Cabibbo-Kobayashi-Maskawa Matrix and CP Violation in Standard Model

Shahram Rahatlou University of Rome

Lecture 1

Lezioni di Fisica delle Particelle Elementari

Many thanks to Vivek Sharma (UCSD) And Achille Stocchi (Orsay) for some of the material included in my slides

Outline of these lectures

Standard Model

Mass of Quarks in the Standard Model

 For each generation we have one left-handed SU(2) doublet, and two right-handed singlets

$$Q_L^I = \begin{pmatrix} U_L^I \\ D_L^I \end{pmatrix} = (3,2)_{\pm 1/6}, \quad u_R^I = (3,1)_{\pm 2/3}, \quad d_R^I = (3,1)_{\pm 1/3},$$

Eigenstates of weak interactions

Quarks interact with Higgs field via Yukawa coupling

$$\mathcal{L}_Y = -\mathbf{G}_{ij}\overline{Q_{Li}^I}\phi d_{Rj}^I - \mathbf{F}_{ij}\overline{Q_{Li}^I}\tilde{\phi} u_{Rj}^I + \text{H.c.}$$

Generic complex matrix of yukawa coupling constants

Quarks acquire mass through because of spontaneous symmetry breaking

$$\mathcal{L}_{M} = -\sqrt{\frac{1}{2}} v \mathbf{G}_{ij} \overline{d_{Li}^{I}} d_{Rj}^{I} - \sqrt{\frac{1}{2}} v \mathbf{F}_{ij} \overline{u_{Li}^{I}} u_{Rj}^{I} + \text{H.c}$$
$$\mathbf{M}_{d} = \mathbf{G} v / \sqrt{2}, \quad \mathbf{M}_{u} = \mathbf{F} v / \sqrt{2}.$$

Mass matrices for up and down quarks. Elements are complex!

Weak Interactions and Mass Eignestates

- Diagonalize mass matrices to obtain mass eigenstates
 - Rotate quark fields by with unitary complex matrices V_{uL}, V_{uR}, V_{dL}, V_{dR}
 - Choose arbitrary phases so that M is diagonal

$$\mathbf{M}_d = \mathbf{G}v/\sqrt{2}, \quad \mathbf{M}_u = \mathbf{F}v/\sqrt{2},$$

$$\mathbf{V}_{dL}\mathbf{M}_{d}\mathbf{V}_{dR}^{\dagger} = \mathbf{M}_{d}^{\text{diag}}, \quad \mathbf{V}_{uL}\mathbf{M}_{u}\mathbf{V}_{uR}^{\dagger} = \mathbf{M}_{u}^{\text{diag}}$$

Lagrangian for weak interactions of quarks

Universality of weak interactions: same constant g for all couplings

$$\mathcal{L}_W = -\sqrt{\frac{1}{2}g\overline{u_{Li}^I}}\gamma^\mu \mathbf{1}_{ij}d_{Lj}^I W^+_\mu + \text{h.c.}$$

eigenstates \overline{q}_j

Lagrangian after going from interaction to mass eigenstates

No more universal coupling constant!

$$W = -\sqrt{\frac{1}{2}}g\overline{u_{Li}}\gamma^{\mu}\overline{\mathbf{V}}_{ij}d_{Lj}W^{+}_{\mu} + \text{h.c.} \qquad \overline{\mathbf{V}} = \mathbf{V}_{uL}\mathbf{V}^{\dagger}_{dL}$$

 q_i

No More Universality of Weak Interactions

- In absence of CKM matrix all weak interactions have same coupling
 - This is referred to as universality of weak interactions

- Because of CKM matrix coupling depends on quarks involved in the transition
 - Universality is broken!

Corso di Fisica delle Particelle Elementari

Cabibbo-Kobayashi-Maskawa Matrix

$$V_{CKM} = V_{uL}^{\dagger} V_{dL} \qquad \mathbf{V}_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Origin of CKM matrix is the difference between mass eigenstates and weak interaction eigenstates
- Lagrangian of Standard Model is diagonal in weak eigenstates with universal coupling constant
- Universality is broken when moving from interaction basis to mass basis necessary to obtain Lagrangian for mass terms after spontaneous symmetry breaking
- V_{CKM} is a unitary complex matrix

Properties of CKM Matrix

M(diag) is unchanged if $V_L^{'f} = P^f V_L^f$; $V_L^{'f} = P^f V_R^f$ $V(CKM) = P^u (CKM)P^{*d}$ P^f = phase matrix

$$V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \rightarrow \begin{pmatrix} e^{-i\varphi_1} & 0 \\ 0 & e^{-i\varphi_2} \end{pmatrix} \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \begin{pmatrix} e^{-i\chi_1} & 0 \\ 0 & e^{-i\chi_2} \end{pmatrix} = \begin{pmatrix} V_{11}e^{-i(\varphi_1 - \chi_1)} & V_{12}e^{-i(\varphi_1 - \chi_2)} \\ V_{21}e^{-i(\varphi_2 - \chi_1)} & V_{22}e^{-i(\varphi_2 - \chi_2)} \end{pmatrix}$$

 $(\varphi_2 - \chi_2) = (\varphi_2 - \chi_1) + (\varphi_1 - \chi_2) - (\varphi_1 - \chi_1)$

Among 4 phases, only 3 can be arbitrarly chosen and removed (so 2n-1)

Generally for a rotation matrix in complex plane

Quark families	# Angles	# Phases	# Irreducible Phases	
n	n(n-1)/2	n(n+1)/2	n(n-1)/2-(2n-1)=(n-1)(n-2)/2	
2	1	3	0	
3	3	6	1 Necessa CP Viola	ary roi ation
4	6	10	³ in SM	

- Today we know there are three flavors, or generations of quarks
- But this was not the case when CKM matrix was first proposed in 1973!

How do we know there only 3 generations of matter?

Number of neutrino families from LEP @ CERN

Three Quarks for Muster Mark !...Joyce

Only 2 families were known

Charm quark not even observed yet!

Kobayashi-Maskawa Mechanism of CP Violation

1972

Two Young Postdocs at that time !

- Proposed a daring explanation for CP violation in K decays
- CP violation appears only in the charged current weak interaction of quarks
- There is a single source of CP Violation \Rightarrow Complex Quantum Mechanical Phase δ_{KM} in inter-quark coupling matrix
- Need at least **3 Generation of Quarks** (then not known) to facilitate this
- CP is NOT an approximate symmetry, $\delta_{KM} \cong 1$, it is MAXIMALLY violated ! Corso di Fisica delle Particelle Elementari

1974: Discovery of charm in J/psi

1977: Discovery of bottom in Upsion(1S) @ FNAL

Corso di Fisica delle Particelle Elementari

Features of CKM Matrix

Wolfenstein Parameterization of CKM Matrix

Wolfenstein first saw a pattern with 4 parameters

Cabibbo angle
with 2 generations

$$\mathbf{V}_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 & A\lambda^2 & A\lambda^2 & A\lambda^2 & A\lambda^2 & A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 & A\lambda^2 & A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 & A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 & A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 & A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 & A\lambda^3(\rho - i\eta) & A\lambda^2 & A\lambda^2$$

$$\overline{\rho^2 + \eta^2} = |V_{ub}| / (\lambda |V_{cb}|) \approx 0.35$$

$$\eta / \rho = \tan \left[\arg (V_{ub}) \right] \approx ?$$

Measurements of CKM Element Magnitudes

b quark plays a special role in determination of CKM elements!

Measuring CKM Elements

- Measurements related to first 2 generations briefly discussed here
 - Most measurements established since a while
- Mostly focus on decays of B mesons and related measurements because
 - B factories at SLAC and KEK since 1999 have allowed a detailed study of many B decays that were not available previously
 - B mesons are an excellent laboratory to study CP Violation
 - observations of 2 different types of CP violation in B mesons since 2001!
 - First observation in 1964 with neutral Kaons
- Redundant measurements of same observables in different processes allow to verify CKM paradigm
 - Discrepancies could be a sign of New Physics beyond Standard Model
 - For example: use measurements to verify unitarity of CKM matrix

- CKM matrix elements describe processes at quark level but processes observed experimentally involve hadrons
- Theory is used to relate measurements with hadrons to quantities defined for quarks
 - HQET, OPE, Lattice QCD
- Ultimately must verify theories with measurements
- When models are used to interpret data this should be described clearly and some kind of error assigned to the model-dependency

CKM Elements in First Two Generations

$$\mathbf{V}_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Measuring $|V_{ux}|$ and $|V_{cx}|$

- $|V_{ud}|$: 1) Super-allowed nuclear β -decays
 - 2) Neutron β -decay
 - 3) Pionic β -decay

IV_{us}: 1) Semileptonic Kaon decays

2) Leptonic Kaon & Pion decay

IV_{cd}, IV_{cs}: 1) Dimuon production from neutrinos on nuclei 2) Semileptonic D-meson decays

Corso di Fisica delle Particelle Elementari

$|V_{ud}|$: β Decays

Fermi-transitions: 0⁺→0⁺ within same isospin multiplet pure vector-current (take advantage of CVC)

$$|V_{ud}|^{2} = \frac{2 \pi^{3} \ln 2}{m_{e}^{5}} \cdot \frac{1}{2 G_{F}^{2} (1 + \Delta_{R}) Ft}, \qquad Ft = f \cdot t_{1/2} \cdot (1 + \delta_{R}) \cdot (1 - \delta_{C})$$

Radiative Correction
(nucleus-independent)

$$\Delta_{R} = (2.40 \pm 0.08)\%$$

$$Ft = f \cdot t_{1/2} \cdot (1 + \delta_{R}) \cdot (1 - \delta_{C})$$

1) PS Integral (~ E₀⁵)
2) Radiative Correction
(nucleus-dependent)
3) Isospin-symmetry breaking

 $\begin{array}{ll} \underline{Neutron \ \beta-decays}: & n \rightarrow p \ e^{-} \ v_{e} \\ \hline \ Vector \ transition: & G_{v} = g_{v} \ G_{F} \ |V_{ud}| \ (CVC \ <=> \ lsospin \ Cons.: \ g_{v}=1) \\ \hline \ Axial-V. \ transition: & G_{A} = \ g_{A} \ G_{F} \ |V_{ud}| \ (PCAC: \ g_{A}/g_{v} \equiv \lambda \neq 1) \end{array}$

|V_{us}|: Semileptonic K Decays

<u>K</u>₁₃ decays: K⁺ $\rightarrow \pi^0 I^+ v_I$ and K_L $\rightarrow \pi I^+ v_I$, 0⁻ $\rightarrow 0^-$ (pure Vector transitions)

$$\Gamma_{\kappa_{u}} = \frac{\left(m_{K}c^{2}\right)^{5} \cdot G_{F}^{2} \cdot |V_{us}|^{2}}{192 \pi^{3} \hbar |\hbar c|^{6}} \cdot C^{2} \cdot |f_{+}(0)|^{2} \cdot I \cdot (1 + \Delta_{R}) (1 + \delta_{R})$$
Normalisation:

$$\mathbf{K}^{+}_{1}: \mathbf{C} = 1/\sqrt{2}$$

$$\mathbf{K}^{0}_{1}: \mathbf{C} = 1$$
Phase Space Integral: $\mathbf{I} = \mathbf{I}(f_{+}, (m_{l}/m_{K})^{2}f_{0})$

$$=> \mathbf{K}_{e3} \text{ preferred}$$

$$\mathbf{K}(p_{K})|\bar{u}\gamma^{\mu}s|\pi(p_{\pi}) > = C\left[(p_{K}^{\mu} + p_{\pi}^{\mu})f_{+}(q^{2}) + (p_{K}^{\mu} - p_{\pi}^{\mu})f_{-}(q^{2})\right], q^{\mu} = (p_{K}^{\mu} - p_{\pi}^{\mu})$$

What Did We Learn?

- Semileptonic decays are main approach to measurement of these first 4 CKM elements
 - Measure branching fractions and lifetimes
 - One vertex is leptonic \rightarrow No CKM element
 - One vertex is hadronic \rightarrow Only 1 CKM element in decay amplitude
 - Extract CKM element for experimental measurement
- Where do we need theory and why
 - Hadronic part of semileptonic decay amplitudes parameterized via form factors
 - Hadronic vertex in leptonic decays parameterized with decay constants
 - Estimate form factors with lattice QCD

b Quark is Special!

- Processes involving b quark can be used to measure several CKM element magnitudes
- Large mass of b quark allows use of Heavy Quark Effective Theory (HQET) for reliable theoretical calculations
 - Important for interpretation of experimental measurements with B mesons

- B mesons are of particular interest for study of CP violation
 - We will discuss this in detail next week
- Highlights of b quark
 - Heavy mass: big phase space an hence variety of final states to decay to
 - Long lifetime: important for experimental techniques to identify B mesons
 - B0-B0bar oscillation: a fine example of quantum entanglement, important ingredient for CP violation
 - $b \rightarrow u$ transitions: necessary ingredient for CP violation

- Properties of B mesons
- B meson Production

B decays

Summary of B properties

Particle, <i>I(J^P)</i>	Mass (in MeV/c ²)	Lifetime $\tau = 1/\Gamma$ (in10 ⁻¹² s)
$B_{d}^{0} = (bd) , I(J^{p}) = 1/2 (0^{-})$	5279.4 ± 0.5	1.536 ±0.014 & (cτ =460μm)
$B^{-} = (bu), I(J^{p}) = 1/2 (0^{-})$	5279.0 ± 0.5	1.671 ±0.018 & (cτ =501μm)
$B_{s}^{0} = (bs), I(J^{p}) = 0(0^{-})$	5369.6 ± 2.4	1.461 ±0.057 & (cτ =438μm)
$\Lambda_{\rm b} = ({\rm bud}), \ I(J^{p}) = 0(1/2^{+})$	5624.0 ± 9.0	1.229 ±0.080 & (cτ =368μm)

B Production in e⁺e⁻ Collisions

B Production at Upsilon resonance: B Factory

Moving very slowly, don't travelsimuchartheferentdecay

PEP-II Collider at SLAC (Stanford, CA)

PEP-II accelerator schematic and tunnel view

B Production at Z⁰ Resonance

All types of B hadrons produced in Z \rightarrow bb hadronization

$$\frac{\Gamma(b\bar{b})}{\Gamma(TOT)} \sim 17\%$$

Average B momentum ~ 35 GeV $\Rightarrow (\beta \gamma)_B \approx 7$ (highly relativistic)

LEP/SLD Program ended in '95, made important contributions to b physics

B Production in pp Collisions

Tevatron at Fermilab (Chicago, IL)

Corso di Fisica delle Particelle Elementari

Summary of Past and Present Experiments

<u>Experiments</u>	# of b events	<u>Environment</u>	<u>Characteristics</u>
LEP Coll. Aleph/delphi/ L3/OPAL	~1M (each expt.)	Z ⁰ decays (σ~6nb)	Back-to-back 45GeV b-jets All B hadrons produced Stopped
SLD	~0.1M	Z ⁰ decays (σ~6nb)	Back-to-back 45GeV b-jets All B hadrons produced Beam polarized Stopped
ARGUS	~0.2M	Υ(4S) decays (σ~1.2nb)	B mesons produced at rest B ⁰ and B ⁺ produced Stopped
CLEO	~9M	Υ(4S) decays (σ~1.2nb)	B mesons produced at rest B ⁰ and B ⁺ produced Running at charm threshold
Belle Babar	~130M (each expt.)	Υ(4S) decays (σ~1.2nb)	B mesons produced at rest B ⁰ and B ⁺ produced Running
TeVatron Coll. CDF/D0	~several	pp collider E(c.d.m)=1.8 TeV	Triggered events All B hadrons produced Running