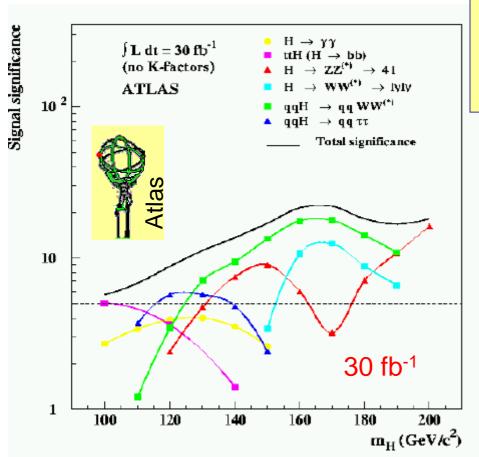


Physics at hadron collider with Atlas 4th lecture

Simonetta Gentile Università di Roma La Sapienza, INFN on behalf of Atlas Collaboration

Outline



- Introduction to Hadron Collider Physics
- LHC and ATLAS detector
- Test of Standard Model at LHC Parton distribution function

 - QCD + jet physics
 - Electroweak physics (Z/W –bosons)
- Top physics 2nd
- Search for Higgs boson 3rd
- Supersymmetry
 Conclusions 4th

Higgs signal in ATLAS

INFN

Istituto Nazionale di Fisica Nucleare

LHC can probe entire set of "allowed" Higgs mass values (100 GeV - 1 TeV)

 \checkmark at least 2 channels for most of range

Full mass range can be covered After few years at low

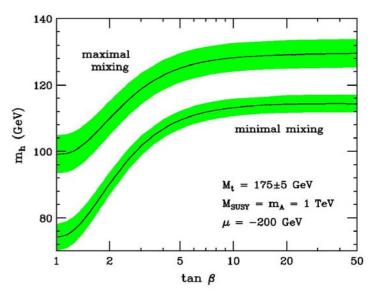
MSSM Higgs

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA

Minimal Supersymmetric Standard Model extention:

Two Higgs doublets: 5 Higgs particles H, h, A H⁺, H⁻

- Theory prediction $m_h < 135 \text{ GeV}$
- •Fixed mass relations at tree level,


Important loop corrections

(tree level relations are significantly

modified) mainly dependent from **top/stop**

two parameters: m_A, tan β
For large m_A the h boson is SM like

upper limit for the light Higgs mass

INFN Istituto Nazionale ASSM parameters constrains

- M_{susy},sfermion mass at EW scale
- M_2 , $SU(2)_L$ gaugino mass at EW scale
- \square µ, supersymmetric Higgs boson mass parameter.
- $\tan \beta$, the ratio of the two Higgs fields doublets
- A₀, a universal trilinear higgs-squarks coupling at EW scale. It is assumed to be the same for up-type squarks and for down types quarks.
- m_A, mass of CP-odd Higgs boson.
- M_{gluino}, it affects loop corrections for stop and bottom

```
> couplings: gMSSM = \xi \cdot gSM
no coupling of A to W/Z
large tan\beta: large
BR(h,H,A \rightarrow \tau\tau,bb)
```

ξ	t	b/ au	W/Z
h	cosα∕sinβ	-sin α /cos β	$sin(\alpha - \beta)$
H	sinα∕sinβ	cosα/cosβ	$cos(\alpha - \beta)$
A	cotβ	tanβ	

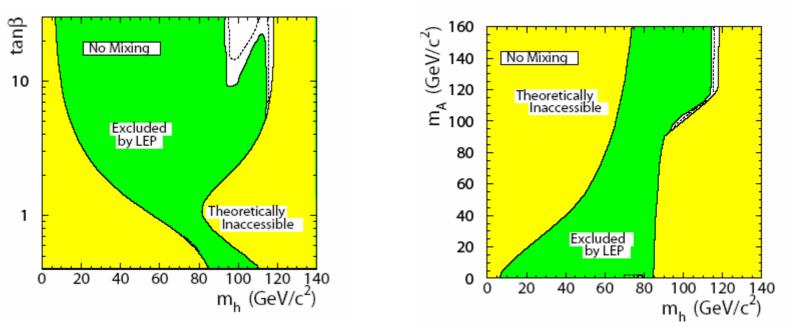
 $\alpha :$ mixing angle between CP even Higgs bosons (calculable from tanß and $M_{\text{A}})$

Simonetta Gentile Gomel School of Physics 2005 Phenomenology decribed at Born level by tan β,m_A

Large variety of observation modes >if SUSY particles heavy -SM-like: $\mathbf{h} \rightarrow \gamma \gamma, \mathbf{b} \mathbf{b}$ $H \rightarrow 4lept$ •MSSM-specific: $A/H \rightarrow \mu\mu$, $\tau\tau$, tt $H \rightarrow hh$ $A \rightarrow Zh$ $H^{\pm} \rightarrow \tau \nu$

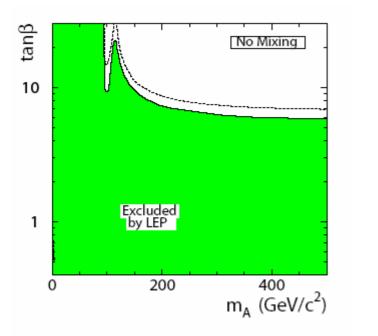
Decays

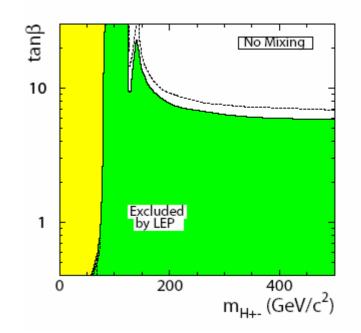
>if SUSY particles accessible: (not discussed)


•**H**/**A** $\rightarrow \chi^2_0 \chi^2_0 \rightarrow \chi^1_0 \chi^1_0 \rightarrow 4\ell$ + missing Energy •**h** produced in cascade decays (e.g. $\chi^2_0 \rightarrow \mathbf{h} \chi^1_0$)

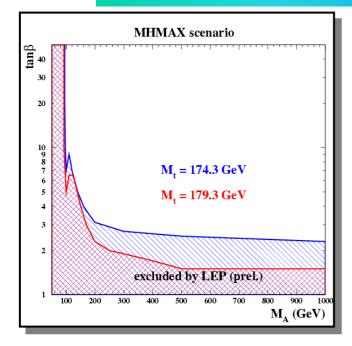
Past & future

Excluded: $m_{h0} < 92.9 \text{ GeV}^2/c$ $m_A < 93.4 \text{ GeV}^2/c$ $\tan\beta 0.9 - 1.5$


LHWG-Note 2004


Past & future

Excluded (max m_h) $m_{h0} < 92.9 \text{ GeV}^2/c$ $m_A < 93.4 \text{ GeV}^2/c$ $\tan\beta 0.9 - 1.5$


Excluded (no mixing) $m_{h0} < 93.3 \text{ GeV}^2/c$ $m_A < 93.3 \text{ GeV}^2/c$ tanβ 0.4 – 5.6

LHWG-Note 2004

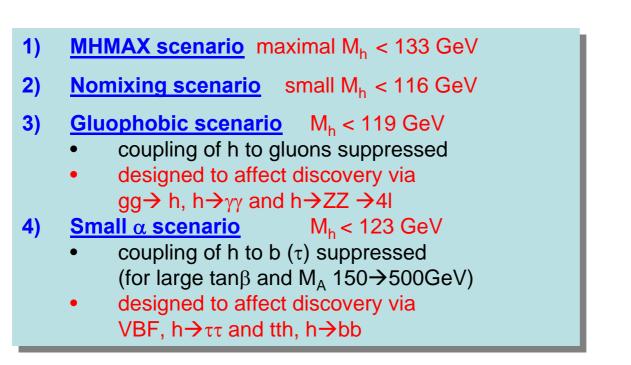
Istituto Naziona Benchmark Scenarios

suggested by Carena et al., EPJ C26, 601(2003)

Name	M _{SUSY} (GeV)	μ (GeV)	M ₂ (GeV)	X _t (GeV)	M _{gluino} (GeV)
m _h -max	1000	200	200	2000	800
no mixing	2000	200	200	0	800

• 2 CP conserving scenarios considered

(other two gluopphobic and small α not discusses)

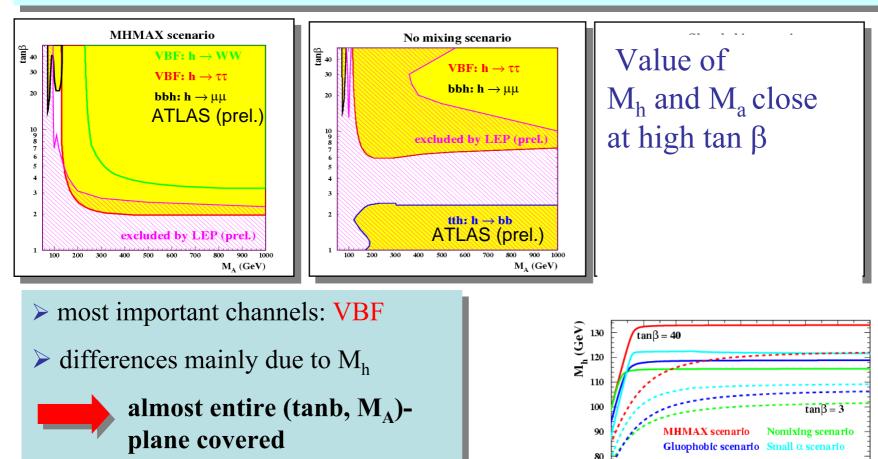

- to examplify the discovery potential
- mainly influence on phenomenology of h

MHMAX scenario maximal M_h < 133 GeV
 Nomixing scenario small M_h < 116 GeV

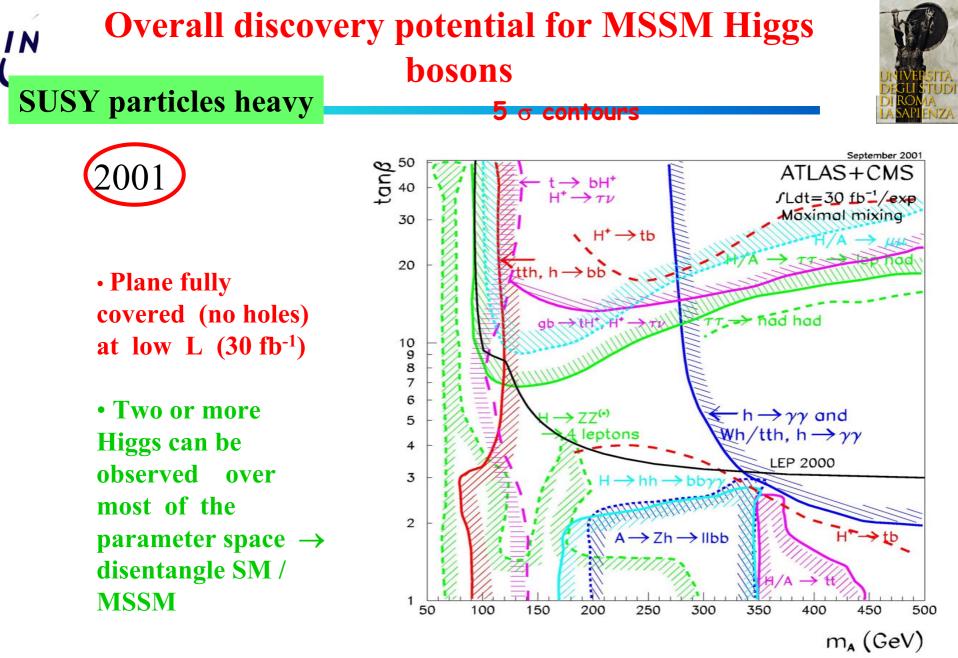
Simonetta Gentile Gomel School of Physics 2005

MESSA Higgs Accesible channels at LH

- $h \rightarrow \gamma \gamma$, tth $\rightarrow bb$, $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ as in Standard Model
- HWW, HZZ strongly suppressed with tanβ,
- A/Hbb, A/H $\tau\tau$, A/H $\mu\mu$ enhanced with tan β
- typical of MSSM: $A/H \rightarrow \tau\tau$, $\mu\mu$; $H^+ \rightarrow \tau\nu$, τb


if SUSY accessible Higgs \rightarrow SUSY particles or SUSY cascade \rightarrow Higgs (not discussed)

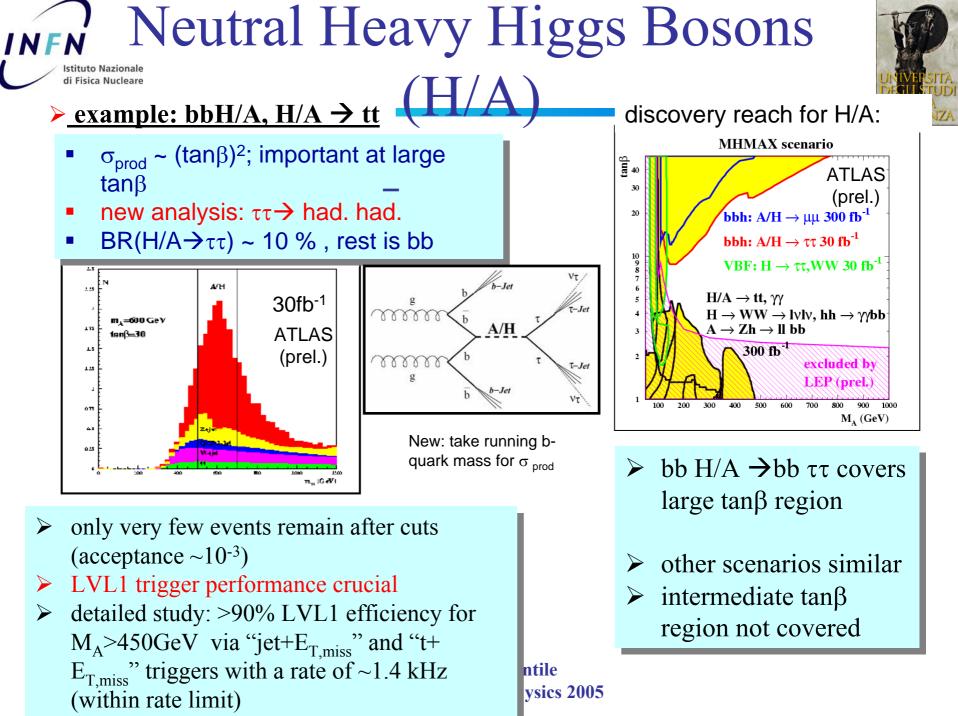
Light Higgs Boson (30 fb⁻¹)

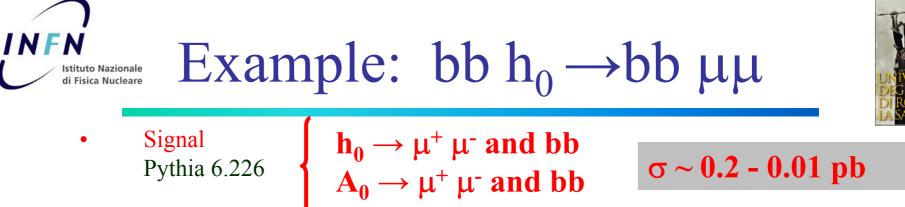


M₄ (GeV)

h observable in entire parameter space and for all benchmark scenarios?

Simonetta Gentile Gomel School of Physics 2005



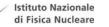

Tau's as final state signature in MSSM scenario

- bbH, bbA with H/A $\rightarrow \tau \tau$ (lep-had and had-had)
- tt \rightarrow H⁺bWb with H \rightarrow $\tau\nu$ (lep, had)
- $gb \rightarrow H^+t$ with $H \rightarrow \tau \nu$ (had)

In MSSM at large tanβ couplings Hττ, Αττ, Hbb, Abb, H⁺τb strongly enhanced.

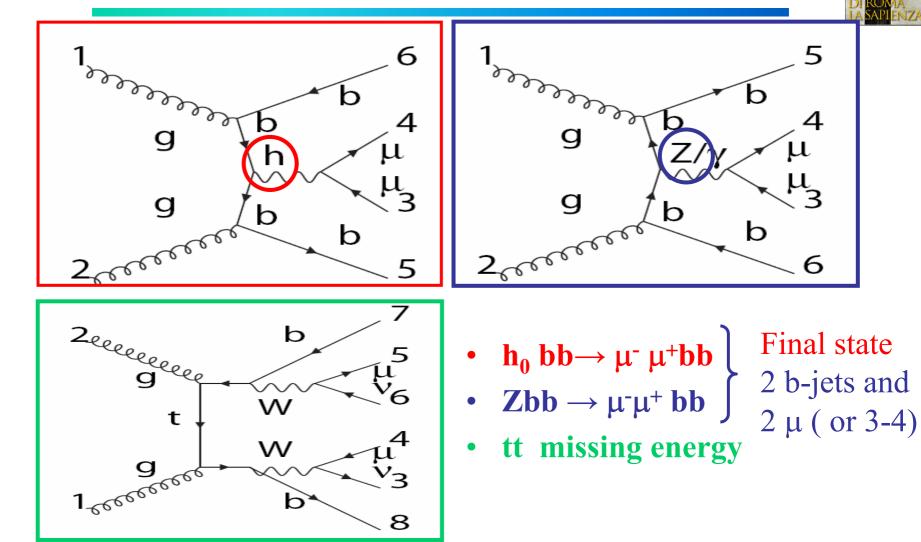
•Extential a good τ identification

- $Z/\gamma^* \rightarrow \mu^+ \mu^-$ and bb $\sigma^* br(Z \rightarrow \mu^+ \mu^- \text{ and } bb)$ (Pythia 6.226) AcerMC (v.2.3) interfaced with Pythia 6.2 (hep/ph0405247).
- $ZZ \rightarrow \mu^+ \mu^-$ and bb: $\sigma^* br(Z \rightarrow \mu^+ \mu^-) \sigma^* br(Z \rightarrow bb)$ Same order of magnitude of signal. Reduced by kinematical cuts.


•
$$tt \rightarrow W^+ W^- bb \rightarrow bb \mu\nu \mu\nu$$

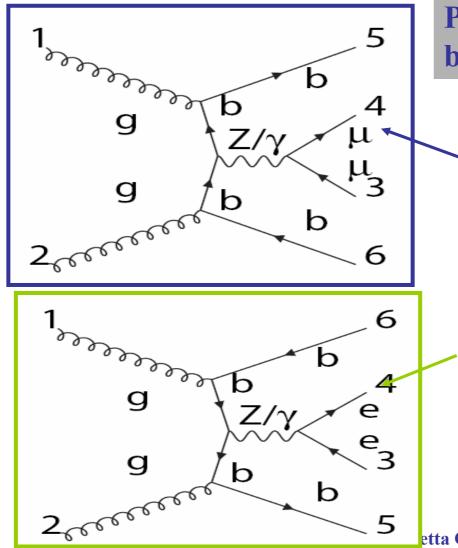
 $\sigma(tt) *br(t \rightarrow bW)*br(W \rightarrow \mu\nu)*br(t \rightarrow bW)* br(W \rightarrow \mu\nu)$
Missing energy in the event

 $\sigma \sim 5.84 \ pb$


σ~0.15 pb

 M_{h0} 95 -130, GeV tan $\beta \sim 20$ -50

Signal & background



INFN

Istituto Nazior Beackground Subtraction Method

Precise Knowledge of background crucial

- Experimental method
- Proposed based on
 - $Z{\longrightarrow}\ \mu^{\scriptscriptstyle +}\ \mu^{\scriptscriptstyle -} \ and \ Z{\longrightarrow}\ e^{\scriptscriptstyle +}\ e^{\scriptscriptstyle -}$
 - Relying on experimental data
 - Br($h_0 \rightarrow e^+ e^-$) neglegible

$$\propto \left(\frac{m_{\mu}}{m_{e}} \right)^{2}$$

• Different Inner Bremhstrahlung

etta Gentile Gomel School of Physics 2005

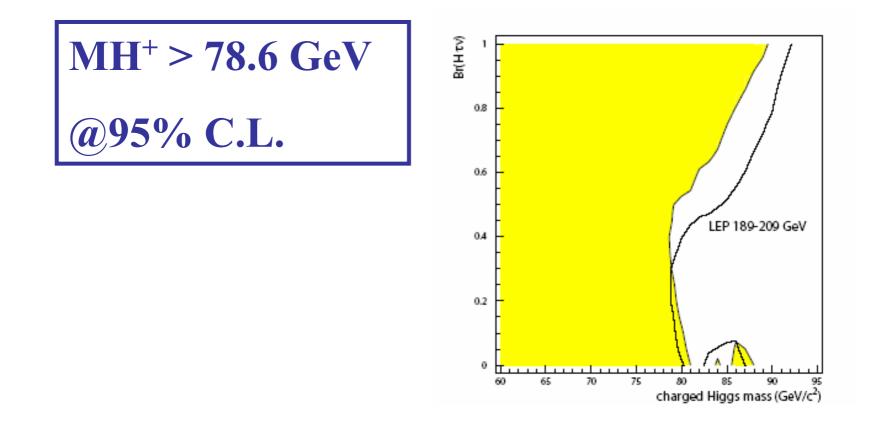
Basic cuts:

• A pair of opposite muons with $p_t > 10$ GeV $|\eta| < 2.5$ • A pair of jets with $E_t > 10$ GeV and $|\eta| < 2.5$

➢ Selection

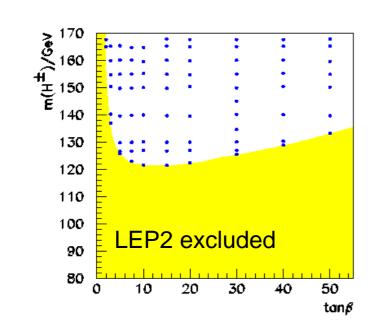
- •At least 1 b-jets ($p_T > 15 \text{ GeV \& b-tag weight} > 1$)
- $\begin{array}{c|c} \bullet 25 \quad \text{GeV} < P_{\text{T}} \ ^{\mu 1} < 100 \ \text{GeV} \\ \bullet 25 \quad \text{GeV} < P_{\text{T}} \ ^{\mu 2} < 60 \ \text{GeV} \end{array} \right\} \quad \text{for tt background} \\ \begin{array}{c} \text{ATLAS-PHYS-2003-015} \end{array}$
- •Minv($\mu^+\mu^-$) +/- ΔM (Γ_{A0} , Γ_{h0} , ΔRes_{exp}) • $P_T^{b1} < 60 \text{ GeV}$ • $P_T^{b2} < 55 \text{ GeV}$ • $P_T \text{ missing} < 80 \text{ GeV}$ for tt background N.B. all value of cuts for tt are Indicative not at all tuned!

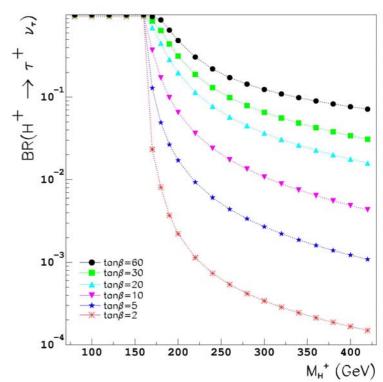
Istituto Nazional ight Higgs Boson (300 fb⁻¹)



VBF: only 30 fb⁻¹

- also $h \rightarrow \gamma \gamma$, $h \rightarrow ZZ \rightarrow 4$ leptons, tth \rightarrow bb contribute
- large area covered by several channels
 → stable discovery and parameter determination possible
- small area uncovered ($M_h = 90$ to 100 GeV)





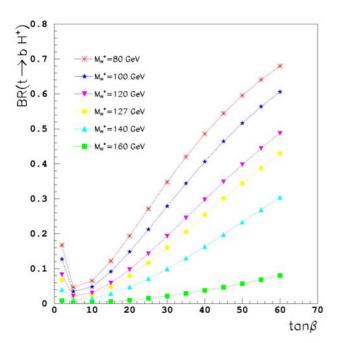
Production mechanisms:

•below top-quark mass: $gg,qq \rightarrow tt \rightarrow WbH^+b$ •above top-quark mass: $gb \rightarrow tH^+ \rightarrow t \tau v$

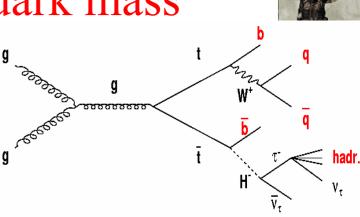
BR ($H^+ \rightarrow \tau \nu$)

Simonetta Gentile Gomel School of Physics 2005

Charged Higgs below top-quark mass


Production mechanism:

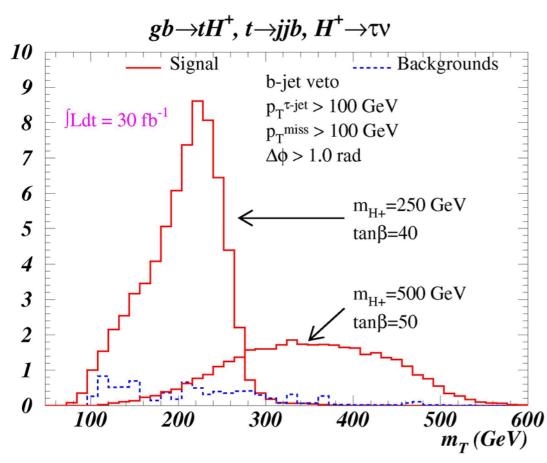
below top-quark mass:


 $gg,qq \rightarrow tt \rightarrow WbH^+b$

large N_{exp}(tt pairs

BR(t \rightarrow **H**⁺**b**)

signal: large BR (H $\rightarrow \tau \nu$) $\rightarrow 100\%$ bgd. : BR(W $\rightarrow \tau \nu$) $\rightarrow 10\%$ BR($\tau \rightarrow had \nu$) $\rightarrow 65\%$



Charged Higgs at large masses

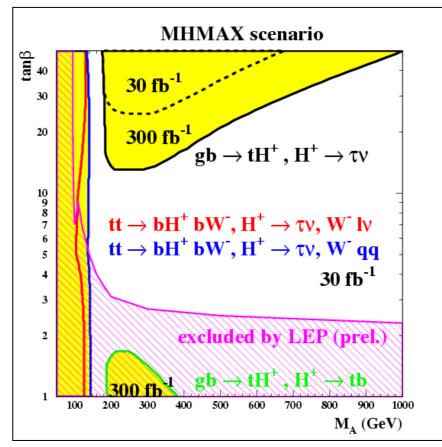
σ= 5 - 0.1 pb

 $gg \rightarrow tH^{+}b$

gb → tH⁺

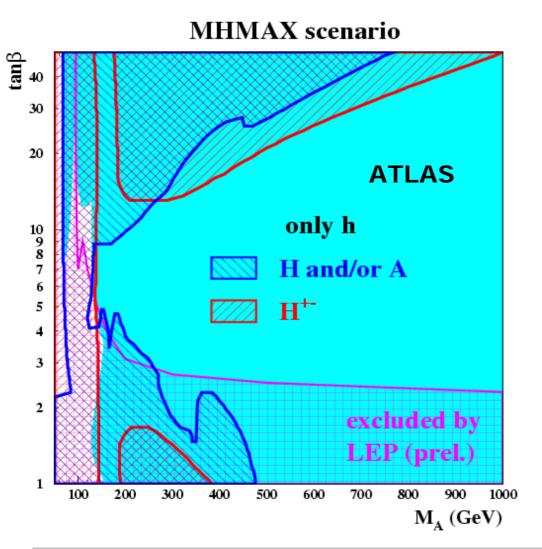
Simonetta Gentile Gomel School of Physics 2005

Bgds: almost bgd free WH


- t \rightarrow jjb reconstructed
- trigger on tau+ E_T^{miss}
- tau-id crucial
- •profit from 100% tau
 - polarisation to enhance
 - rejection against $W \rightarrow \tau v$
- •transverse mass can be reconstructed
- good sensitivity to mass and tanβ measurement: at 300fb⁻¹:

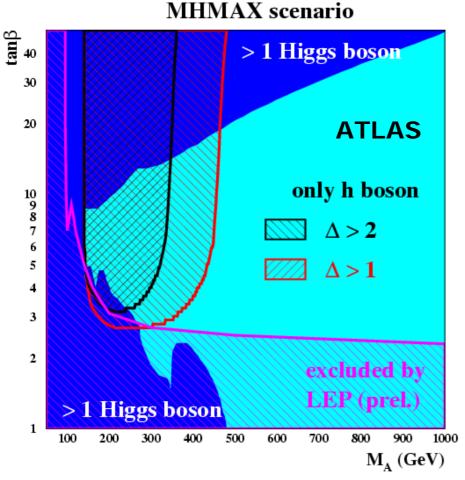
 $\Delta m/m \sim 1-2 \%$ $\Delta tan\beta/tan\beta \sim 5-7 \%$

at large masses


5σ discovery contours

Simonetta Gentile Gomel School of Physics 2005

Overall Discovery Potential: 300 fb⁻¹



- DESTI STUDI DI ROMA LA SAPI<mark>E</mark>NZA
- Whole plane covered for at least one Higgs
- Large wedge area (intermediate tan β) where only h is observed
- No direct evidence for higgs beyond SM

→Can we distinguish between SM and extended Higgs sectors by parameter measurements?

INFN Istituto Nazionale SM or Extended Higgs Sectors?

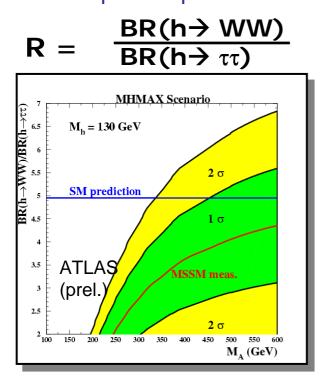
>only statistical errors considered

>assumes Higgs mass exactly known

First look using rate measurements from VBF channels (30fb⁻¹)

$$R = \frac{BR(h \rightarrow \tau\tau)}{BR(h \rightarrow WW)}$$

Deviation from SM expectation

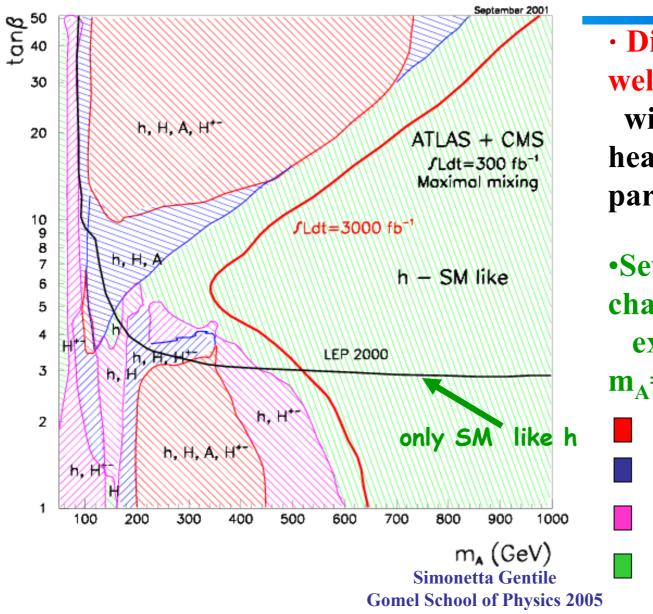

$$\Delta = |\mathbf{R}_{MSSM} - \mathbf{R}_{SM}| / \sigma_{exp}$$

potential for discrimination seems promising!

Istituto Nazionale M or extended Higgs Sector ?

estimate of sensitivity from rate measurements in VBF channels (30 fb⁻¹)
 compare expected measurement of R in MSSM with prediction from SM

- only statistical errors
- assume M_h exactly known



potential for discrimination

seems promising

 needs further study incl. sys. errors Simonetta Gentile
 Gomel School of Physics 2005

Conclusions on MSSM Higgs sector

• Discovery potential well understood with assumption of heavy SUSY particles.

Several overlapping channels, studies extended to m_A=1 TeV range.
 4 Higgs

- 3 Higgs
- 2 Higgs
- 1 Higgs

• SM / MSSM Higgs could be discovered with $\sim 10 - 30 \text{ fb}^{-1}$

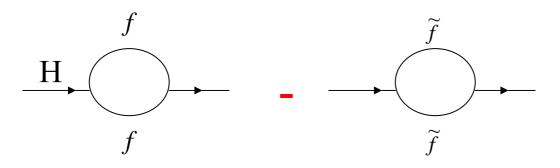
- Discovery of SM possible with 10 fb⁻¹
- MSSM parameter space covered with 30 fb⁻¹

□ Precise measurements of Higgs parameters with 300 fb⁻¹ : masses to 0.1 - 1%, width to ~ 5-30%, couplings to 10-30%

Outline

- Introduction to Hadron Collider Physics
- LHC and ATLAS detector
- ≻ Test of Standard Model at LHC
- Parton distribution function
- QCD + jet physics
- Electroweak physics (Z/W –bosons)
- Top physics
- Search for Higgs boson
- > Supersymmetry
- ➢ Conclusions

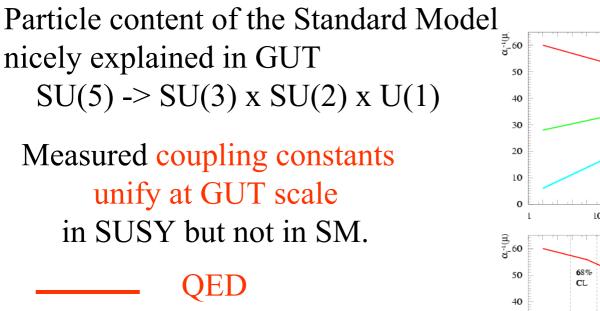
Relates fermions and bosons: for each particle *p* with spin s, there exists a SUSY partner with spin s-1/2. $q (s=1/2) \rightarrow (s=0)$ squarks Ex. :


 $Z (s=1) \rightarrow (s=1/2)$ zino

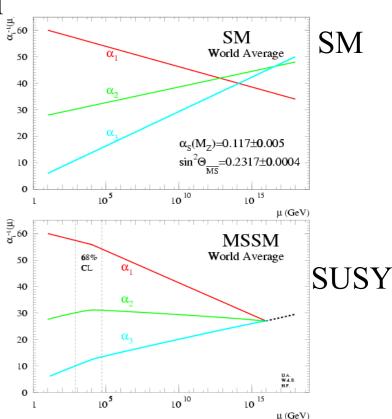
Motivations:

to Nazionale di Fisica Nucleare

INFN


- (1) unification of fermions and bosons is attractive
- It solves problems of SM, e.g. divergence of Higgs mass :

Fermion and boson loops cancel, provided $m_{SUSY} \leq TeV$.


Introduction to Supersymmetry

INFN

Istituto Nazionale di Fisica Nucleare

SUSY provides a good candidate for dark matter in the Universe: the Lightest SUSY Particle (LSP)

Does not contradict predictions of SM at low energy
 → not ruled out by present experiments.
 Predicts a light Higgs

INFA

Fisica Nuclea

However: no experimental evidence for SUSY as yet

Either SUSY does not exist

OR

 m_{SUSY} large (>> 100 GeV) \rightarrow not accessible to present machines

LHC should say "final word" about SUSY if $m_{SUSY} \le a$ few TeV

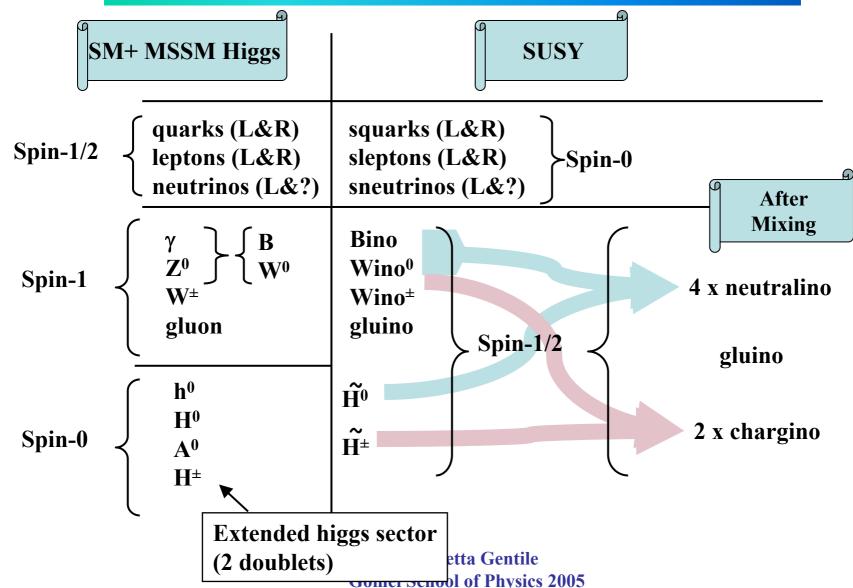
Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric extension of Standard Model with minimal particle content and R-parity conservation.

Particle spectrum in Supersymmetry Istituto Nazionale

SM	Supersymmetry				DEGITISTODI DI ROMA LA SAPLENZA		
	weak eigenstates	name	mass eigenstates				
${f q} \ell u$	$egin{array}{c} ilde{q}_{L}, \ ilde{q}_{R} \ ilde{\ell}_{L}, \ ilde{\ell}_{R} \ ilde{ u} \end{array}$	s–Quark s–Lepton s–Neutrino	$egin{array}{l} { ilde q}_1, { ilde q}_2 \ { ilde \ell}_1, { ilde \ell}_2 \ { ilde u} \end{array}$		Each SM particle gets SUSY partner		
g	ĝ	gluino	ğ		spin differ by 1/2		
${f W^{\pm}}\ {f H_{1}^{+}}\ {f H_{2}^{-}}$	$\begin{array}{c} \tilde{\mathrm{W}}^{\pm} \\ \tilde{\mathrm{H}}_{1}^{+} \\ \tilde{\mathrm{H}}_{2}^{-} \end{array}$	wino higgsino higgsino	$ ilde{\chi}^{\pm}_{1,2}$	Chargino	2 Higgs doublets for up- and down- quarks		
$egin{array}{c} W^0 \ B^0 \ H^0_1 \ H^0_2 \end{array}$	$ \begin{array}{c} \tilde{W}^0 \\ \tilde{B}^0 \\ \tilde{H}^0_1 \\ \tilde{H}^0_2 \end{array} \end{array} $	wino bino higgsino higgsino	$ ilde{\chi}^0_{1,2,3,4}$	Neutralino			

INFN

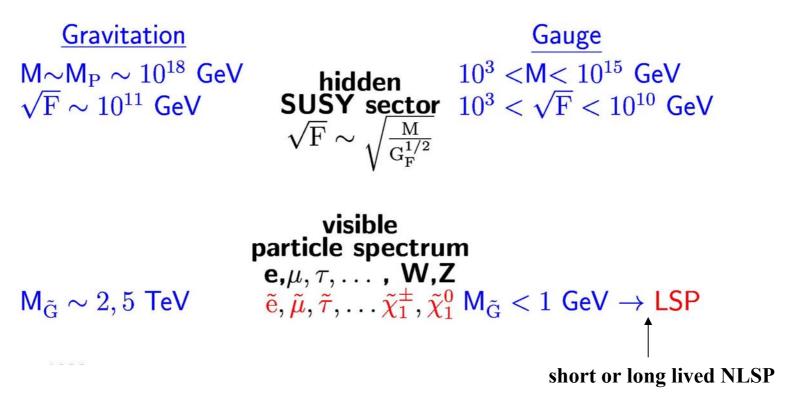
di Fisica Nucleare


Equal number of bosons and fermions solve hierarchy problem -> corrections to Higgs mass \sim SUSY mass scale

(S)particle reminder

INFN

Istituto Nazionale di Fisica Nucleare



SUSY breaking

SUSY particles not yet observed -> SUSY broken SUSY may be broken "by hand" or in the hidden sector EW requires spontaneus breaking (Higgs mechanism)

• M_{susy}, sfermion mass at EW scale

INF

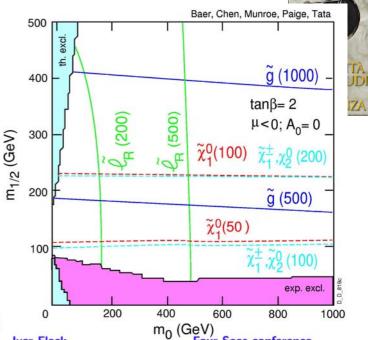
di Fisica Nuclear

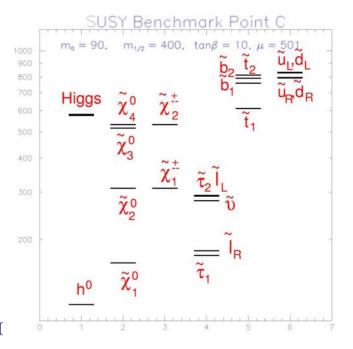
- M_2 , SU(2)_L gaugino mass at EW scale
- \square µ, supersymmetric Higgs boson mass parameter.
- $\tan \beta$, the ratio of the two Higgs fields doublets
- A₀, a universal trilinear higgs-squarks coupling at EW scale. It is assumed to be the same for up-type squarks and for down types quarks.
- m_A, mass of CP-odd Higgs boson.
- M_{gluino}, it affects loop corrections for stop and bottom

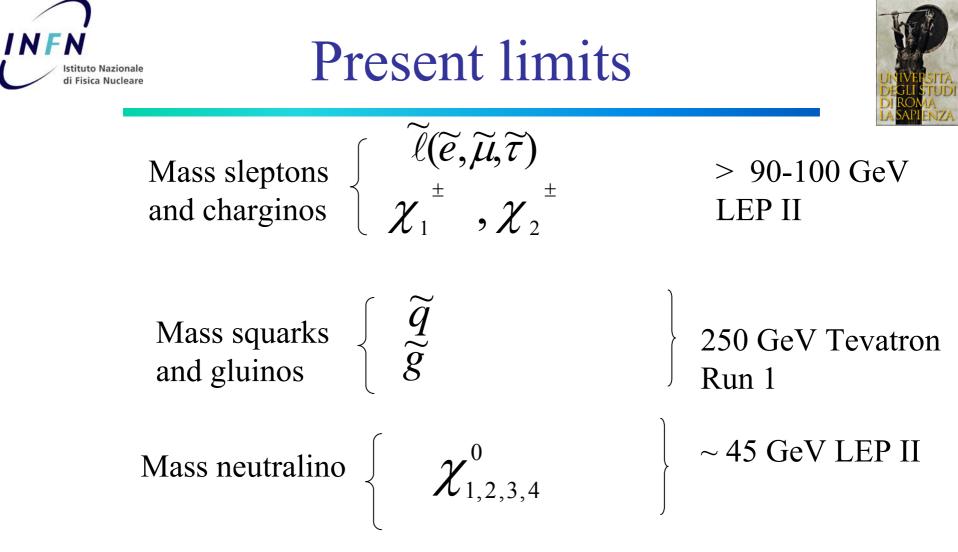
minimal SUGRA INFN

all 3 coupling constants meet at $\sim 10^{16}$ GeV \rightarrow can be embedded in Grand Unified Theories (GUT)

common masses for sfermions and gauginos at GUT scale

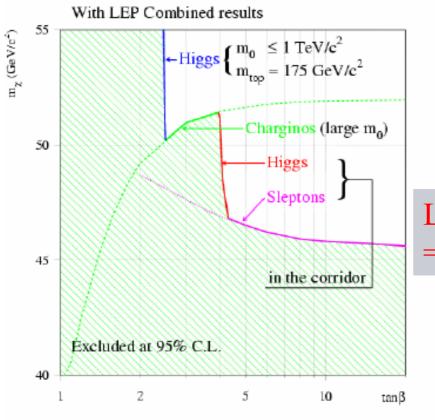

- common mass for sfermions at GUT scale m_0
- : common masses for gauginos at GUT scale $m_{1/2}$
- common trilinear Higgs-sfermion-sfermion A_0 coupling at GUT scale mixing of Higgs doublets
- μ
- $\tan \beta = \frac{\langle \nu_2 \rangle}{\langle \nu_1 \rangle}$: ratio of Higgs vacuum expectation values


 \rightarrow 5 free parameters: m_0 , $m_{1/2}$, A₀, sign(μ), tan β determine all masses, cross-sections, branching ratios


 $m^2(\tilde{\ell}_R) \approx m_0^2 + 0.15 \ m_{1/2}^2 \ m^2(\tilde{\ell}_L) \approx m_0^2 + 0.52 \ m_{1/2}^2$ $m(\tilde{\chi}_1^0) \approx 0.45 \ m_{1/2} \qquad m(\tilde{\chi}_2^0) \approx m(\tilde{\chi}_1^{\pm}) \approx 0.9 \ m_{1/2}$ $m^2(\tilde{g}) \approx 6.25 \ m_{1/2}^2 \qquad m^2(\tilde{q}) \approx m_0^2 + 6 \ m_{1/2}^2$

for $m_0 > 0.45 \ m_{1/2}$ sleptons heavier than $\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}$

3rd generation sparticles lighter due to mixing and large Yukawa couplings



Present limits

INFN

Istituto Nazionale di Fisica Nucleare

LEP II on mass of lightest supersymmetric particle

Lightest supersymmetric particle = neutralino

$$LSP = \chi^0_1$$

R-parity

new discrete multiplicative symmetry in SUSY models

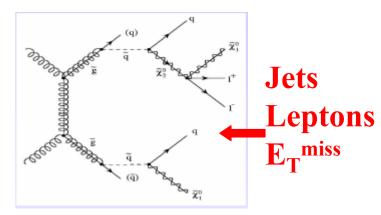
$$R_p = (-1)^{2\mathrm{S}+3\mathrm{B}+\mathrm{L}}$$

S: spin, B: baryon number, L: lepton number

 $egin{array}{rcl} R_p = & 1 & ext{for SM particles} \ R_p = & -1 & ext{for SUSY particles} \end{array}$

superpotential contains R-parity conserving and violating terms

	R_p	R_p
SUSY particles produced in	pairs	pairs or singly
the LSP is the LSP	$ ilde{\chi}^0_1$ is stable	any sparticle decays
experimental signature	m_{1SS}	E_T


Exclusion limits under assumption of R_p -conservation are not valid under R_p -violation.

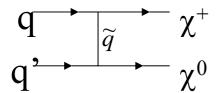
Hunting for SUSY

•Squarks and gluinos are strongly Produced
> Sparticles decay through cascade
to the lightest SUSY particle (LSP)

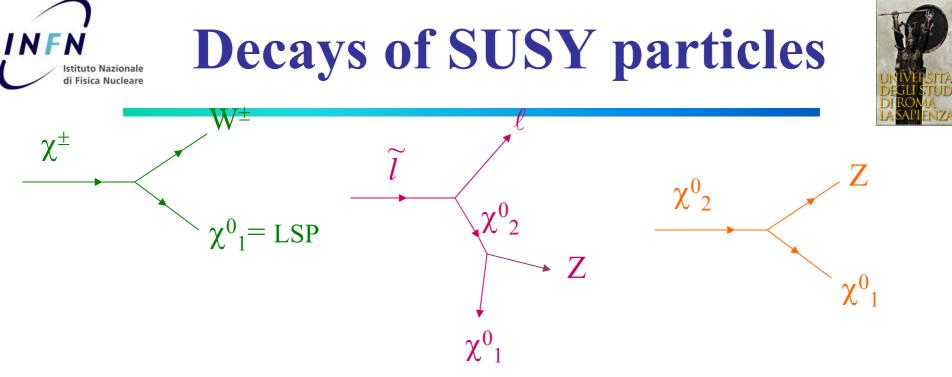
di Fisica Nuclear

 Look for deviations from the Standard Model: Signature Multijet + E_T ^{miss} signature.
 Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution.
 Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations.

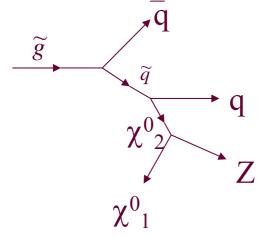
DEFINITION of SUSY particles at LHC


UNIVERSITA DEGLI STUD DI ROMA LA SAPIENZA

•Squarks and gluinos produced via strong processes
 → large cross-section


 $\widetilde{q}\widetilde{q}, \widetilde{q}\widetilde{g}, \widetilde{g}\widetilde{g}$ are <u>dominant</u> SUSY processes at LHC if kinematically accessible

m ~ 1 TeV $\sigma \sim 1 \text{ pb} \rightarrow 10^4$ events per year produced at low L


•Charginos, neutralinos, sleptons produced via electroweak processes → much smaller rate

 $\sigma \approx pb \ m_{\chi} \approx 150 \ GeV$

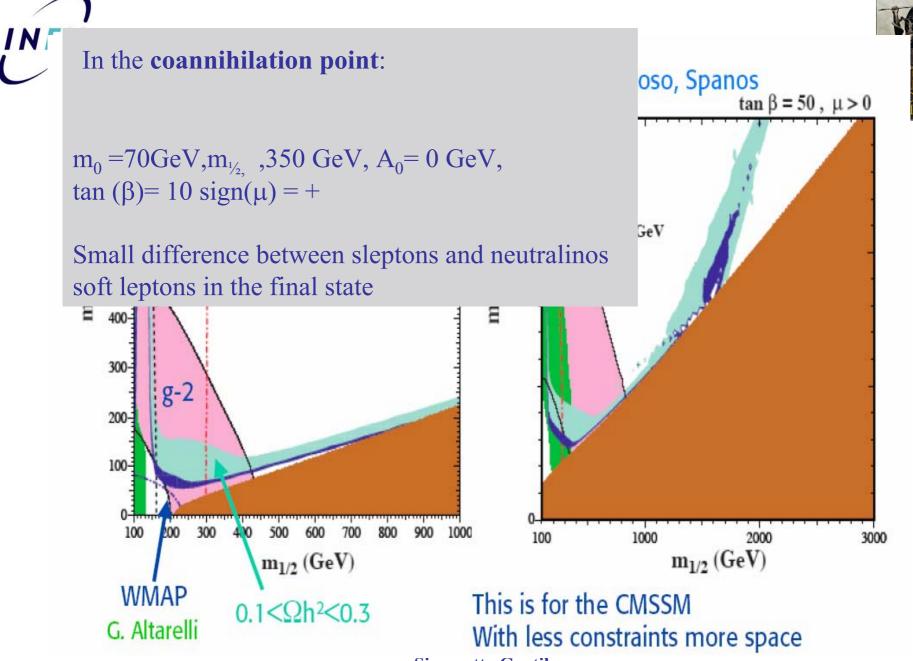
 $\widetilde{q}, \widetilde{g}$ heavier \rightarrow more complicated decay chains

Cascade decays

involving many leptons and /or jets
+ missing energy (from LSP)

Exact decay chains depend on model parameters (particle masses, etc.)

However : whatever the model is, we know that


 $\widetilde{q}, \widetilde{g}$ are heavy (m > 250 GeV)

decays through cascades favoured

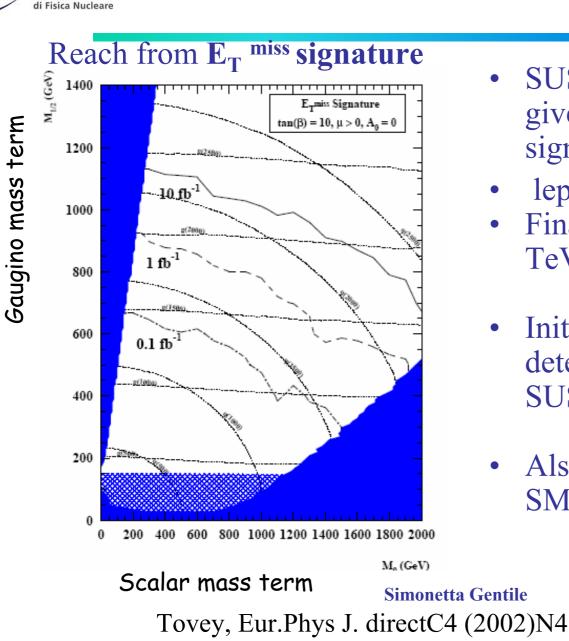
INFN

 \Rightarrow many high-p_T jets/leptons/W/Z in the final state + E_T^{miss}

at LHC will be easy to extract SUSY signal from SM background

Precise jets measurements, leptons, E ^{miss} T
 Large kinematical coverage

Required performances:


- Lepton measurement: $p_T \sim GeV$, $\rightarrow 5 \text{ TeV} (b \rightarrow \ell X....)$
- Mass Resolution (m ~ 100 GeV)
- ~ 1% (H $\rightarrow \gamma\gamma$, 4 ℓ)
- $\sim 10\% (W \rightarrow jj, H \rightarrow bb)$
- Calorimetric coverage $|\eta| < 5$ (E^{miss} _T, forward jet tag)
- Particle Identification

```
\begin{array}{l} \epsilon_b \ \sim 50\% \ R_j \ \sim 100 \ (H \ {\rightarrow} bb, \ SUSY) \\ \epsilon_\tau \ \sim 50\% \ R_j \ \sim 100 \ (A/H \ {\rightarrow} \tau\tau) \\ \epsilon_\gamma \ \sim 80\% \ R_j \ \sim 10^3 \ (H \ {\rightarrow} \gamma\gamma) \\ \epsilon_e \ > 50\% \ R_j \ \sim 10^5 \end{array} \right.
```

Gomel School of Physics 2005

SUSY Discovery

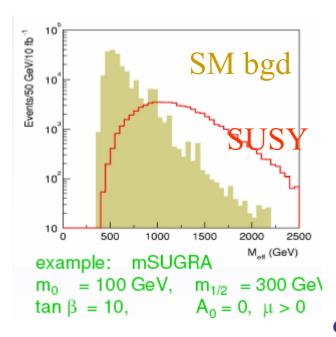
INFN

to Nazionale

- SUSY cascade decays give rise to many inclusive signatures:
- leptons, b-jets, t's ...
- Final discovery limit ~ 2.5 TeV squark or gluino
- Initially will be limited by detector uncertainties, not SUSY statistics!
- Also need to understand SM backgrounds

.

SUSY Discovery - mSUGRA


- SUSY cascade decays give rise
- to many inclusive signatures:
- leptons, b-jets, t's
- Final discovery limit ~ 2.5 TeV squark or gluino
- Initially will be limited by detector uncertainties, not SUSY stats!
- Also need to understand SM backgrounds

- Strongly produced, cross sections comparable to QCD cross sections at same Q^2
- If **R-parity conserved**, cascade decays produced distinctive events: Multiple jets, leptons and E_T miss

$$M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$$

Analysis example:

•
$$N_{jet} >=4$$

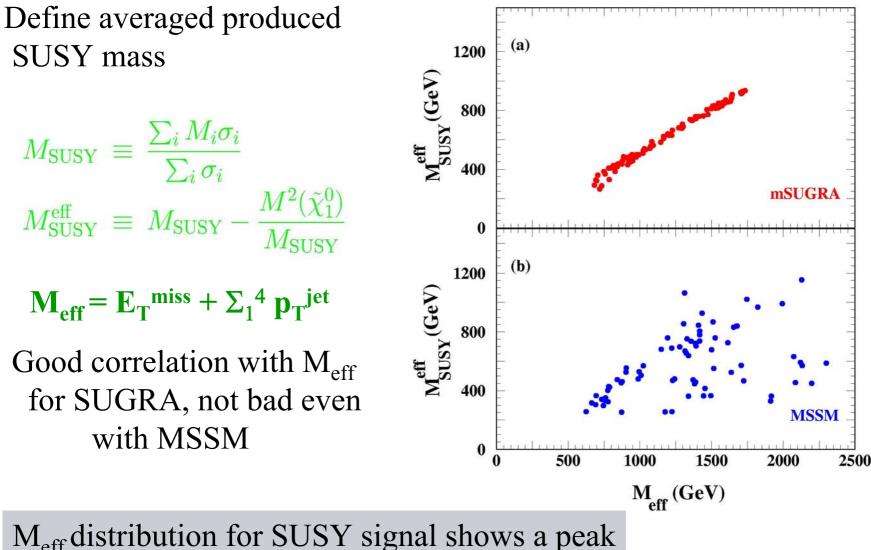
• $E_T > 100,50,50 \ 50 \ GeV$
• $E_T ^{miss} > 100 \ GeV$

•Limits reachable at LHC for squarks an gluinos: 1 fb $^{-1} \rightarrow$

 $10 \text{fb}^{-1} \rightarrow$

 $100 \text{fb}^{-1} \rightarrow$

Simonetta Gentile **Gomel School of Physics 2005**


M ~ 1500 GeV M ~ 1900 GeV M ~ 2500 GeV

Inclusive measurement

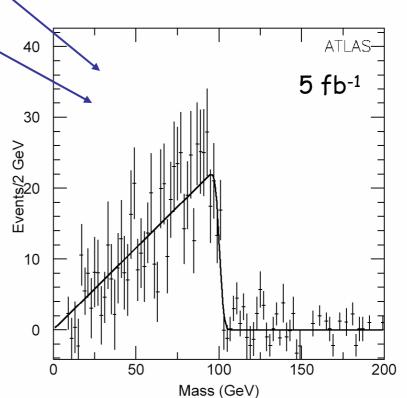
INFN

Istituto Nazionale di Fisica Nucleare

Gomel School of Physics 2005

Pton, squark, neutralino masses

 $\widetilde{\chi}^{0}_{1}$


•Apply corrections for electron and muon energy scale and efficiency

q

 $\widetilde{\chi}^0_2$

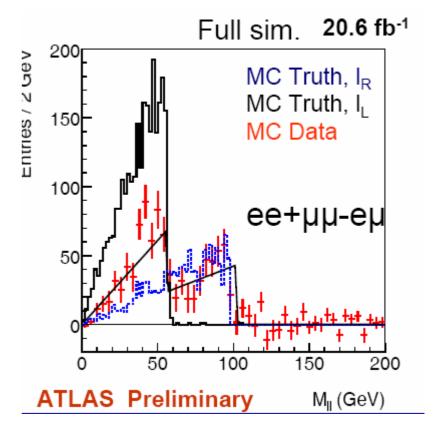
•Flavor Subtracted mass to remove the contribution from uncorrelated SUSY decays: $e^+e^- + \mu^+\mu^- - e^+\mu^- - e^-\mu^+$

Accurate measurement of edge position difference for ee/µµ gives the sleptons mass difference

M(χ₂)-M(χ₁) ≈ 105 GeV

Gomel School of Physics 2005

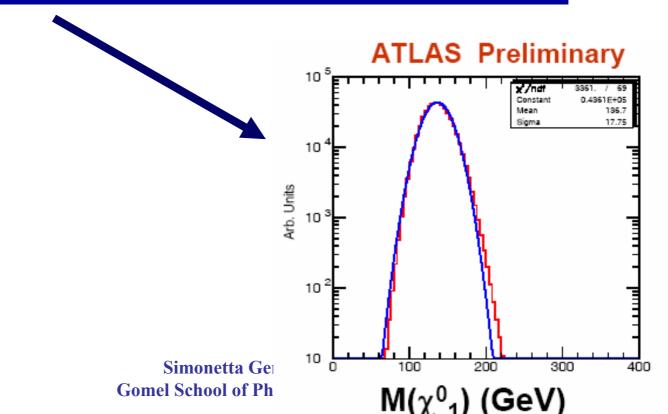
Coannihilation point Signature: 91 •Leptons (e^+, e^-, μ^+, μ^-) •One soft lepton Ĩ[∓] \tilde{q}_{L} $\tilde{\chi}_2^0$ $\tilde{\chi}^0_1$ 762 264 255, 154 137 Δm ≈ 20 GeV Δm ≈ 10 GeV **Endpoints:** $\tilde{q}_L
ightarrow ilde{\chi}_2^0 q$ 32% $M(\ell \ell), M(\ell \ell q), M^{high}(\ell q),$ $\tilde{\chi}_2^0 \rightarrow \tilde{l}_{L,R} l$ 6%, 3% $M^{low}(\ell q)$ Method: subtraction of wrong sign pairs: $ilde{l}_{L.R}
ightarrow ilde{\chi}_1^0 \, l$ 100% (e^+,e^-,μ^+,μ^-) $(e^+,\mu^-,-e^-,\mu^+)$



No cuts in E_T^{miss} , P_T^{jet}

Expected endpoints: $M(\ell\ell)^{max}=58.19$ GeV (L) $M(\ell\ell)^{max}=100.9$ GeV (R)

$$M_{ll}^{max} = \left[\frac{(M_{\tilde{\chi_2^0}}^2 - M_{l_{\tilde{L},R}}^2)(M_{l_{\tilde{L},R}}^2 - M_{\tilde{\chi_1^0}}^2)}{M_{l_{\tilde{L},R}}^2}\right]^{1/2}$$

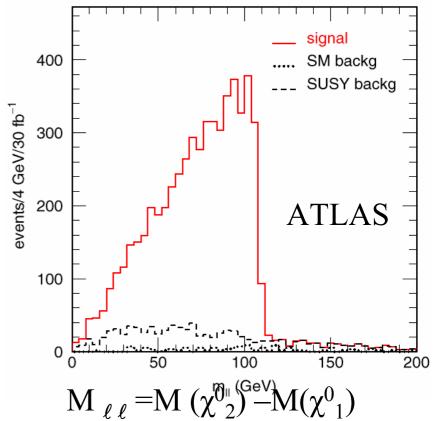


Fitted all end points : (preliminary only)

• assuming 1% on lepton jet endpoint

~10% error in lightest neutralino mass

INFN Mesurement of slepton mass difference


If $m_q \approx 900 \text{ GeV}$ $m_g \approx 700 \text{ GeV}$ $m_{\chi\pm} \approx 230 \text{ GeV}$ $m_{\chi0} \approx 120 \text{ GeV}$ ("point 5")

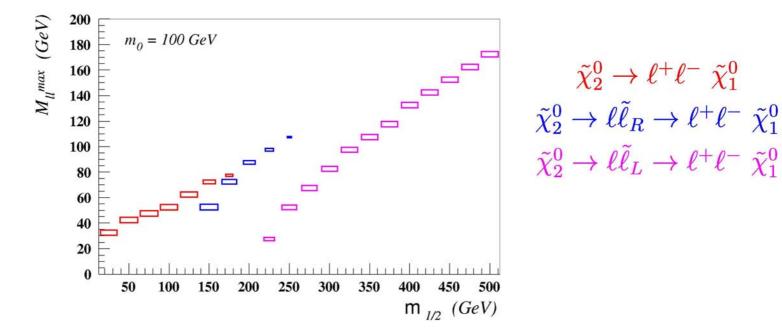
Cuts:

• E $_{T}^{miss}$ >300 GeV • e⁺ e⁻($\mu^{+}\mu^{-}$) pair with p_T>10 GeV • At least 2 jets p_T>150 GeV

5800 events with 30 fb⁻¹ (880 SUSY BG and 120 SM) Accurate measurement of edge position difference for ee/μμ gives the sleptons mass difference Gomel School of Physics 2005

$$\tilde{\chi}_2^0 \rightarrow \tilde{l}_R^+ l^\mp \rightarrow \tilde{\chi}_1^0 l^+ l^-$$

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPLENZA

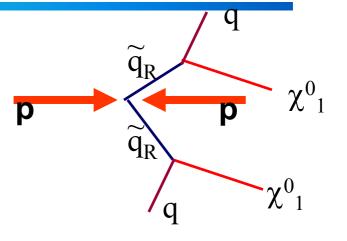

endpoint in $m(\ell^+\ell^-)$ has good correlation with $m_{1/2}$

Gaugino mass term

but correlation depends on decay chain

INFN

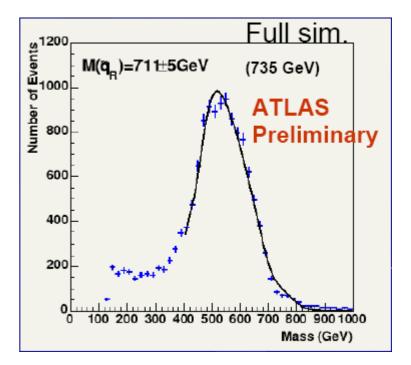
Istituto Nazionale di Fisica Nucleare


Istituto Nazionale SUSY measurements - mass

- Mass measurements from exclusive cascade decays
- Mass differences well measured
 - Typically limited by detector performance
 - Of order 1%
- Error in overall mass scale
 - Unknown missing energy
 - Of order 10%

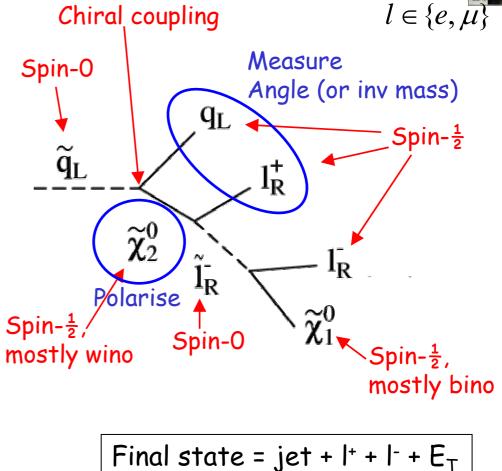
Estimate of s-quark mass using the transverse momentum mass

 $M_{T2}^{2} = \min \left[\max \left\{ m_{T}^{2}(p_{T, j1}, \mathcal{E}_{T1}, M(\tilde{\chi}_{1}^{0})), m_{T}^{2}(p_{T, j2}, \mathcal{E}_{T2}, M(\tilde{\chi}_{1}^{0})) \right\} \right]$



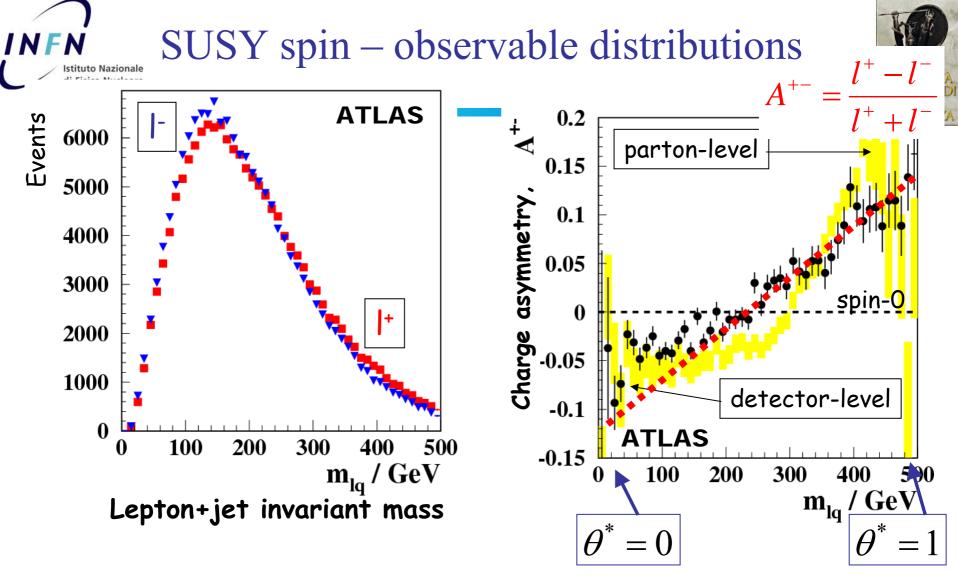
 $\frac{\text{Cuts:}}{\text{E}_{T}^{\text{miss}} > 400 \text{ GeV}}$ 2 jets with $p_{T} > 200 \text{ GeV}$ $\Delta R(j_{1}, j_{2}) > 1$

 $M(\chi_1^0)$ known M(squark) is obtained from endponit of M_T^2 mass


SUSY SPIN @ LHC

 SUSY particles have spin differing by ¹/₂ from SM

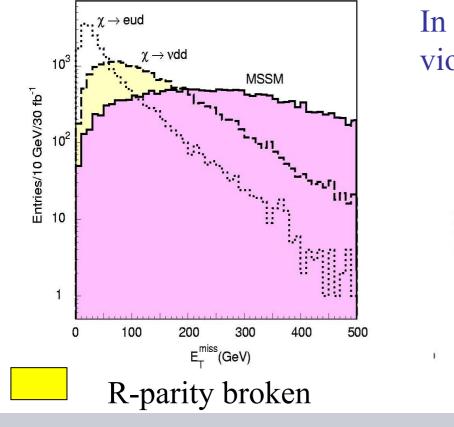
INFh


di Fisica Nuclear

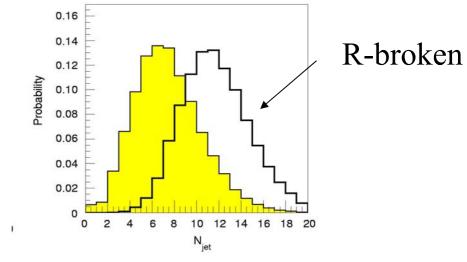
- "Discovering SUSY" means measuring spins of new particles
- Possible at LHC?
- Investigation of mSUGRA "Point 5"

(+ decay of other sparticle)

Similar technique allows measurement of tang from muon/electron asymmetry



- -> Measure spin-1/2 nature of neutralino-2
- -> Also can measure scalar nature of slepton
- -> Success at several distinct points in parameter space


INFN SUSY with R-parity breaking

In case of baryon number violation -> increased number of jets

SUSY particles can decay in standard model particle

Gomel School of Physics 2005

SUSY produces Higgs

- Provided Heavy higgs are <150 GeV -> produced
- Missing energy + jet/lepton + higgs decay->bb
- Apply very simple (general) analysis

INFN

Istituto Nazionale di Fisica Nucleare

Istituto Nazional Remarks on SUSY detection

Uncertainties on jet and lepton energy scale dominate over Statistical error

LHC experiments can exploit large statistics of resonances of known mass $(Z \rightarrow \ell \ \ell \ , W \rightarrow jj)$ to achieve *in-situ* calibration.

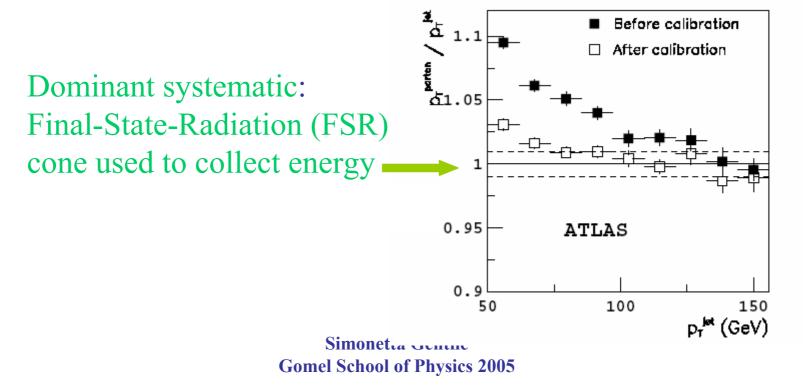
► Lepton scale from $Z \rightarrow \ell \ell$ (2 ev/s at 10³³) by imposing Z mass constraint LHC goal: 0.1%

Dominant systematic:

•Z \rightarrow ee: knowledge of inner detector material (goal 1%)

Modelling inner detector bremsstrahlung (goal 10%)

•Z $\rightarrow \mu\mu$:Dominate by Inner Detector scale. Requires precise mapping of magnetic field and material.


Istituto Nazional Remarks on SUSY detection

- $Z \rightarrow (\ell \ \ell)$ +jet, by requiring $P_T(jet) = P_T(Z)$
- •Z \rightarrow jj and in the decay tt \rightarrow bWbW, by requiring m _{jj} =

m_w LHC goal: 0.1%

- If SUSY exists at the TeV scale, ATLAS should find it easily.
- Despite missing LSP, precision measurements of masses will be also possible.

Initial program:

- search for multijet + E_T^{miss} excess over SM.
- if found can select SUSY sample with simple cuts
- look for events with multi-leptons, b-jets, tau-jets, photons
- •look for events with special features like long-lived sleptons

Use these results to guide further analyses.