓ} = M_{τ} = 250GeV m_g = M_q =1000GeV

Point 2 M_A =600 GeV tan β =35 M_1 =100GeV M_2 =200 GeV μ =-200GeV M_{ℓ} =150GeV M_{τ} = 250Gev m_g =800GeV M_g =1000GeV Discovery region for $H/A \rightarrow \chi^{0}_{2,3,4} \chi^{0}_{2,3,4} \chi_{1,2}^{+} \chi_{2}^{-}$ Set 1 superimposed to Atlas discovery reach with SM particles

 $1 H \rightarrow ZZ^* \rightarrow 4 \ell$ $2.tH \rightarrow bH^+, H^+ \rightarrow \tau \nu + cc$ 3.tth $,h \rightarrow bb$ $4.h \rightarrow \gamma \gamma$ 5.bbH/A, H/A →bb $6.H^+ \rightarrow tb + c.c.$ $7.H/A \rightarrow \mu^+\mu^-$ 8.H/A $\rightarrow \tau^+ \tau^-$ 9.gb \rightarrow tH⁺, H⁺ \rightarrow τ+ν $10.H \rightarrow hh \rightarrow bb\gamma\gamma$ 11. A \rightarrow Zh $\rightarrow \ell \ell$ -bb $12.H/A \rightarrow tt$

SM decays limit derived with hypotesis that H/A can't decay in SUSY particles. DIFFERENT parameter!!

Discovery region for $H/A \rightarrow \chi^{0}_{2,3,4} \chi^{0}_{2,3,4} \chi_{1,2}^{+} \chi_{2}^{-}$ Set 2 superimposed to Atlas discovery reach with SM particles

 $1 H \rightarrow ZZ^* \rightarrow 4\ell$ $2.tH \rightarrow bH^+, H^+ \rightarrow \tau \nu + cc$ 3.tth $,h \rightarrow bb$ $4.h \rightarrow \gamma \gamma$ 5.bbH/A, H/A \rightarrow bb $6.H^+ \rightarrow tb + c.c.$ $7.H/A \rightarrow \mu^+\mu^-$ 8.H/A $\rightarrow \tau^+ \tau^-$ 9.gb \rightarrow tH⁺, H⁺ \rightarrow τ+ν $10.H \rightarrow hh \rightarrow bb\gamma\gamma$ 11. A \rightarrow Zh $\rightarrow \ell \ell bb$ $12.H/A \rightarrow tt$

SM decays limit derived with 12.H/A →tt hypotesis that H/A can't decay in SUSY particles. DIFFERENT parameter!! Simonetta Gentile, Les Rencontres de Physique de la Vallée d'Aoste, 29 February.

Conclusions

Atlas & CMS are preparing for first collision data
Discovery potential of MSSM Higgs boson
has been estimated by ATLAS and CMS.

INFN

uto Nazionale isica Nucleare

- A early discovery of a neutral MSSM boson in some channels (e.g.bb h/A→µµ) looks possible with integrated luminosity =10 fb⁻¹, i.e. after only one year of data taking.
- First data has the possibility to exclude/or confirm the entire MSSM
- + Others decay channel (as $\chi_2^0 \chi_2^0$) can be explored later for unexplored region of parameter plane.