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Outline of Today’s Lecture

= Evolution of entangled 2-state quantum system
=« Example of B9-B? oscillation

= Formalism of time-dependent CP violation
= Search for CP Violation in Mixing

= Observation of CP Violation in Interference between
Decay and Mixing
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CP Violating Processes

CP Violation 2 2
in Decay
a.k.a.
Direct CPV

CP Violation
in Mixing

CP Violation

in interference
between Mixing
and Decay
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B0 — BY Oscillation



BO,-BP, Oscillation and CP Violation

: : : : Vv, :
= Necessary ingredient for two types of CP Violation v, " , *¢,
B’ § % B°
= Oscillation is an example of superposition principle = -
d tb

in a two-state quantum system
= Oscillation occurs because mass and flavor eigenstates are different

e Flavor eigenstates |B°) and |B"): physical states with definite quark structure and are pro-

duced as a consequence of the quark-level strong interactions.

e CP eigenstates |Bcop—=1) and |Bop—=_1): eigenstates of the the C'P operation

CP‘ Bep— } = + ‘BC‘le :’
CP‘BCPZ_l:} — —‘Bcpz_l:}

e Mass eigenstates | By, ) and | By ): eigenstates of the full Hamiltonian and, hence, with definite
mass M and decay width I' = 1/7. These states evolve in time in a definite fashion according

to

|Br.t) = e lrte™™itiB; t =0) (2.28)

By, t) = e ltutem™Mut|By ¢=0). (2.29)
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Phenomenology of BY Time Development

= An initially B® or B system evolves with time as a mixture of flavor
eigenstates —
) w(t) = alB’) + b[B°)

= Evolution requlated by time-dependent Schrodinger equation

Wigner-Weisskopf d [a —H “ = (M — E1“)

Approximation EE b b 2 b
= M and I computed to 2" order of perturbation theory

1
T E-n

My = mpéi; + ([ HF"=|j) + P - (G| HSP2=  n) (n| HZP=15)

Iy = QWZ o(E, — mB)(i\H{,A‘_rB:l \n)(n’HﬁB:l]ﬁ .

= Virtual intermediate states contribute to M
= I receives contributions from physical states to which B? or B? can decay
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Mass Eigenstates of Effective Hamiltonian

= Solving the Schroedinger equation
Hly) = Aly)

= Two complex eigenvalues

1 /) 1
— M= ir = (Mg — 1T (M, — LTy
A+ i \/( 12~ 3 12) (M7, 5 12)

= Mass eigenstates Bp.t) = e Trf e—mm‘ Br.t=0)
? ?
‘BH,t> _ e_FHte_iA{Ht‘BH,t _ 0>
Amg=myg —mp, = Re(Ay — A_) F=1/t, :l(rH +T,) M :l(M M)
2 7 H L
Al'=Tgy -1 = QIT??,()\+ — )\_) A :FH _FL Am. =M. - M
d H L
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Interpretation of Effective Hamiltonian

= The effective Hamiltonian for the two-state system is
not Hermitian since mesons decay

Quark masses, strong, B’ —> f —> EO transitions
and EM interactions f =offshell f =on-shell

H Hll HIZ M MIZ _i F 1—112
H21 H22 M*12 M 2 1_‘*12 | Decays |

| ot rEnD C M2 m2 _
Mo = (VieVia)” =S\ =5 |ns ba() (B”|Q(1)| B)
872 mp My,

what we are after calculable perturbatively nonperturbative
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Driving BY <» B? Oscillation

14 Nov 2006

/ Ff- shel\k / Ay ST
0
\on shell \on shell F

—I i
F12 F1z
\ CP-conserving phase /

In B° meson system, final states that both

B® and B°can decay into have very small rates
Decays like b - ¢ ¢d or b — u ud are suppressed
due to associated CKM elements in W decay

Ll o(™)0 1

sz my

B Oscillation is driven by M,,, which is dominated
by Top quark in the loop




Differences between K and B Mesons

= Formalism for time evolution can be applied to both K and B mesons

= B mesons
= Very few common states accessible by both B and BO
= Comparable lifetime and oscillation frequency

AT/T < O(107?) rqg = Amg/T" = 0.73 £ 0.05

= Mass eigenstates have very similar lifetimes but different masses

Al' < Amy

= Kaons
= Mass eigenstates with similar masses
= Very different lifetimes

Al =T

K

14 Nov 2006
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Relation Between Mass and Flavor states

B) = p|B") +q|B")

[Byr) = p|B”) — q|B°)
0= <BL|B”> — |p‘2 - |Q'|Q A EU a)
Br
5=0
arg(q/p)=0
No CP Violation _p’
By
\ EU BL C)
d+0
regardless arg(q/p)
CP Violation
\ -
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*. arg(q/p)
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~

By

ar E(q P)
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Time Development of Physical States

= Evolution of a pure B or BY state at t=0

s  After some math

phy (l‘)> e FLte—iMLz(p BO>+q E0>)+e—rHte—iMHt(p BO>—q EO>))

2p
Bphys(t)>:$ o FLte—iMLt(p BO>+q Eo>)_e—ere—iMHt(p BO>_q Eo>))

B ())=2.(0)|B°)+(q/p)g (t)‘B>

I
Pl =g G Bphys(t)>=(p/q g(t)\B°>+g+(t)‘B >
AT =T, -T,

M:%(MH+ML) g . (t)=e"e " cos(Am,t/2)
Am, =M, —M,; g (t)=e™e " isin(Am,t/2)
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Time evolution of B® and B® mesons

|B°(t)) = e_the_Ft( cos

g
S

— " =e

9
p
P(B’ - B")

e 1! (1—cos(Am t))

Slow oscillation compared
to the lifetime
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|BO(t)) = e "Miel? (z sin

Am t

2
Am t

Amt q —
|B%) + i sin g" -€|BO>)

p

Amt — —
-§|B°)—|— cos ’;’ |B0))

Am=0.493 ps™
1/T = 1.542 ps




Quantum Entanglement in Y(4S)—BYB? Decays

O(4S) > R0 BO withz=1
Spin = 1 0 0

= Strong interaction: CP is and flavor beauty number are conserved
= Must have one b and one anti-b quarks in final state

b

B B Vv—_% B, By +
| ) \/5|L.u> 7

phys* phys ‘B{ 1 BL>

= Time evolution given by mass eigenstates

‘BU _.EU 11, f2> —a e'f.)\.g_!.lei)\_f.g ‘BLB”> + b e'i)\_(..leih+{.2‘B”Bh>

phys*~ phys»

= Bose-Einstein Statistics requires wave function |¥>to be symmetric at all
times
‘\IJ> — ‘\Ilﬂavor>‘lpspace>

= L=-1 implies asymmetric spatial wave function
= We need a=-b which means a BY and a B° meson at all times until one of
them decays!
= Example of Einstein-Podolsky-Rosen Paradox
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Quantum Correlation at Y(4S)
B0 B'Ro O(4S) B © &

<

Liay ttag ttag

G [\ | —

= Decay of first B (B°) at time t,,, ensures the other B is B°
= End of Quantum entanglement ! Defines a ref. time (clock)

= Att>t,, B°has some probability to oscillate into B® before it decays at
time tq,, into a flavor specific state

= Two possibilities in the Y(4S) event depending on whether the 2 B
oscillated or not:

no oscillation/mixing = BY BY in final state

oscillation/mixing = B9 BY in final state
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Time Evolution of Y(4S) — BB

Z Separate
B’ and B’

BO
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Separating B® and B” mesons

K
o
o
.
.
o
S
.
o
S

[ B’
! I* > B’ e

BO u
D, D* C u

Lepton Tag

Q|
Q|
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Time Dependent B Oscillation (Or Mixing) at Y(4S)

Arbitrary units

funmix(At) X e—F|At\ (1 + cos AmgAt

T e

fIIliX(At) X €_F|Aﬂ (1 — COS ATT?,dAt

f unmix f mix
f unmix + f mix

~"41111}c (AIL) —
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CP Violation in Interference between Mixing and Decay

Z Separate
B’ and B’

| B” > J/y K_ |
<py>c | ).- Any CP Eigenstate
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Time-Evolution of B Decays to CP Eigenstates

= Probability of |B*>[B%> — |f;>|f,,> depends on
= Difference At between decay time of the two B mesons

= Decay amplitudes AfCP =(f., | H] B’,t)
AfCP =(tep [H] ant>
= Oscillation parameter q__ |M12| — e 2P
p M 12

= Flavor of tagging neutral B meson: B? or BO

= Convenient parameter to describe time evolution

= Takes into account combined effect K
of oscillation and decay 3= q

14 Nov 2006 20



Time-Dependent Decay Rates to CP Eigenstates

_ o 1 — [ Ara|?
thag:BO (tt.ag, tch) X € Hiscr ttag){l ™ | f(/P‘Q COS[Amd(thP - ttag)]
7 1+ |)\ch‘
2TmMe., ,
- )\ffcf|>2 sin[Amg(ts,, — tt,ag)}}
CP
_ _ 1— Ae. |2
fo,. —go(ttag, trep) o e Flep ttag){l — | f(’P‘Q cos|Amg(ts., — tiag)]
e 1+ |)\fcp‘

sz/\fcp
1+ ‘)\fcp |2

ilAmaltres )}

A-
e e
Ly

pA

fCP

= Expression and complexity of A depends on specific final states

= Decay amplitudes A and A can be more or less complicated depending on
number of amplitudes contributing to total amplitude
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Time-Dependent CP Asymmetry in Interference

than;:BO o thagZEO L ]‘ o |)\f(?P‘2

arf.,(At) = = cos AmgAt
el tha,g:BO + thagZEO 1+ |)\f(_JP ‘2
2ImAy,,
— fC’PQ sin Am At
1+ ‘)\fcp|
A
= CP Violation occurs if A= 4 —| # 1
pll4
4q|_ No CP Violation é —1  NoDirect
D in Mixing Y CP Violation

= But even with |1|=1 it is sufficient to have ImA # 0

In Standard Model we expect |A|=1 in most of B decays

14 Nov 2006
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Simple Case with |Aqp|=1

b, =
Af —  AeH(Pw+9) f

A fo= Nfep Aei(—éwarcS) A fop = Nfep e—Qi((bH

at.pn(At) = =ImAy,., sin AmgAt = 14, sin 20 sin AmgAt

= Very simple expression for CP violating asymmetry

=  Amplitude of asymmetry defined by phase difference between mixing
parameter g/p and ratio of decay amplitudes

= Complex phase @, depends on specific final state
= Can probe different angles of Unitarity triangle through different B decays

14 Nov 2006
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Why do We Need Time Dependence?

..9 L o i Iip
50 06 sm(Am At)
E‘ i 04 B /\
S 40 0.2 °
S 0\
Z30¢ 5 \
L -0.2:—
20 - 04 -
; 0.6 -
10 08
_1:\|\||||\\\\\||\|\\\\\||||\\\\\l\

J8 -8 -6 -4 -2 0 2 4 6 8

At (ps) At (ps)

j a, dAt =0

At Y(4S): integrated asymmetry is zero
- must do a time-dependent analysis !

This is impossible to do in a conventional symmetric
energy collider producing Y(4S)—»BB !!
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Measurements of CP Violation

= CP Violation in Decay

= CP Violation in Mixing

= CP Violation in interference between decay and

mixing

14 Nov 2006
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CP Violation in Mixing



CPV in B Mixing
2 2

Occurs when Mass eigenstates = CP eigenstates M,
(la/p|#1 and<B,|B,> =0) B’
The Box diagrams provide the required 2 phases
Strong phases depend on quark masses and

. . on-shell
non-perturbative physics. _J states f
Asymmetries are small and hard to calculate precisely (QCD) Fy L'y,

—0 N _
D(Bos (0 > VX =D (B (0> V) (i) pf
asl = - ~ 0(1 0_4)

P + ) 0 —~ - 4
[(B s (t) > CvX |+T (B, () > vX) 1+[a/p]
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CPV in B Mixing

Time-dependent P Asymmetry:
LB, (t)> !l vX)-T(B’, (t)>(VvX)

A.(t) = _Phys phys
! ['(B),, () > ('vX)+T(B,, (t) > VX)

Search for asymmetry in same-sign dilepton sample
same —sign /*/* events occur in mixed events where
one B” —» B’ - X/"v;other B > Y/'v = /7/*
one B > B’ > X/ v:other B’ > Y/ v = (/"

N AR =N L A1)
N0 AF)+ N0, AT)

S(AT)

ATan- " S(an)+B8(AT)

A

S(At) = signal
B(At1) = background from B decay and continuum
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CPV in B Mixing

Time dependent measurement, time measured from AZ

800

Events/ 20 um

>

o

o

i

+
N -
S :
~J -
|

Sample backgrounds B(A1):
4.3% continuum
24% direct+cascade
12% direct+fake 400

B°B°, B°B° signal S(A7)

600

200

III|III|III|IIIJ_,-'

11 1 11 1 I 1 1 | 1 | 1 I 1 .I--I-”i"l.";-'l—‘l—-r'r'r- [ . =
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Az (um)

Measurement region > 200um
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CPV in B Mixing

0_4_ T 1 T 1 T 1 L B B |

Find: +0.005+0.012,,, +0.014

Dilepton Charge Asymmetry
o o
N (24
I
L
O i
.o -
3 i
| i
| | L1111 | 111

0.1 = l | l | T | — (syst)
------ LT L e ]
0 !_l_| 'f ;'Hl +| +— T : Conclude: Re(s,, )/(1+| &4, F) =
5ok |0 ! 1T - 3 | +0.0012+0.0029,,,,, 00036,
02p 3 [¢/ p|=0.998+0.006,,,, +0.007,,
-0.3;- —i
ogb v Ll | |
0 2 4 6 8 10 12
At (ps)

So far, no experimental evidence
of large CPviolation in B° mixing

=To a good approximation:

g/p=land g/ p=e™™=—|M,|/ M,
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CP Violation in interference
between decay and mixing



CPV In Interference Between Mixing and Decay

0 2 BY 2 A e’
B_sz —(fcp ot
BY B-(!- ¢ RBO B?)l_ M, = 4 oo
% fcp P 20 cP

Neutral B Decays into CP final state f,., accesible by both B’ & B"decays

- A7 . . A7
This is CPV when |Z|=1 and Ao =1 and the CP parameter of interestis 4, =7, 4 N
p AfCP a a p A CP
CPV Asymmetry is defined as :
St —> St —> 2ImA (l_ﬂcp )
a, ( s (1) fcp) ( (1) fcp) = fer_sin(Amyt) - ‘ cos(Am,t)
CP ( phys(t)_>fCP)+r( phys(t)_>fCP) 1+‘2/ 1+‘/1CP

A, |=1=a,, =ImA, sin(Am,t)

CP asymm. can be very large and can be cleanly related to CKM angles
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Golden Decay Mode B0 2> ]/yK®

Tree //% v Penguin:: u,c,t loops ./ | v

y: 1A <
':: = By || ;
B, % L S a % W
.
_ N ’ x * * ok
AT = VcchsTcEs AP _thVts Pt +VcchsPc +VuqusPu

Use Unitarity relation V, V. +V, V. +V V' to rearrange terms
K = AT T IX‘P = Vcch*s (TCES T Pc o Pt) T Vubvljs (Pu o Pt)
— (Vcch*s) T+( ) ) P

PN us

vVl R . .
Since |t [] 0 = (V,V,) Tis the dominant amplitude
cb "cs
IXX -2 " ° ]
expect|—|-1 =10 Hence "Platinum" mode |
14 Nov 2006
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Golden Decay Mode B? ->J/yK?

14 Nov 2006

Jy
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CPV In Interference Between Mixing and Decay: B? 2 J/yK®

b %HL‘<C Jhy
A e’
g £
MIZ - ACPe—chf o K K
/e ~2/ipy g 0 l;’ "‘.‘ 8_2 i S
— L .
W Ayks _ Vi Vg Vi Ve o \/t*m\/cb\/:d = ImQy) =sin(2p)
Kg *
" Dy Ak, VoV VooV ViV VoV = ‘MKS‘ =1
: i 7\'\|’KL - _}\‘\VKS
F(BO —>J/yK, ) e’ 1—71psin2fsin(Amt)|
— _ _ Nep = -1 (+1)
F(BO —>J/yKg, ) oc ™" [14 1 sin 2 B sin(Amt) for Jhy KO,

Same 1s true for a variety of B —(cc) s final states
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Time-Dependent CP Asymmetry with a Perfect Detector

 Perfect measurement of time interval t=At
* Perfect tagging of B? and BY meson flavors
For a B decay mode such as B*—>wyKs with | A{=1

BU
70 [
BOf—
50 |-
a0 |
302—
203—

10

10 75 5 25 0 25 5 75 10

14 Nov 2006

At (ps)

-1

A
O 0.8

<

0.6

Q 0.4

=

vn  F
<€ 04

D 0.2

0

-0.6
-0.8

3 sin 2P

10 75 5 25 0 25 5 75 10

At (ps)

‘ A-»(At) =sin23 sin(AmA¢) \
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Charmonium+KY CP Sample for BABAR ('02)

zf 500_— BABAR ﬂq‘ 77(][:—1 modes
% o Preliminary ng —>J/I/IK§{—> 7Z'+7l'_}
£ ne=—1 modes B%P — JWK{—> '’
300/— 1506 Signal BCP —> l//(ZS){—) / f _07" .
= candidates, 4 . A% & K
I purity 94% Bep = xaul = Jwy/K
T B, >n{—>KKr K,
50'2 — 5.22 — 5.24 — 5.26 — “I“5-,12-<;’-1-. 25,3 %
mgg (GeVic') .
— 41 d E 150 988 sugnal
2’0_ i) ;OI;O % canfii da’ref,
cp YA 2 100 purity 55%
aa
50
81.3 fb! ;

(after tagging & vertexing)

14 Nov 2006
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Calibration with Flavor eigenstates

F
. =¥ —
Control Sample with no 22000 B S Background |
expected CP asymmetry < I 0
3 = B
q , B T
=
8

A
A
]

te/ w I K@ \
A > nd N
- 0 manert T G Ny N!T"*'—-%'--

D" >
«, 9000 — T 0.5 ] |
0 = sin2p = 0.017 £ 0.022
oy B Dt a >
%mooj — 7T /p /al E |
$ 6000 — _+_ _
LIJ5000_— % 0= _1,_—_ﬁ=—¢——o=-=ﬂ=="-‘———¢‘=v——_+_ —
a000— 10 times Iarger o
3000~ than signal I
2000/ i |
1nnu%h N eces 05— B
s sz am "'5.3 T I N S N R - T N
mg; (GeVic) -5 0 5
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Observation of CP Violation (BaBar 2001)

sin2p = 0.755 + 0.074

B > J/y K.
B° > w(2S) K.
BO 9 Xc I<S

BO 9 nc KS

Events / 2.5 MeV/c?

/2.5 MeV/
b
Y
3
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Entries / 0.6 ps

Raw Asymmetry

15()_llll:oll ||| T
[ B + N\ Background
= B
100 —
50
() me=piTe
0.5 —
N T
1 \<
-0.5 —




BABAR Result for sin2

Entries / 0.6 ps

-
5
|
<
=
=
a4

14 Nov 2006

[
LN
o=

100

50

o
wn o

o

2. 100

Entries / 0.6

50

Raw Asymmetry
g
h O

=

-0.5

-5 0 5

o B’ tags
m B®tags

3 (July 2002)

5

|sin2/3 =0741£0.067,,,+0033,,, |

At (ps)
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Updated (ICHEPO4) sin23 results from Charmonium Modes

Ejzoo E‘

< S 200

2 2

g g

3 3

- r |

2 0.5_ ‘g 0.5 +_

X P ool TRy T

. s s

'0‘5_ '05__ (cc)K? (CP even) modes

5 i N -IS M M i M [I] N i i M é N M
At [ps] At [ps]

20576 on peak or 227 M BB pairs
7730 CP events (tagged signal)

sin2p =+0.722+0.040+£+0.023 cT K

1-14° .
Dl _

Limiton L€ =4, 17 = 0051+ 0.033+0014f
direct CPV

14 Nov 2006 41




Belle Results on sin2p from Charmonium Modes

Events / ps (good tags)

8

Raw asymmetry (good tags)

B> yK¢ Sample

300

N
an
Iol\

-k
a
\olll

100}

— |B =
amn 386MBB pairs

sin2/3=0.652+0.039+0.020

2

1A
1+| 4]

=—0.010£0.026£0.036

sin2 3 =+0.728 £0.056+0.023

[ New Belle value lower than in ’03
| but still consistent with BaBar’04

42
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CP Violation in B Decays Firmly Established

sm(2B) = sm(Zq)l) ey

PRELIMINARY

BaBar H - 0.71 £ 0.03 + 0.02
hep- ex!D?DSGH -

Belle Jiy K B 0.64 + 0.03 + 0.02
PRL 98 (2007) D31 802 {

Belle w(2S) K | 0.72 £ 0.09 + 0.03
arxXiv:0708.2604 :

ALEPH , _ - 0.84 *9%2 4+ 0.16
PLB 492, 259-274 (2000) ' I

OPAL , . 3.20 *700 + 0.50, |
EPJ C5, 379-388 (1998) |

CDF N 0.79 241
PRD 61, u?zrmﬁ (2000) I

Average -| ; 0.68 + 0.03
HFAG '

-2 -1 1 2 3
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Lessons From sin2 Measurement With B%—J/yKO

In 2001, large CP Violation in B system was observed in this mode by
BaBar and Belle.

= First instance of CPV outside the Kaon system.

First instance of a CPV effect which was O(1) in contrast with the Kaon
system

= Confirms the 1972 conjecture of Kobayashi & Maskawa.

= Excludes models with approximate CP symmetry (small CPV).

In 2007 sin2p is a precision measurement (5%) and agrees well with
the constraints in the p-n plane from measurements of the CKM
magnitudes (will be discussed in tomorrow’s lecture)

Appears unlikely to find another O(1) source of CPV

= enterprise now moves towards looking for corrections rather than
alternatives to SM/CKM picture

Focus now shifts to measurements of time-dependent asymmetries in
rare B decays
= dominated by Penguin diagrams in the SM and where New Physics could

1anov2006  CONtribute to the asymmetries
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Tomorrow'’s Lecture

Measurements of o and y

Constraints on Unitarity Triangle from
measuments of CKM element magnitude and
angles
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