Cabibbo-Kobayashi-Maskawa Matrix and CP Violation in Standard Model

Shahram Rahatlou
University of Rome

Lecture 3
Introduction to CP Violation

Lezioni di Fisica delle Particelle Elementari
Outline of Today’s Lecture

- What is CP Violation and why do we care?

- CKM matrix revisited
 - CP Violation in the Standard Model

- Experimental method to measure CP Violating effects
 - Quantum interference
Asymmetric Universe of Matter

- Universe is very empty but in a biased way

 \[
 \frac{n_{\text{baryon}}}{n_{\text{photons}}} \approx 10^{-18}, \quad \frac{N(\text{anti-baryon})}{N(\text{baryon})} \leq 10^{-4} - 10^{-6}
 \]

- Absence of anti-nuclei amongst cosmic rays in our galaxy
- Absence of intense γ-ray emission due to annihilation of distant galaxies in collision with antimatter galaxies

- The early universe believed to have equal amount of matter and anti-matter
 - What happened to the anti-matter?

- **CP Violation** is one of the three ingredients required to generate such an asymmetry after the Big Bang (A. Sakharov, 1967)
 - Baryon-number violating processes
 - Non-equilibrium state during expansion
 - C and CP Violation
C and P Symmetries and Fundamental Interactions

- **Parity, \(P \)**
 - Parity reflects a system through the origin. Converts right-handed coordinate systems to left-handed ones.
 - Vectors change sign but axial vectors remain unchanged
 - \(x \rightarrow -x, L \rightarrow L \)

- **Charge Conjugation, \(C \)**
 - Charge conjugation turns a particle into its anti-particle
 - \(e^+ \rightarrow e^-, K^- \rightarrow K^+, \gamma \rightarrow \gamma \)
CP Symmetry, particles and anti-particles

- CP symmetry transforms a particle in its anti-particle

- CP is violated if particles and anti-particles behave differently!
Weak Interactions and Symmetry Violation

- P and C are good symmetries of the strong and electromagnetic interactions

- Parity violation observed in 1957
 - Asymmetry in β decays of $^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \nu$
 - Electrons produced mostly in one hemisphere

- Charge-conjugation violation 1958
 - Only left-handed neutrinos and right-handed anti-neutrinos

- CP believed to be a good symmetry, but …
A Shocker: Weak Interaction Violates Parity!

Observation of a spatial asymmetry in the β-decay electrons from $^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \nu$

- Cold ^{60}Co inside a Solenoidal B Field
- ^{60}Co nuclei spin aligned with B field direction
- ^{60}Co undergoes β decayelectron emitted
- Measure electron intensity w.r.t B field dir.
- Result: Electrons preferentially emitted opposite spin dir.

\[I(\theta) = 1 - \frac{V_e}{c} \cos \theta \]

asymmetry of intensity \rightarrow Weak interaction violated Parity
CP Violation in Kaons

- CP conservation implies
 - \(\text{CP} = +1 \)
 - \(\text{CP} = -1 \)

- CP violation in kaons observed in 1964

 0.2% of the time!

- No theoretical explanation!
Observation of CP Violation in Kaons

\[A \left(\left| K_L^0 \right> \rightarrow 2\pi \right) \over A \left(\left| K_s^0 \right> \rightarrow 2\pi \right) = (2.27 \pm 0.02) \times 10^{-3} \]

2-body decay: the two \(\pi \) are back-to-back: \(|\cos \theta| = 1 \)
Complex Coupling Constants and CP Violation

<table>
<thead>
<tr>
<th>Fermion bilinear</th>
<th>Boson field F</th>
<th>PF,P^\dagger</th>
<th>CF,C^\dagger</th>
<th>CPF,CP^\dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\psi}\psi$</td>
<td>Scalar $S^+(t, \bar{x})$</td>
<td>$S^+(t, -\bar{x})$</td>
<td>$S^-(t, \bar{x})$</td>
<td>$S^-(t, -\bar{x})$</td>
</tr>
<tr>
<td>$\bar{\psi}\gamma^5\psi$</td>
<td>Pseudoscalar $P^+(t, \bar{x})$</td>
<td>$-P^+(t, -\bar{x})$</td>
<td>$P^-(t, \bar{x})$</td>
<td>$-P^-(t, -\bar{x})$</td>
</tr>
<tr>
<td>$\bar{\psi}\gamma_\mu\psi$</td>
<td>Vector $V^+_{\mu}(t, \bar{x})$</td>
<td>$V^+_{\mu}(t, -\bar{x})$</td>
<td>$-V^-_{\mu}(t, \bar{x})$</td>
<td>$-V^-_{\mu}(t, -\bar{x})$</td>
</tr>
<tr>
<td>$\bar{\psi}\gamma_\mu\gamma^5\psi$</td>
<td>Axial $A^+_{\mu}(t, \bar{x})$</td>
<td>$-A^+_{\mu}(t, -\bar{x})$</td>
<td>$A^-_{\mu}(t, \bar{x})$</td>
<td>$-A^-_{\mu}(t, -\bar{x})$</td>
</tr>
</tbody>
</table>

Table 2.1: Properties of charged boson fields and corresponding fermion bilinear terms under P, C, and CP. γ^5 and γ^μ are the Dirac matrices.

Generic interaction lagrangian with vector and axial fields

$$L = a \, V^+_{\mu}(t, \bar{x})V^{\mu-}(t, \bar{x}) + b \, A^+_{\mu}(t, \bar{x})A^{\mu-}(t, \bar{x}) + c \, V^+_{\mu}(t, \bar{x})A^{\mu-}(t, \bar{x}) + c^* \, A^+_{\mu}(t, \bar{x})V^{\mu-}(t, \bar{x})$$

a, b: real constants
c: complex constant

Lagrangian after CP transformation

$$CP\,LCP^\dagger = a \, V^-_{\mu}(t, -\bar{x})V^{\mu+}(t, -\bar{x}) + b \, A^-_{\mu}(t, -\bar{x})A^{\mu+}(t, -\bar{x}) + c \, V^-_{\mu}(t, -\bar{x})A^{\mu+}(t, -\bar{x}) + c^* \, A^-_{\mu}(t, -\bar{x})V^{\mu+}(t, -\bar{x}) .$$

Lagrangian invariant under CP IF AND ONLY IF $c = c^*$! c must be real
Reminder Kobayashi-Maskawa Mechanism of CP Violation

1972

- Proposed a daring explanation for CP violation in K decay:

- CP violation appears only in the charged current weak interaction of quarks

- There is a single source of CP Violation \(\Rightarrow \) Complex Quantum Mechanical Phase \(\delta_{KM} \) in inter-quark coupling matrix

- Need at least 3 Generation of Quarks (then not known) to facilitate this

- CP is NOT an approximate symmetry, \(\delta_{KM} \approx 1 \), it is MAXIMALLY violated!
CKM Matrix Revisited

\[\mathbf{V}_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \]

\[\mathbf{V}_{\text{CKM}} = \begin{pmatrix} 1 & 1 & e^{-i\gamma} \\ 1 & 1 & 1 \\ e^{-i\beta} & 1 & 1 \end{pmatrix} \]

\[\mathbf{V}_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \]

<table>
<thead>
<tr>
<th>Quark families</th>
<th># Angles</th>
<th># Phases</th>
<th># Irreducible Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>n(n-1)/2</td>
<td>n(n+1)/2</td>
<td>n(n-1)/2 - (2n-1) = (n-1)(n-2)/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Only Source of CP Violation in SM

CP Violation built in the Standard Model through Kobayashi-Maskawa Mechanism!

Only one complex phase! All CP violating effects in SM related to each other B and K decays CP Violating phenomena are cause by the same complex phase.
Unitarity of CKM Matrix

\[V^\dagger V = VV^\dagger = 1 \]

- All rows and columns must be orthonormal
 - 3 conditions for diagonal elements
 - 6 conditions for off-diagonal elements

\[\begin{align*}
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 &= 1 \\
|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 &= 1 \\
|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 &= 1
\end{align*} \]

Magnitude of each term

Only condition with comparable size of all pieces and involving \(b \) decays
Unitarity Triangles

Unitarity condition of CKM Matrix \rightarrow orthonormality of rows & columns

$\sum_{(i=u,c,t)} V_{ij}V_{ik}^* = \delta_{jk} ; \sum_{(i=d,s,b)} V_{ij}V_{kj}^* = \delta_{ik}$

\Rightarrow three conditions are interesting for understanding SM predictions for CP violation

$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0,$

$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0,$

$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0.$

Each relation requires sum of three complex quantities to vanish

\Rightarrow can be represented in the complex plane as a triangle

\Rightarrow known as Unitarity Triangles

With the knowledge of $|V_{ij}|$ magnitudes, its instructive to draw the triangles
Three Unitarity Triangles Drawn to Common Scale

\[V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0, \]
\[V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0, \]
\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. \]

(a) ds

(b) sb

(c) db

\[\Rightarrow \] All sides of comparable length \(\lambda^3 \)

\[\Rightarrow \] All angles are large

Experimentally \Rightarrow hard to measure small numbers
easier to measure larger numbers as in (c)

One side is much shorter than the other two \Rightarrow triangle collapses on a line
CKM Unitarity Triangle in B Decays

\[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \]

Angles of Unitarity Triangle

\[\alpha = \phi_2 \equiv \arg \left(-\frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*} \right), \]

\[\beta = \phi_1 \equiv \arg \left(-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right), \]

\[\gamma = \phi_3 \equiv \arg \left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right), \]

All lengths involve b decays
Large CP Asymmetries predicted, \(\propto \) UT angles
Measuring Complex Phase of CKM Matrix

- Branching fractions and lifetimes sensitive to magnitude of CKM elements
 - Decay probabilities usually include $|V_{ij}|^2$
 - We looked for decays involving only one CKM element to make interpretation of experimental result possible

- Complex phase of CKM is a relative phase between matrix elements

- We need processes with interference of two different CKM elements

$$A_1 = Ae^{i\alpha}$$
$$A_2 = Be^{i\beta}$$
$$A_{tot} = A_1 + A_2$$

$$|A_{tot}|^2 = |A|^2 + |B|^2 + ABe^{i(\alpha-\beta)} + ABe^{-i(\alpha-\beta)}$$

Sensitive to phase difference!
CP Violation

- CP violation can be observed by comparing decay rates of particles and antiparticles

\[\Gamma(a \rightarrow f) \neq \Gamma(\bar{a} \rightarrow \bar{f}) \Rightarrow \text{CP Violation} \]

- The difference in decay rates arises from a different interference term for the matter vs. antimatter process. Analogy to double-slit experiment:

\[
\begin{align*}
\text{source} & \quad A_1 & A_2 \\
B^0 & \quad A_1 & f & \quad B^0 \\
\bar{B}^0 & \quad \bar{A}_1 & \bar{f} & \quad \bar{B}^0
\end{align*}
\]

Classical double-slit experiment:
Relative phase variation due to different path lengths: interference pattern in space
Identify B final states which are arrived at by two paths

In B\(^0\) system, B\(^0\) \(\rightarrow\) \(\bar{B}\)\(^0\) oscillation provides one path with the other path(s) come from weak decay of B hadron.

In B\(^\pm\) system \(\Rightarrow\) no oscillation possible, 2 (or more) amplitudes must come from different weak decay of B.

B Meson is heavy \(\Rightarrow\) many final states, multiple “paths.”

2 classes of B decays come into play: “Tree” \(\Rightarrow\) spectator decay like “Penguin” \(\Rightarrow\) FCNC loop diagrams with u,c,t.
Overview of CP Violating Processes

CP Violation in Decay
a.k.a. Direct CPV

\[A(B \to f) \neq \bar{A}(\bar{B} \to \bar{f}) \]

CP Violation in Mixing

\[A(B^0 \to \bar{B}^0) \neq A(\bar{B}^0 \to B^0) \]

CP Violation in interference between Mixing and Decay

\[A(B^0 \to f_{cp}) \neq A(\bar{B}^0 \to f_{cp}) \]
CP Violation Is a Quantum Phenomenon

- CPV is due to Quantum interference between two or more amplitudes

- Phase of QM amplitudes is the key

- Need to consider two types of phases
 - **CP-conserving phases**: don’t change sign under CP
 - Sometimes called *strong phases* since they can arise from strong, final-state interactions
 - **CP-violating phases**: these do change sign under CP transformation
 - originate in the Weak interaction sector

\[
A = Ae^{i\phi}e^{i\delta}
\]

\[
\bar{A} = Ae^{-i\phi}e^{i\delta}
\]
How can CP asymmetries arise?

- Suppose a decay can occur through two different processes, with amplitudes A_1 and A_2

- First, consider the case in which there is a (relative) CP-violating phase between A_1 and A_2 only

\[
A = A_1 + a_2 e^{i\varphi_2}
\]

\[
\bar{A} = A_1 + a_2 e^{-i\varphi_2}
\]

→ No Direct CP asymmetry!

(Decay rate is different from what it would be without the phase)
How can CP asymmetries arise?

- Next, introduce a relative *CP-conserving* phase in addition to the relative *CP-violating* phase

\[
A = A_1 + a_2 e^{i(\varphi_2 + \delta_2)}
\]

\[
\bar{A} = A_1 + a_2 e^{i(-\varphi_2 + \delta_2)}
\]

- Now have a Direct CP Violation

\[
|A| \neq |\bar{A}|
\]
Definition of CP Asymmetry

\[
Asymmetry = \frac{\left| \overline{A} \right|^2 - \left| A \right|^2} {\left| \overline{A} \right|^2 + \left| A \right|^2} = \frac{2 |A_1||A_2| \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)} {\left| A_1 \right|^2 + \left| A_2 \right|^2 + |A_1||A_2| \cos(\delta_1 - \delta_2) \cos(\phi_1 - \phi_2)}
\]

To extract the CP-violating phase from an observed CP asymmetry, we need to know the value of the CP-conserving phase difference.

B system: extraordinary laboratory for quantum interference experiments: many final states, multiple “paths” → Lots of channels for CP Violation
Direct CP Violation

\[\left| B_{A(B \rightarrow f)} \right|^2 \neq \left| B_{\bar{A}(\bar{B} \rightarrow \bar{f})} \right|^2 \]
CPV in Decay a.k.a. Direct CP Violation

\[A(B \to f) \neq \bar{A}(\bar{B} \to \bar{f}) \]

\[\Gamma(B \to f) = \left| A_1 + A_2 e^{i\varphi_w k} e^{i\delta_{st}} \right|^2, \quad \Gamma(\bar{B} \to \bar{f}) = \left| A_1 + A_2 e^{-i\varphi_w k} e^{i\delta_{st}} \right|^2 \]

\[A_{CP} = \frac{Br(\bar{B} \to \bar{f}) - Br(B \to f)}{Br(\bar{B} \to \bar{f}) + Br(B \to f)} \equiv \frac{|\bar{A}_f|^2 - |A_f|^2}{|\bar{A}_f|^2 + |A_f|^2} \neq 0 \to \text{Direct CPV} \]
Direct CP Violation in $B^0 \to K^- \pi^+$

SM amplitude = $\lambda^2 e^{i\gamma} T + P$

- Loop diagrams from New Physics (e.g. SUSY) can modify SM asymmetry via P
- Clean mode with “large” rate: $BF(B^0 \to K^+\pi^-) = (18.2 \pm 0.8) \times 10^{-6}$
 - Measure *charge* asymmetry, reject large $B \to \pi\pi$ background with Particle ID

Čerenkov angle

- π
- K

$K\pi$ separation

ΔE (GeV)

- Signal
- B background

10 Nov 2006
Observation of Direct CPV in $B^0 \rightarrow K^-\pi^+$

$$A_{K^-\pi^+} \equiv \frac{\Gamma(B \rightarrow K^-\pi^+) - \Gamma(B \rightarrow K^+\pi^-)}{\Gamma(B \rightarrow K^-\pi^+) + \Gamma(B \rightarrow K^+\pi^-)}$$

$n_{K\pi} = 1606 \pm 51$

$A_{K\pi} = -0.133 \pm 0.030 \pm 0.009$

\begin{align*}
n(B^0 \rightarrow K^+\pi^-) &= 910 \\
n(B^0 \rightarrow K^-\pi^+) &= 696
\end{align*}
Confirmation of Direct CPV by Belle at ICHEP04

\[A_{CP} = -0.101 \pm 0.025 \pm 0.005 \]

3.9\(\sigma\) significance

\[274M \bar{B} \bar{B} \]

Signal=2139 ±53

Non-Perturbative QCD uncertainties large,
Standard Model CP Violation not precisely predictable

⇒ insufficient to prove or rule out contribution from New Physics