ricerca dell'Higgs ai collider adronici

Produzione

- 1. gluon fusion in tutto il range
- 2. Higgs-strahlung per Higgs leggeri
- 3. WW,ZZ fusion per Higgs pesanti

Segnature:

- 1. nel range tra 100 e 180 GeV, si può ricostruire la massa invariante da $\gamma\gamma$ o bb (al Tevatron, p.e.)
- nel range intermedio, i decadimenti in coppie virtuali e reali di W o Z possono essere identificati dai dacadimenti leptonici (4 leptoni carichi per ZZ)
- 3. oltre la soglia ZZ, 4 leptoni!
- 4. All'estremo superiore, anche i decadimenti in jet e neutrini sono utili.

Tevatron Run II Preliminary

LHC: la macchina

Energia dei fasci: 7 TeV

Luminosità: 10³⁴cm⁻²s⁻¹

(Luminosità dei primi anni? 1-2 10³³cm⁻²s⁻¹?) Multibunch (2835 per fascio, spaziati di 25 ns)

 $\sigma_{\text{inel}} = 100 \text{ mb} \rightarrow 10^{-25} \cdot 10^{34} \text{ s}^{-1} = 10^9 \text{ eventi/s}$

25 eventi/crossing

$$\sigma_{higgs} = 1 \text{ pb} \longrightarrow 10^{-36} \cdot 10^{34} \text{ s}^{-1} = 10^{-2} \text{ eventi/s}$$

Radiazione di fondo, neutroni e gamma

Sfida per i rivelatori:

granularità velocità di risposta acquisizione dei dati resistenza alla radiazione 1 barn = 10^{-24} cm⁻²s⁻¹ 1 pb = 10^{-36} cm⁻²s⁻¹ 1 fb = 10^{-39} cm⁻²s⁻¹ 1 anno = 100 g = 10^{7} s [Luminosità integrata]=[l⁻²] 1 anno HL = 100 fb⁻¹ 1 anno LL = 10 fb⁻¹

LHC: gli esperimenti

	Weight	Length	Height (m)	
	(tons)	(m)		
ATLAS	7,000	42	22	
CMS	12,500	21	15 ₂₇	

LHC: gli esperimenti

canali di scoperta

30

$$H \rightarrow \gamma \gamma$$
segnale
$$\begin{array}{c} H \xrightarrow{t^*, W^*} & \gamma \\ \downarrow^{t^*, W^*} & \gamma \\ fondo irriducibile \\ fondo riducibile \\ q \xrightarrow{q} & q \\ g \xrightarrow{q} & \gamma \\ g \xrightarrow{q} & \gamma \\ (s) \end{array}$$

$$H \rightarrow \gamma \gamma$$

significatività = segnale/ $\sqrt{(fondo)}$ fondo \propto larghezza del segnale

per $m_{\rm H}$ < 150 GeV, $\Gamma_{\rm H}/m_{\rm H} \le 10^{-3}$

larghezza del segnale = risoluzione sperimentale

$$m_{\gamma\gamma}^{2} = 2 E_{1} E_{2} (1 - \cos\theta_{\gamma\gamma}) \qquad 1 - \cos\theta_{\gamma\gamma} = 2\sin^{2}\theta_{\gamma\gamma}/2$$
$$\frac{\sigma_{m}}{m} = \frac{1}{2} \left[\left(\frac{\sigma_{1}}{E_{1}} \right)^{2} + \left(\frac{\sigma_{2}}{E_{2}} \right)^{2} + \left(\frac{\sigma_{\theta}}{tg\theta/2} \right)^{2} \right]^{1/2}$$

per θ = 90° 15 milliradianti in angolo sono come 1% in energia

risoluzione di un calorimetro

risoluzione di un calorimetro

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- a. termine stocastico, fluttuazioni poissoniane calorimetri omogenei vs campionamento
- b. termine di rumore, indipendente dall'energia rumore elettronico (tempo vs capacità) a LHC anche rumore fisico (pile up)
- c. termine costante, dovuto a varie instabilità, prima tra tutte l'intercalibrazione

pesi relativi dei termini

calorimetro campionamento \rightarrow omogeneo

 $a \sim 10\% \rightarrow 3\%$

fissiamo E = 100 GeV

 $a/\sqrt{E} = 1\%$, b = 1 GeV, c = 1% $\Rightarrow \sigma = 1.7\%$

a / \sqrt{E} = 0.3%, b = 300 MeV, c = 0.3% $\Rightarrow \sigma = 0.5\%$

caratteristiche geometriche dei calorimetri

lunghezza di radiazione

$$X_0 \approx \frac{A}{Z^2}$$

in lunghezze di radiazione, le dimensioni dello sciame crescono logaritmicamente con l'energia nella regione di 100 GeV, 25 X_0

raggio di Molière

$$R_M \propto \frac{X_0}{E_C} \propto \frac{A}{Z} (Z >> 1)$$

dimensioni

per una data separazione angolare $\Delta \varphi$:

$$\Delta \mathbf{x} = \mathbf{r} \Delta \phi \Rightarrow \mathbf{r} \propto \mathbf{R}_{m} / \Delta \phi$$
$$V_{\text{calor.}} \sim \mathbf{r}^{2} \mathbf{X}_{0} \sim \mathbf{R}_{m}^{2} \mathbf{X}_{0} / \Delta \phi$$

piccolo $\Delta \phi \Rightarrow$ grandi dimensioni (e costi)

The Crystal Ball

672 + 60 NaI crystals pioneering most of the features of barrel calorimeters

FIG. 3. Development of the ball geometry and nomenclature.

Crystal Ball results

calorimetro a cristalli di CMS

• 75000 PWO crystals

• APD read out (gain 50)

• E_{γ} range 1 GeV \rightarrow 1 TeV

PWO: PbWO₄ about 10 m³, 80 ton

Parameter	Barrel	Endcap	
η coverage	η < 1.48	1.48 < [η] < 3.0	
Granularity (Δη×Δφ)	0.0175×0.0175	varies in η	
Crystal Dims. (cm ³)	2.18×2.18×23	2.85×2.85×22	
Depth in X ₀	25.8	24.7 (+3X ₀)	
No. of crystals	61,200	14,950	
Crystal Volume (m ³)	8.14	3.04	
Photodetector	APDs	VPTs	
Modularity	36 supermodules	4 Dees	

photodetectors

Barrel: Avalanche photodiodes (APD)

Two 5x5 mm² APDs/crystal

- Gain: 50
- QE: ~75% at 420 nm
- Temperature dependence: -2.4%/°C
- Delivery complete

Endcaps: Vacuum phototriodes (VPT) More radiation resistant than Si diodes - Active area ~ 280 mm²/crystal - Gain 8 -10 (B=4T) Q.E.~20% at 420nm - Delivery ~80%

τu

41

2

1 experiment, 30 fb⁻¹

m _H (GeV)	120	130	150	170	180
S S/B S/√B 30 fb ⁻¹ (Poisson)	4 2.7 <mark>2.4</mark>	11 4.4 <mark>4.8</mark>	27 9 15.5	8 2.7 <mark>3.2</mark>	20 6.7 11.2
<mark>S/√B</mark> 100 fb ⁻¹ (Poisson)	3.8	10.3	22.6	5.3	16.7

$H \rightarrow WW \rightarrow I_V I_V$

Importante intorno a 170 GeV dove ZZ è depresso $\sigma \times BR \approx 700 \text{ fb}$

misura di conteggio, non ci sono picchi di massa invariante fondi:

- WW ^(*) (irreducible)	<i>σ</i> ≈ 5 pb
- WZ $\rightarrow \ell \nu \ell \ell, ZZ \rightarrow \ell \ell \nu \nu$	<i>σ</i> ≈ 1 pb
- Wt, Wbb → 2ℓ+X	<i>σ</i> ≈ 120 pb

tagli tipici:

leptoni isolati di segno opposto, alto pt M_{II}<80 GeV (contro WZ, ZZ) nessun jet energetico missing energy

$H \rightarrow ZZ \rightarrow 4\ell$: Signal - High m_H

20 fb⁻¹

$m_H \sim 1 \text{ TeV} : H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$

As $m_{\rm H}$ increases further, $\Gamma_{\rm H}$ increases and σ falls \Rightarrow turn to higher BR modes ATLAS : 100 fb⁻¹ Signal: Jacobian peak in E_T^{miss} in 160 p_T(I⁺I⁻) > 250 GeV events with Z + large E_{T}^{miss} 140 - ZZ continuum Z + jets 100 fb⁻ **Typical Cuts** 120 ···· <N> = 40 MB events 2 isol ℓ : p_T^{ℓ} >20 GeV, $p_T(Z)$ >60 Ge total background 100 $E_{\tau}^{miss} > 100 \text{ GeV}$ 10 GeV 1 tagging jet $E^{j} > 1$ TeV, in $\ln l > 2.5$ 80 Events / M_H = 700 GeV 60 Backgrounds: irreducible - ZZ, signal + background reducible -Z + jets40 20 Z+jets: parton level simulation 0 50 100 150 0 200 250 300 350 500 400 450 Forward jets can be used E_Tmiss (GeV)

$m_H \sim 1 \text{ TeV} : H \rightarrow \ell \ell \text{ jj, } \ell \nu \text{ jj}$

Larger statistics if use decay modes $H \rightarrow WW \rightarrow \ell v$ +jets and $H \rightarrow ZZ \rightarrow \ell \ell$ +jets BUT need to reduce enormous W+jets and Z+jets background

Consider WW final state (ZZ similar)

Find jets in $\Delta R=0.2$ with $E_T>50$ GeV, reconstruct $W \rightarrow jj$ $\epsilon(W \rightarrow jet) = E_T(jj) > 150$ GeV, $m_W-2\sigma < m_{jj} < m_W+2\sigma$ $\sigma(m_W) \sim p_T(\ell) > 50$ GeV, $E_T^{miss} > 50$ GeV $p_T(W) > 200$ GeV Backgrounds from W+jets and tt \rightarrow WbWb roughly equal but still large

ε(W→jets) ~ 60%, σ(m_w) ~ 7 GeV

Use forward tagging jets from qq → Hqq

 $E_T^{tag} > 15 \text{ GeV}, E > 600 \text{ GeV}$ with $2 < l\eta l < 5$ $E_T^{cell} > 3 \text{ GeV}$ Low L : no additional jets with $E_T > 20 \text{ GeV}$ in $l\eta l < 2$

Fake tag prob. from MinBias Single jet - 4.6%, double jet - 0.07%

$m_H \sim 1 \text{ TeV} : H \rightarrow ZZ \rightarrow \ell \ell jj,$

$m_H \sim 1 \text{ TeV} : H \rightarrow WW \rightarrow \ell v \text{ jj}$

Typical Cuts

$$\begin{split} 1 \ isol \ \ell : p_T^{\ \ell} > & 30 \ GeV \ in \ l\eta l < & 2.5 \\ E_T^{miss} > & 100 \ GeV \\ l.e. \ 2 \ central \ jets \ E_T^{\ j} > & 40 \ GeV \ in \ l\eta l < & 3 \\ 2 \ tagging \ jets \ E^j > & 400 \ GeV, \ E_T^{\ j} > & 20 \ GeV \\ p_T^W > & 100 \ GeV \ in \ \ell\nu \ and \ jj \ modes \end{split}$$

ATLAS m_H = 1TeV, 30fb⁻¹

 $m_{\rm H} = 800 \text{ GeV}, 30 \text{ fb}^{-1}$

