Valerio Ippolito INFN Sezione di Roma

WEAKLY-INTERACTING MASSIVE PARTICLES AND WHERE TO FIND THEM

a minimal journey through the forest of dark matter searches

From the conclusions of a keynote talk at a US conference in 2015:

From the conclusions of a keynote talk at a US conference in 2015:

"Nothing is as hard as looking for a black cat in a dark room, especially if there is no cat."

Valerio Ippolito INFN Sezione di Roma

From the conclusions of a keynote talk at a US conference in 2015:

we'll try to cover:

- •what is Dark Matter

•which ideas make sense to look for it • how far we are from answering

Why we look for WIMPs

Valerio Ippolito INFN Sezione di Roma

MASS THROUGH LIGHT

naive astronomy: measure **mass** by observing **light**

$$\frac{M_{\odot}}{L_{\odot}} = 5.1 \cdot$$

1930s: this "luminous mass" does not equal gravitational mass

look at motion of stars in galactic plane, or galaxies in Coma cluster

$$F(r) = G\frac{mM(r)}{r^2} = r$$

Valerio Ippolito INFN Sezione di Roma

 10^3 kg/W

1970s: systematic studies on galaxies' massive, invisible halo

Valerio Ippolito INFN Sezione di Roma

1980+: further evidence from gravitational lensing & CMB

WHERE DOES DARK MATTER COME FROM?

early universe: thermal equilibrium (same rate of interaction and annihilation)

as universe expanded: 1) particles lost kinetic energy to produce heavier particles 2) particles got diluted, hence interaction rate diminished

Valerio Ippolito INFN Sezione di Roma

WHERE DOES DARK MATTER COME FROM?

Valerio Ippolito INFN Sezione di Roma

should a **particle candidate** look like?

neutrinos are too fast to explain structure formation, and fail a giving the correct relic density

strong evidence of dark matter across many scales: how

$$\frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle} \sim 0.12$$

$$\langle \sigma_{\rm ann} v \rangle \approx \alpha_{\rm EM} / m_{DM}^2$$

if DM candidate interacts with a "weak" interaction, one gets correct order of magnitude of relic density: **WIMP miracle**?

-> need a new, neutral particle beyond the Standard Model 2

at
$$\Omega_{\nu}h^2 = \sum_{i=1}^{5} \frac{g_i m_i}{90 \,\text{eV}} < 0.0076 \ll \Omega_{dm}$$

massive

to explain gravitational observations

weakly interacting

if interacting at all...

explain relic abundance

correct annihilation rate and couplings

stable lifetime > 10^{17} s

typical interaction cross-section

DM mass

How we may detect them

Method #1: Use the available Dark Matter

direct detection

background levels...

Valerio Ippolito INFN Sezione di Roma

[spoiler alert: there is a method #2]

	build detectors which
	may detect the
	existing Dark Matter
	(DM)
	hope they do
_	experimental challenge
	set by DM mass and
	nature of DM-SM

interaction

indirect detection

WIMPS in our galaxy (Milky Way)

D

some kind of target

$E_R \sim keV$

HOW WOULD A SIGNAL LOOK LIKE?

f(v)

the Milky Way is immersed in a halo of DM particles - Earth rotates around the Sun, so we see an "apparent wind" with $v \sim 220 \text{ km/s}$

a signal would show ~7% yearly modulation

v [km/s

16

Earth also rotates around its own axis, so signal direction should change by 90 degrees every 12 hours

Projection of the WIMP flux in Galactic coordinates

a signal would show ~30% daily modulation

smoking guns, but:
- need time stability of detector
calibration/response/backgrounds
- need ~1000 (10) events for testing
annual (daily) modulation

17

how many events? for a 100 GeV WIMP: $\phi_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \times \langle v \rangle = 6.6 \times 10^4 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

we deal with rare events: one usually reasons in terms of event rates per target (fiducial) mass and data taking time

$$R = \frac{N_A}{A} \times \phi_{\chi} \times \sigma \sim$$

experimental needs:

source	events/cm²/r
solar neutrinos	~4x10 ¹²
cosmic ray muons	1
100 GeV WIMP	4x10 ⁵
1 TeV WIMP	4x10 ⁴

 $0.13 \,\mathrm{events}\,\mathrm{kg}^{-1}\mathrm{yr}^{-1}$

typical: < 0(10 tons), 5-10 years

- ton-scale detectors to collect enough events for discovery must **suppress backgrounds** (radioactivity, cosmics, neutrinos...)

EVENT RATE, IN A NUTSHELL

1. kinematics & velocity distribution dependence on incident energy \vec{q} θ E_R $-\cos\theta$) $2m_N$ m_N $\langle p \rangle \simeq \mu \langle v \rangle$

2. WIMP-parton interaction

spin independent ~ A^2

3. nuclear form-factor

$$\mathscr{L}_{\text{eff}} = \frac{1}{\Lambda^2} (\bar{\chi} \Gamma_{\text{dark}} \chi) (\bar{\psi} \Gamma_{\text{vis}} \psi)$$
$$\Gamma \in \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \sigma_{\mu\nu}, \sigma_{\mu\nu} \gamma_5 \dots\}$$

 $\lambda = \frac{h}{p} \simeq 20 \,\mathrm{fm} > r_0 A^{1/3} \,\mathrm{fm}$

$$\frac{dR}{dE_R} = R_0 S(E_R)$$

spectral function (masses and kinematics)

for spin-independent interactions:

$$\begin{split} M(\vec{q}) &= f_n A \underbrace{\int d^3x \, \rho(\vec{x}) \, e^{i \, \vec{q} \cdot \vec{x}}}_{F(\vec{q})} \Rightarrow \sigma \propto |M|^2 \propto A^2 \quad \text{mass} \\ \text{number} \\ \\ \text{fundamental} \\ \end{split}$$

couplings to nucleons

Valerio Ippolito INFN Sezione di Roma

$$R_0 \equiv \frac{2}{\sqrt{\pi}} \frac{N_A}{A} \frac{\rho_{DM}}{m_{DM}} \sigma_0 v_0$$

Fourier-transform of the density of scattering centers

FORM FACTOR, THE UNDERGROUND STONE GUEST

FORM FACTOR, THE UNDERGROUND STONE GUEST

the form factor effect is and influences our

Valerio Ippolito INFN Sezione di Roma

- the form factor effect is dominant for higher WIMP masses
 - and influences our choice of the target material

CHOOSING THE TARGET

sensitivity and noise+backgrounds+resolution

Valerio Ippolito INFN Sezione di Roma

• energy **threshold** of each experiment is a **trade-off** between • choice of **target** affected also by **backgrounds**/detection/cost

23

Vanilla Exclusion Plot THE TYPICAL DIRECT DETECTION RESULT

Thursday, March 29, 2012 (week)

- LHC calorimeters...)
 - check if signal modulates as expected)

Valerio Ippolito INFN Sezione di Roma

•need detectors sensitive to keV energies to probe WIMPs (compare to

•usually massive (ton-scale), years of data taking (ultimately necessary to

24

How it's done underground

choose physics signal

charge, light, phonons...

measure detector response

calibration, monitoring

suppress backgrounds

with shielding and analysis-level

make sure it's dark matter

measure modulation and direction

26

RADIOACTIVITY

key issue: WIMP event rate is low

radioactivity is the main background (e.g. 2 MeV photons \rightarrow 14 cm in LAr)

Valerio Ippolito INFN Sezione di Roma

signal (nuclear recoil, NR)

Х

Recoiling nucleus

 $v/c \approx 7 \times 10^{-4}$ E_R $\approx 10 \text{ keV}$

we want to reconstruct and discriminate these kinds of signals

Х

Valerio Ippolito INFN Sezione di Roma

28

BACKGROUNDS

external radiation: shields and vetoes

- example of shields: Pb (gammas), water (neutrons)
- example of active vetoes: Cherenkov (muons), scintillators (gamma, neutrons)
- use underground labs (LNGS, SNOLAB) to suppress cosmic rays (mostly muons)
- internal radiation from detector components: suppress & use MC
- analysis techniques (e.g. ML) to define fiducial volume
- generation of detectors
 - they may come from the Sun, supernovae, atmosphere...
- they really look like DM
- Obi-Wan-Kenobi directionality would be our only hope

Valerio Ippolito INFN Sezione di Roma

neutrinos constitute the ultimate background for the current

29

upper limit? discovery? neutrino floor?

30

THE MYSTERY OF DAMA

look for single-hit **scintillation** light in 25 NaI(Tl) crystals, 9.7 kg each

3-5 g/cm3 at room temperature, read out by 2 radiopure PMTs each

1 keV_{ee} threshold, 2.4 ton year

but: ⁴⁰K contamination gives **3.2 keV** e⁻

Valerio Ippolito INFN Sezione di Roma

5x5 matrix

31

DAMA claims a $\sim 12\sigma$ observation of an annual-modulation signal but no independent experiment managed to reproduce these results so far

any other experiment yet

Worldwide WIMP Searches

Valerio Ippolito INFN Sezione di Roma

33

1. WIMP interacts with nucleus a) excites atom? b) ionises atom? c) "heats" medium?

2. nucleus travels in liquid losing energy

experimental strategy: detect a) and b) by detecting light emitted in these processes

THE DUAL-PHASE TPC CONCEPT

 $E_{gas} \sim 3 \text{ kV/cm}$

Valerio Ippolito INFN Sezione di Roma

35

PUTTING DIRECT DETECTION ALTOGETHER

complementary strategies to reach neutrino floor

sensitivity driven by noble liquids (scintillation+ionisation vs ionisation-only)

Why collider searches

Valerio Ippolito INFN Sezione di Roma

What about producing WIMPs?

 build detectors which can detect everything else

PS

Pb

38

The invisible, through the visible

Valerio Ippolito INFN Sezione di Roma pp collisions @ 13 TeV

use the fact kinematics is closed on the plane transverse to the proton beams

missing transverse momentum (MET)

Extending the Standard Model

$\Delta m >> q^2$: effective field theory (as in the case of direct detection: Fermi-like interaction!) $\Delta m < q^2$: use simplified models

(simplified Lagrangian w.r.t. UVcomplete models like SUSY)

or: what are we all looking for?

a mediator an invisible DM candidate, " χ "

SM particles

_	mediator	DM	coupling strength
direct detection	choice of the target	choice of the technology	reach neutrino bkg
LHC	choice of the final state	almost irrelevant if < O(100 GeV)	background estimation, luminosity

THE TYPICAL SIMPLIFIED MODEL

Valerio Ippolito INFN Sezione di Roma

- 4-dimensional
 - coupling strength

41

• once interaction is fixed (e.g. vector), parameter space is (at least)

• mediator mass, DM mass, mediator-SM coupling strength, mediator-DM

• results often expressed in terms of 2D slices at **fixed couplings**

WHICH ROAD DO I TAKE?

LHC main a possibility of the strength of the strengt

can use bb/tt + MET and multiple signatures (mediator couples à la Yukawa with quark masses)

can use jets + MET and confirm with mediator searches & ancillary channels (MET+gamma, MET+W/Z...)

Valerio Ippolito INFN Sezione di Roma

•LHC may produce DM, and hence characterise a possible discovery

- strength: synergy of (often non-trivial) final states
- limitation: "invisible" requires trigger and MET
- •experimental strategy: cover all possible
- channels and explore the theory "idea space"

	LHC	direct detection	indire detect
scalar	low xsec, soft MET	•	
pseudo- scalar	low xsec, soft MET	;'((velocity suppressed)	:)
vector	large xsec	:) (spin independent)	
axial-vector	large xsec	:((spin-dependent: experimental issue)	

different people see different things...

Valerio Ippolito INFN Sezione di Roma

INVISIBLE CHANNELS

mono-jet, mono-W/Z, mono-photon...

[* plots by ATLAS, but CMS has similar approach]

"MONO-JET"

Н

arXiv:2102.10874

"MONO-JET"

Reducing the irreducible: estimating V+jets (V=W or Z)

if we pretend leptons are invisible:

- background uncertainty from residual differences between Z(vv) and the rest (e.g. muon uncertainties)

•fully link the Z(vv)+jets cross-section to the $W(\mu v)$ +jets one

$N_{meas}(Zvv) = k^* N_{meas}(W\mu v/ev) = k^* N_{meas}(Z\mu\mu)$

from a fit to data enriched in W/Z+jets

• do this differentially, as a function of $p_T(V) \rightarrow why?$

option A: "transfer factor" technique

$N(Z \rightarrow \nu \nu, \text{data}) \approx N(Z \rightarrow \nu \nu,$

transfer factor - as in SM measurements - becomes complex when adding more regions (subtract & correlate backgrounds)

option B: "simultaneous fit"

$$\mathcal{P}(n_{cb}, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}} \text{Pois}(a_b)$$

normalisation factors (free) nuisance parameters (systematics) nuisance parameters (low MC stats)

- as in Higgs discovery
- -each background (and systematic variation) corresponds to a histogram
- -systematic nuisance parameters describe how uncertainties impact bin contents across regions

two ways to do that

MC)
$$\cdot \frac{N(W \to \mu\nu, \text{data})}{N(W \to \mu\nu, \text{MC})}$$

 $(n_{cb}|\nu_{cb}) \cdot G(L_0|\lambda, \Delta_L) \cdot \prod f_p(a_p|\alpha_p)$

option **B** is nowadays the state-of-the-art

$P_T(W/Z)$ IN "MONO-JET" CONTROL REGIONS

fit parameters:

- W/Z normalisation (free, common also to Z(vv)+jets)
- ttbar/single-t normalisation
- shape/ normalisation uncertainties (constrained)

WEAPONS OF Z(vv) DESTRUCTION

V+jets xsec x BR, as a function of p_T

produce more W+jets than Z(II)+jets: use both to reduce statistical uncertainties

arXiv:1705.04664v1

v2 goes to NNLO in QCD, implemented recently @ ATLAS

 $\mathcal{L}(\mathcal{K}) = \iint_{\text{Region i}} \operatorname{Pois}\left(\begin{array}{c} u \\ N \end{array} \right) \times \left(\begin{array}{c} u \\ N \end{array} \right) \times \left(\begin{array}{c} u \\ N \end{array} \right)$

•fit from data a common, global scale factor to W and Z normalisation

•assume the W/Z crosssection ratio is known to a given precision

> (ATLAS MC accuracy: Sherpa NLO up to 2 partons, LO up to 4 partons)

CROSS-SECTION RATIOS AT HIGHER ORDERS

- key points:

•shape and normalisation uncertainties on the W/Z cross-section ratio - correlation scheme from state-of-the-art theory calculations • fit an overall correction factor common to W and Z

HOW THIS AFFECTS A SEARCH

Source of uncertainty and effect on the total SR background estimate [%]			
Flavor tagging	0.1 - 0.9	τ -lepton identification efficiency	0.1 - 0.07
Jet energy scale	0.17 - 1.0	Luminosity	0.01 - 0.05
Jet energy resolution	0.15 - 1.3	Noncollision background	0.2 - 0.0
Jet JVT efficiency	0.01 - 0.03	Multijet background	1.0 - 0.0
Pileup reweighting	0.4 - 0.24	Diboson theory	0.01 - 0.22
$E_{\rm T}^{\rm miss}$ resolution	0.34 - 0.04	Single-top theory	0.13 - 0.28
$E_{\rm T}^{\rm miss}$ scale	0.5 - 0.25	$t\bar{t}$ theory	0.06 - 0.7
Electron and photon energy resolution	0.01 - 0.08	V+jets τ -lepton definition	0.04 - 0.16
Electron and photon energy scale	0.3 - 0.7	V+jets pure QCD corrections	0.24 - 1.1
Electron identification efficiency	0.5 - 1.0	V+jets pure EW corrections	0.17 - 2.2
Electron reconstruction efficiency	0.15 - 0.2	V+jets mixed QCD–EW corrections	0.02 - 0.7
Electron isolation efficiency	0.04 - 0.19	V+jets PDF	0.01 - 0.7
Muon identification efficiency	0.03 - 0.9	VBF EW V+jets backgrounds	0.02 - 1.1
Muon reconstruction efficiency	0.4 - 1.5	Limited MC statistics	0.05 - 1.9
Muon momentum scale	0.1 - 0.7		
Total background uncertainty in the Signal Region: 1 5%_4 2%			

Total background uncertainty in the Signal Region: 1.5%–4.2%

THE BIGGER PICTURE

Source of uncertainty and effect on the total SR background estimate [%]			
Flavor tagging	0.1 - 0.9	τ -lepton identification efficiency	0.1 - 0.07
Jet energy scale	0.17 - 1.0	Luminosity	0.01 - 0.05
Jet energy resolution	0.15 - 1.3	Noncollision background	0.2 - 0.0
Jet JVT efficiency	0.01 - 0.03	Multijet background	1.0 - 0.0
Pileup reweighting	0.4 - 0.24	Diboson theory	0.01 - 0.22
$E_{\rm T}^{\rm miss}$ resolution	0.34 - 0.04	Single-top theory	0.13 - 0.28
$E_{\rm T}^{\rm miss}$ scale	0.5 - 0.25	$t\bar{t}$ theory	0.06 - 0.7
Electron and photon energy resolution	0.01 - 0.08	V+jets τ -lepton definition	0.04 - 0.16
Electron and photon energy scale	0.3 - 0.7	V+jets pure QCD corrections	0.24 - 1.1
Electron identification efficiency	0.5 - 1.0	V+jets pure EW corrections	0.17 - 2.2
Electron reconstruction efficiency	0.15 - 0.2	V+jets mixed QCD-EW corrections	0.02 - 0.7
Electron isolation efficiency	0.04 - 0.19	V+jets PDF	0.01 - 0.7
Muon identification efficiency	0.03 - 0.9	VBF EW V+jets backgrounds	0.02 - 1.1
Muon reconstruction efficiency	0.4 - 1.5	Limited MC statistics	0.05 - 1.9
Muon momentum scale	0.1 - 0.7		
Total background uncertainty in the Signal Region: 1 5%_4 2%			

Valerio Ippolito INFN Sezione di Roma

Total background uncertainty in the Signal Region. 1.570-4.270

"a precision search"?

[you may attempt at unfolding the Zvv/Wlv cross-section ratio and do better - can you?]

OR A SEARCH FOR PRECISION?

"MONO-JET" RESULTS

discovery potential for these WIMP models depends on assumed interaction and couplings

DM mass [GeV] 1000-95% CL limits 500

Valerio Ippolito INFN Sezione di Roma

 1.5-4.2% uncertainty on signal region background - theo: 0.3-1% for the W(lv)/Z(ll)->Z(vv) extrapolation - exp: electron/muon efficiency, jet energy scale/reso • probing s-channel (J^P=0⁻, 1⁺, 1⁻) and t-channel [36 fb⁻¹ only] **DM-SM** interactions

THE VISIBLE di-jet, di-lepton, di-top...

IF WE LOOK FOR THE MEDIATOR

Ye Olde Resonance Discovery Algorithm

- 1. collect the events
- 2. discriminate signal from background

(di-jet case)

let's take di-jet as an example

TWO WAYS OF DOING SO

Valerio Ippolito INFN Sezione di Roma

mediator-SM/DM coupling sets event rate and peak width

Implications for direct detection

1. take LHC results (high Q²) at fixed values of the couplings

2. extrapolate to low Q² of direct detection (EFT) caveat: 1605.04917

 $\mathbf{0^{+}} \quad \sigma_{\mathrm{SI}} \; \approx 1.1 \times 10^{-39} \; \mathrm{cm}^{2} \cdot \left(\frac{g_{\mathrm{DM}} \, g_{q}}{1}\right)^{2} \left(\frac{1 \; \mathrm{TeV}}{M_{\mathrm{med}}}\right)^{4} \left(\frac{\mu_{n\chi}}{1 \; \mathrm{GeV}}\right)^{2}$

 $\sigma_{
m SI}~pprox 0$ (suppressed by velocity dependent terms)

 $\begin{array}{ll} \mathbf{1}^{+} & \sigma_{\mathrm{SI}} \approx 6.9 \times 10^{-43} \ \mathrm{cm}^2 \cdot \left(\frac{g_{\mathrm{DM}} \, g_q}{1}\right)^2 \left(\frac{125 \ \mathrm{GeV}}{M_{\mathrm{med}}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ \mathrm{GeV}}\right)^2 \\ \mathbf{1}^{-} & \sigma^{\mathrm{SD}} \approx 3.8 \times 10^{-41} \ \mathrm{cm}^2 \cdot \left(\frac{g_{\mathrm{DM}} \, g_q}{1}\right)^2 \left(\frac{1 \ \mathrm{TeV}}{M_{\mathrm{med}}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ \mathrm{GeV}}\right)^2 \end{array}$

Valerio Ippolito INFN Sezione di Roma

focus on spin-1 due to available luminosity

58

SPIN-1 NEUTRAL MEDIATOR: ATLAS VS UNDERGROUND

Valerio Ippolito INFN Sezione di Roma

SPIN-1 NEUTRAL MEDIATOR: ATLAS VS UNDERGROUND

key message: results are **complementary** but depend on the **model hypotheses** (how the WIMP couples to SM particles)

When we'll know more

almost all LHC searches have implications for DM the question is how to convert this into a quantitative statement

Valerio Ippolito INFN Sezione di Roma

- be produced with WIMPs
- decay to metastable states

model

TRUIT complete theory

UV-

CORNERING SUPERSYMMETRY

•take Run-1 SUSY search results

- •take a simplified version of pMSSM
- •check how many points are excluded

yellow means <10% of the explored parameter space was excluded

•scan parameter space in regions which explain relic DM abundance (relic density and flavour constraints, + relaxed DD constraints)

must analyse 13 TeV data exploiting all signatures could really use some higher energy collider

63

The % challenge

jet+MET: reach in scale of new physics (EFT) for 3 ab⁻¹

l**ppolito** ne di Roma Valerio Ip INFN Sezione see also https://indico.cern.ch/event/539266

you need this level of precision...

- higher pileup, less room for MET triggers
 - spin-0 becomes more and more challenging
 - must exploit trigger tracking info also at L1 ➡ data scouting?
- "precision search": need %-level systematics
 - lepton and jet uncertainties
 - theory work needed!
 - use SM V+jets measurements?

The complementarity challenge

Valerio Ippolito INFN Sezione di Roma

- high-lumi LHC can beat direct detection up to neutrino background
- explore lower-cross-section extensions of the

What about higher energy?

green: xsec <= neutrino bkg
blue: 1000 fb⁻¹ @ 100 TeV
purple: compatible with
measured relic density

(for some choice of the couplings)

Valerio Ippolito INFN Sezione di Roma a higher-energy circular collider may push sensitivity_ to the TeV scale

dark matter exists

and we hope to see its interactions

need multiple strategies instrumental and low- vs high-Q²

rare events, complex processes

hard-to-model vs high-energy

complementary answers time will unveil the right questions

