The Transition Radiation Detector of the AMS-02 Experiment

Simonetta Gentile

Università di Roma La Sapienza, INFN (Italy)

for:

RWTH Aachen, MIT, KNU Daegu, IEKP Karlsruhe, Universita La Sapienza, & INFN Roma

ICRC03, Tsukuba, Japan

Transition Radiation Detector (TRD)

TOF: (s1,s2) Time of Flight Detector

TRD: Transition Radiation Detector

MG: Magnet TR: Silicon Tracker ACC: Anticoincidence Counter

AST: Amiga Star Tracker

TOF: (s1,s2) Time of Flight Detector

RICH: Ring Image Cherenkov Counter

EMC; Electromagnetic Calorimeter

OUTLINE

- The TRD as space experiment: requirements and status

- Operating principle and construction of the TRD

- Performance

- Summary

Positron identification necessary to dark matter search

Requirements for TRD in AMS-02

AMS02 p⁺ rejection 10⁶ for 90% detection efficiency for e⁺

Requirements for the rejection power of the subdetectors:

ECAL: 10³...10⁴ TRD: 10²...10³ Tracker+ECAL 0.38 m²sr

Tracker +ECAL + TRD 0.06 m²sr

Principle of operation of the TRD

 $\gamma \geq 1000$ $N_{Ph} \mathcal{O} \alpha_{em} \times N_{tr}$ $E_{Ph} \sim \gamma (\mathcal{O} (keV))$ $\theta_{Ph} \sim 1/\gamma$

- highly relativistic charged particle generates photons at the boundary between media ($\varepsilon_{r1} \neq \varepsilon_{r2}$)
- Radiator: fleece
- Good photon (5–30KeV) detection: gas with high atomic number Z

Proton-Positron separation

-20 layers 22 mm fleece-radiator 6mm straw-tubes Xe/CO2(80/20)
-Tubewall 72μm Kapton-Al sandwich
-Wire 30μm W/au tensioned with 100g

-Pressure 1250 mbar -Gas flow 1liter/h -Gain 3000

Modules 16 tubes-8 modules per gas-circuit

Energy deposit

Test beam results

Gas tight Module

Chamber Body

16 straws with lengthwise and crosswise stiffeners

Polycarbonate endpieces Plasma treated (O₂, 0.5 mbar, 20 min) Glue AW 134 for potting Copper-Tellurium Crimp Inserts

1.6mm SS Tubing

Double O-Ring Gas Connector

Gastight Modules Require Gastight Straws

Laboratory Tests:

- -12h Gastightness2.8 bar He in Atmosphere
- 60h Gastightness
 1.8 bar CO₂ in Vacuum

Max leakage for 3 years (10⁸s) 5x10⁻⁴ mbar/s(safety factor 5)

-pA Leakage Current -Ar/CO₂ ⁵⁵Fe Gas Gain Measurement

TRD Gas System

320 I @ 1 bar in 41 loops

46kg Xe (8100 l @ 1bar) 4 kg CO₂ (2000 l @1bar)

To reach the request positrons/proton rejection factor :

Gas gain controlled better than 5%.

 ΔT controlled at 1°

Chamber Support in Carbon-Fibre / Honeycomb Octagon

TRD Support Structure made of CFC-Al honeycomb (2.1m x 0.70m, accuracy < 100 μ) Also shown are two installed chambers: Total 328 = 5248 tubes

tische Physik

y02K269b

AMS TRD GAS SYSTEM ELECTRONIC CONTROL

Mechanical Structure

TRD Octagon Support

- Octagon of aluminum honeycomb with carbon fiber walls
- -Stable and light
- -Dimensions: height 62.3 cm, \varnothing 201.8 cm (above)
- -Weight: 207 kg (including external support)
- -Thermal stability through multi-layer insulation (MLI)

Thermal Model

Structural Verification

FEC sufficient for $f_0 > 50$ Hz

FEC coupled load modal analysis

Parameters from static measurements Verify with component vibration tests

Sine G PO

z-Direction Laser

y02K248

Gain Gas Measurement

Laboratory

Gas gain precalibration With **Ar/CO2**

Test beam

Wire Tensioning and Tension Measurement

Requested wire tensioning measurents 100+/-5 gr

TRD Electronics

- 82 front-end units (FE), 2 crates (+ power supply)
 5248 channels, double redundant throughout up to the front-end
- a 28V DC connection for each crate

Test Assembly of a Front Electronic

TRD Beamtest beam

TRD Beamtest Proton Rejection for 90% Electron efficiency

Single track preselection with MC 90% efficiency p⁺/e⁻likelihood separation with

 $\mathcal{L} = \Pi \mathbf{p}_{e} / (\Pi \mathbf{p}_{e} + \Pi \mathbf{p}_{p})$

p_e,**p**_p from single tube spectra

TRD Testbeam

Proton rejection >10² reached up to 250GeV with 90% electron efficiency

Conclusion

- Required proton rejection of > 10²
- for 250 GeV has been reached
- -Quality of the design
- (mechanical, electronic)
- demonstrated through
- calculations and tests.
- -Limits kept for
 - weight , power
 - outgassing, leak tightness

