asimmetrie

Ricordando che θ rappresenta l'angolo del fermione rispetto alla direzione dell'elettrone incidente, considerando per chiarezza solo i diagrammi Z e reali gli accoppiamenti, indicando con L,R l'elicità dell'elettrone iniziale e con l, r quella del fermione finale, si ha:

Da queste espressioni, considerando solo la eventuale polarizzazione del fascio degli elettroni, come è il caso di SLC, si ricava:

esercizio

$$\frac{\mathrm{d}\sigma_{\mathrm{f}\overline{\mathrm{f}}}}{\mathrm{d}\cos\theta} = \frac{3}{8}\sigma_{\mathrm{f}\overline{\mathrm{f}}}^{\mathrm{tot}} \left[(1-\mathcal{P}_{\mathrm{e}}\mathcal{A}_{\mathrm{e}})(1+\cos^{2}\theta) + 2(\mathcal{A}_{\mathrm{e}}-\mathcal{P}_{\mathrm{e}})\mathcal{A}_{\mathrm{f}}\cos\theta \right]$$

dove
$$\mathcal{A}_{\rm f} = \frac{g_{\rm Lf}^2 - g_{\rm Rf}^2}{g_{\rm Lf}^2 + g_{\rm Rf}^2} = \frac{2g_{\rm Vf}g_{\rm Af}}{g_{\rm Vf}^2 + g_{\rm Af}^2} = 2\frac{g_{\rm Vf}/g_{\rm Af}}{1 + (g_{\rm Vf}/g_{\rm Af})^2} \qquad P_e = \frac{N_{eL} - N_{eR}}{N_{eL} + N_{eR}}$$
10/13/2009

Dimostrazione della formula dell'asimmetria polarizzata

$$A_{\ell r} = \frac{\sigma_{\ell} - \sigma_{r}}{\sigma_{\ell} + \sigma_{r}} \qquad \qquad L_{L\ell} = L_{Rr} = L_{g}$$
$$L_{Lr} = \sigma_{\ell}L_{L\ell} + \sigma_{r}L_{Lr} \qquad \qquad L_{Lr} = L_{R\ell} = L_{b}$$
$$N_{R} = \sigma_{\ell}L_{R\ell} + \sigma_{r}L_{Rr} \qquad \qquad P = \frac{L_{g} - L_{b}}{L_{g} + L_{b}}$$

$$\frac{N_L - N_R}{N_L + N_R} = \frac{\sigma_\ell L_{L\ell} + \sigma_r L_{Lr} - \sigma_\ell L_{R\ell} - \sigma_r L_{Rr}}{\sigma_\ell L_{L\ell} + \sigma_r L_{Lr} + \sigma_\ell L_{R\ell} + \sigma_r L_{Rr}} =
= \frac{(\sigma_\ell - \sigma_r) L_g - (\sigma_\ell - \sigma_r) L_b}{(\sigma_\ell + \sigma_r) (L_g + L_b)} =
= \frac{(\sigma_\ell - \sigma_r) (L_g - L_b)}{(\sigma_\ell + \sigma_r) (L_g + L_b)} =$$

$$= A_{\ell r} P$$

asimmetrie misurate

Le quantità effettivamente misurate, ossia le asimmetrie tra le sezioni d'urto forward-backword o left-right, al polo dello Z,

$$\begin{aligned} A_{\rm FB} &= \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}} \\ A_{\rm LR} &= \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle} \\ A_{\rm LRFB} &= \frac{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm L} - (\sigma_{\rm F} - \sigma_{\rm B})_{\rm R}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle} \end{aligned}$$

sono legate alle quantità precedenti dalle relazioni: esercizio

$$A_{\rm FB}^{0,\rm f} = \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm f}$$

$$A_{\rm LR}^{0} = \mathcal{A}_{\rm e}$$

$$A_{\rm LRFB}^{0} = \frac{3}{4} \mathcal{A}_{\rm f}$$

$$A_{\rm LRFB} = \frac{3}{4} \left[\frac{1 - 4 \sin^{2} \vartheta_{\rm eff}^{l}}{1 + (1 - 4 \sin^{2} \vartheta_{\rm eff}^{l})^{2}} \right]^{2}$$

$$A_{\rm LRFB}^{0} = \frac{3}{4} \mathcal{A}_{\rm f}$$

$$A_{\rm LR}^{0} = \frac{1 - 4 \sin^{2} \vartheta_{\rm eff}^{l}}{1 + (1 - 4 \sin^{2} \vartheta_{\rm eff}^{l})^{2}}$$

La sensibilità è molto maggiore per LR

(in realtà le asimmetrie sono ottenute dai fit completi alle distribuzioni in θ)

distribuzioni in $cos\theta$

asimmetrie adroniche

La misura delle asimmetrie adroniche implica il tagging, possibile solo per c e b.

In ogni modo, la sensibilità a sin² θ_{W} , essendo il suo valore prossimo a 1/4, è molto maggiore per i leptoni a carica intera che per i quark, per cui le asimmetrie adroniche sono dominate da \mathcal{A}_{e} piuttosto che da \mathcal{A}_{a}

misure sperimentali di LEP

polarizzazione del τ

leptonica permette di determinare $A_{\ell} = 0.1465 \pm 0.0033$

e quindi $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23159 \pm 0.00041$

misure a SLC

SLC aggiunge alle misure di LEP $A_{LR} e A^{lept}_{FBLR}$. La prima misura direttamente \mathcal{A}_e e tramite questo, $\sin^2\theta_{eff}$. Le seconde misurano tutti gli accoppiamenti leptonici. Nella misura della prima gli stati finali con elettroni sono rimossi, per eliminare i contributi del canale *t*. I rimanenti contributi non risonanti e gli effetti di radiazione iniziale sono sottratti. I risultati sono:

 $A_{\rm LR}^0 = \frac{2(1 - 4\sin^2\theta_{\rm eff}^{\rm lept})}{1 + (1 - 4\sin^2\theta_{\rm eff}^{\rm lept})^2} = 0.1514 \pm 0.0022 \longrightarrow \sin^2\theta_{\rm eff}^{\rm lept} = 0.23097 \pm 0.00027$

I risultati per le asimmetrie leptoniche, includendo per gli elettroni la misura precedente, sono:

\mathcal{A}_{e}	$0.1516{\pm}0.0021$
\mathcal{A}_{μ}	$0.142{\pm}0.015$
$\mathcal{A}_{ au}$	$0.136 {\pm} 0.015$

risultati combinati

cosa si usa:

Without le	epton universality	Corre	lations							
χ^2/d	lof = 32.6/27	$m_{\rm Z}$	$\Gamma_{\rm Z}$	$\sigma_{\rm had}^0$	$R_{\rm e}^0$	R^0_μ	R_{τ}^{0}	$A^{0,e}_{FB}$	$A^{0,\mu}_{\mathrm{FB}}$	$A_{\rm FB}^{0,\tau}$
$m_{\rm Z} \; [{\rm GeV}]$	$91.1876 \pm \ 0.0021$	1.000								
$\Gamma_{\rm Z}$ [GeV]	2.4952 ± 0.0023	-0.024	1.000							
$\sigma_{\rm had}^0$ [nb]	41.541 ± 0.037	-0.044	-0.297	1.000						
$R_{\rm e}^0$	20.804 ± 0.050	0.078	-0.011	0.105	1.000					
R^0_μ	20.785 ± 0.033	0.000	0.008	0.131	0.069	1.000				
$R_{ au}^{\hat{0}}$	20.764 ± 0.045	0.002	0.006	0.092	0.046	0.069	1.000			
$A_{\rm FB}^{0,{ m e}}$	0.0145 ± 0.0025	-0.014	0.007	0.001	-0.371	0.001	0.003	1.000		
$A_{\rm FB}^{0,\mu}$	0.0169 ± 0.0013	0.046	0.002	0.003	0.020	0.012	$0.001 \cdot$	-0.024	1.000	
$A_{\rm FB}^{0,\tau}$	0.0188 ± 0.0017	0.035	0.001	0.002	0.013 -	-0.003	0.009	-0.020	0.046	1.000

il set di 9 variabili di LEP a correlazione minima:

Polarizzazione	SLD	Parameter	Average	Correlations		ns
del τa LEP	OLD			\mathcal{A}_{e}	\mathcal{A}_{μ}	$\mathcal{A}_{ au}$
$A = 0.1439 \pm 0.0043$		\mathcal{A}_{e}	$0.1516{\pm}0.0021$	1.000		
$\mathcal{A}_{\tau} = 0.1400 \pm 0.0040$		\mathcal{A}_{μ}	$0.142{\pm}0.015$	0.038	1.000	
$A_{\rm e} = 0.1498 \pm 0.0049$		$\mathcal{A}_{ au}$	$0.136 {\pm} 0.015$	0.033	0.007	1.000

progressi in g_V, g_A

Media v_{μ} -e⁻ PDG g_{V} = - 0.040 ± 0.015 g_{A} = - 0.507 ± 0.014

LEP-SLC

 $g_V = -0.03783 \pm 0.00041$ $g_A = -0.50123 \pm 0.00026$

$\rho e \sin^2 \theta$

 $\rho_{\ell} = 1.0050 \pm 0.0010$ $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23153 \pm 0.00016$

identificazione di b e c quark

parametro d'impatto

tagging leptonico

confronto con SM

10/13/2009

80

confronto dei sin² θ_{eff}

