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What we measure: cross-section

a +b — anything

P ™

Bullet (beam) target

The cross section is proportional to
the probability of a given process

geometrical definition

O

o. effective area of N
a target particle

(%
.

1655/

Thin target approximation:
{ << attenuation lenght A

Ni: number of target particles

S: total target area

E/

Probability that the bullet hit a target particle

_ effective area

Nt-a

total area S
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Cross-section

a+b — anything :-.-... fixedtarget .....
_____ vAt ¢
N,: number ofi:::::::l [ S ::::::: N,: number  of
bullet particles i_,__.__.__.__._!_,_i 00006066 target particles
N,=n_-S-vAt [nx = particle density } N,=n-S-¢
: 1
®=n, -v= particles flux = N, =®-S- At [N-B- A= ]
nt e

Let’s compute the number of interactions (Nevents)

N

N, -o N, -o _ Nevents 1 1
_ _ t _ t _ o = S
Nevents =Ny P =Ny~ = @S At —t— =& N, -0 AL —) At @ N,
Number of interactions in the time interval At Neventi _ G-®-N,

Interaction probability (transition probability ) per unit of time, unit of
area and only one target particle: W 5
— 0 .
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What we measure: life time

a — anything <— Unstable particle decay

dN = _FtOt th

The total number of particle decays is proportional to the total number of particles in the sample
(N) and to the time interval dt. The decay probability (['tot) is independent from the “past history”.

‘ N(t) = N(O)- et (number of particles at time t)

= (life time)

['tot = total width (transition probability W)

tot

A particle may decay in several final states. At every state is
associated a given transition probability (partial width)

r :.Zl“i ; T, = partial width.

Branching Ratio B.R. BR.= {= | }
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“Formation” Resonance

at+tb -R—-sa+h Elastic Cross-Section

q + b N R — X Total Cross-Section

* The scattering process happens through the “formation” of an
intermediate resonant state R;

* The resonance can decay in:
> same particles of the initial state (elastic scattering)
> other particles (anelastic scattering)

* The resonance is described by the Breit-Wigner formula:

2
2 2
Pém (255 +1)-(2Sp +1)| (E - Mg)* + 12/ 4
* P,n: beam momentum in the center of mass * S, Sy tinitial state spins
reference frame * J : resonance spin
« E: center of mass energy (Vs) I, I, sy - resonance total and partial widths
* Mg: resonance mass
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The resonance A

nt nt
A+t . . . +
L Peak in the elastic cross section ©p
p D
T x1||||1‘ |H|1||’ =T T Ll
Opeak = 195 mb
= 10?
g
g
U ! T b F !
10 ; §% ---------------------------- ~ ------------------------------ At ’\/S < 1 4 GGV Gelast — Gtotal
M= 1232 MeV """"""""""""""""""""" ‘ """"" ;’;’pf"f““iﬂ A
| """"""""""""""""""""" | """""""""""""""" trmme | """""""" P"""GéV/é """
107" 1 10 10°
- 1.2 2 3 4 5 B % 8 996 20 30 40
Vs GeV ,D ——T e T . —r

-16
.- h =6.58-10 GGV'S=5.6-1O'245
Ftot 118-.10° eV

From angular distribution of the decay products we derive that the spin of the A is 3/2
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The resonance A: Cross section @ p, an, atp, ®n

Js ey TP :

40 50 60 nt nt

102

A+t

7r+p —-> AT

rn — A"

Cross section (mb)

Tp — A°

T h > A

------- O L B R

fab
:I III\}Il L Il I\\Illl L L IIIi\I‘ L L

-1 1 2

M = 1232 MeV | == | peak position is the same || --- and Iy, is the same too

GeV/c

c. (rp—>rnp)=22mb
] . picco
N.B. inthe mp channel o, and o, are different |= i
picco

(rp— non)= 45 mb

Question: why o, in the channels np e n'p are different?
The answer i1s in the A isospin.
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Production Resonance: an example

p+p > "+ + X

/

: -—
production resonance S
([

)

=

=

=

LS
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" =
Z

©

Drell-Yan process

mw:ﬂ%+%f%@+@f

107"

It is a relativistic invariant

ATLAS: 50 years of history in one slide

Spin 1 mesons with different quark compositions

1 1 L II 1 I I L ll 1 1 1 LI llll
o X\ j L=40pb’ j
w/p -
;t , EF_mu15 2
y YCPbs 3
.. z -
3
t —
¢ 3
L=

ATLAS Preliminary
Data 2010 \Ns= 7 TeV

10°
my, [GeV]

1 10
Two muons invariant mass
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Cross Section efe—hadrons

2
a(e+e‘ — hadrons) 1 T
3
10 ¥(2S)
46/‘ v 4
et ooJ‘
— -5
g 10 %\
q ol
L
10
v 10”7
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- 1 | | B g | II | | | | LB I | 1 | 1 ==l el I =
103— Jhp x § i
a(e+e‘ — hadrons) W zh
R= :
+ - S j \
ole"e” - uu f
F %
.‘.‘,(:::. T || bR “__é“/

N.B.: the resonances are much
narrower than the case of

W'y invariant mass
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In an experiment at a proton-proton collider have been identified, among the several particles produced in the
final states, two muons back to back (that is collinear) of opposite charge. One has a momentum of 47 MeV/c
and the other one of 31 GeV/c (this kinematic configuration is very unlikely and it is very difficult to measure a
momentum as low as 47 MeV/c, but it has the merit to simplify the computation). Assuming that the two particles
are the daughters of a mother particle, find out the mass of the mother and, assuming a 5% error on the mass,

guess which is the particle.

P,=-47 MeV «—§ » P,=31GeV

The mother’s mass can be inferred from the quadrimomentum of the two muons:

Ey=m2 + p? =105 + 472 =115 MeV E2=\/mi +p2=y0.1052 +312 =31 GeV
E,=E,+E,=0.115+31 = 31.1 GeV B,=P,+P,=-0.047+31 = 30.95 GeV/c

The square of the quadrimomentum is a relativistic invariant and it is equal to the mass squared of the mother
(in the mother rest frame its energy is equal to its mass and its momentum is zero):

m=\[E2 - p? =V31.12-30.95? =3.05 GeV/c?

A 5% error on the mass value gives an uncertainty on the mass of 0.15 GeV/c2. We should check all
neutral particles in the mass range 2.90 — 3.20 GeV/c2. A good candidate is the J/¥ whose mass is 3.096

GeV/c2.
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The neutral pion has been discovered in the photoproduction on the proton at rest (y+p—19 +p). Compute the
minimal photon energy in the laboratory frame to achieve this reaction. (m_19= 135 MeV/c2 ; m_p=938 MeV/c?)

In order to compute the threshold energy we have to assume that the particles in the final state are produced
at rest in the center of mass reference system. We also remind you that the square of the total quadri-
momentum is a relativistic invariant.

Let’s call M the proton mass and m the 119 mass:

P =(E,P,); E,=(M0)

= PoP=(E +M,P); Pr=(m+M,0)

niz.

(PCM)2 = (g, +M) p2=(m+m)’

iniz. fin y

o E=ml1+™ |=135 1+ 135
% oM

] 145 MeV
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Usefull tips

* In one gram of matter there are about N, nucleons (the atomic weight of
a proton/neutron is 1)

* A few quantities given in a more suitable units
n=6.58-10° eV s
c=3-1023fm-s! =30cm-ns™
hc =197 MeV - fm

* Conversion factor in the natural units system (h=c=1):

1 MeV=152-10° st : 1Mev!=197fm
1s=3.10fm ; 1s!'=6.5.-101%ev

1m=5.07-10°ev? : 1m!'=1.97.10" eV
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A bit of theory: the S matrix

* We have an initial state |i> that evolves in the final state |f> due to an
interaction;

We work in the Dirac representation (interaction representation);

H=Hy+V, where H, is the free Hamiltonian and V, is the interaction
Hamiltonian;

The S matrix (function of V|) drives the state evolution from time t, until time t;

|W1(t)) = S(to, OIY1(t))

-t
S(t,t,)=exp % [vi(tnat’
t

* where

0

We have a conceptual problem to solve the integral because at different time t’ the
V| are not granted that commute with each other. We introduce a procedure of
time ordering (Time order product) that lead to the concept of “propagator”.
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A bit of theory: the S matrix

* We change the differential equation into * by appropriate symmetrization of the
an integral equation: integral on the integration domain we
have:
it
—1_ AW 1 1 0 .\Nt t
0 n=0 ty £

® it can be solved by successive

iterations. Hence we have first order
term, second order term and so on and

* N.B. Wick’s theorem transforms the
Time order product into Normal order

so forth. We apply the Time order product (ordering of the creation and
product: the bigger t (that comes annihilation operators) plus the field
afterward) to the left and the time contractions (propagators).

smaller (that comes before) to the right:

SOtty) = 1;

.t
Si(t,t,) = 1—%tjdtlvl(t1)-1 ;
2t
S%(t,ty) = 1-— j dt,\V;(t;) -1 +(—_j j dt,V;(t,) j dt,V;(ty);

O 0
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A bit of theory: the S matrix

We want to evaluate the S Matrix between the time —-oo and +oo; that is we have a free
state |i> and we would like to know how it evolves after the interaction:

|'¥(o0)) = S(—o0, )|

the amplitude probability to find a particular final state |f> is:
(F['W(o0)) = (f | S(—o0, 0)[i) =(F | S|i) = Sg
expansion of |W(eo)> in a complete set of eigenstates:

| W(0)y = X | FXF [¥(0)) = D | F)Sg
f f

Transition probability from the state |i> to the state |f>:

2
‘(ﬂ‘{’(w»‘ = Sﬁ (eigenstates normalized to 1)

Unitarity of the S Matrix (probability conservation):

ZSZ _1 It can not be violated in any
- fi = €= |case and in any way!
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* Let’s introduce the transition matrix T by factorizing the identity matrix |I: S =1+ T, then:

S, =(fISli=5 +i(2x)" 6% (p; - p, ) FITI)

* In order to have the transition probability we need to take the square of the second term,
therefore we will have a factor like this:

(25" lo* oy p.f =(2e)"5* (o, - ) (25" 50

4
WhenV —- « and T — « we have (Zn) 0(0) - VT

=D | W=(2x) 6% (p, - p, (AT VT

* To get rid of Vand T, we consider the transition probability per unit of time and
normalized to the volume V, but we have to pay attention to the normalization chosen
(one particle per unit of volume, two particles, etc...)

e With the help of Feynman diagrams and with the proper normalization to get rid of V
and T, one can compute the element of the matrix Tg or, with another terminology, the
element Mg,
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Fermi’s golden rule

* |t can be deduced with the time dependent perturbation theory of non relativistic
guantum mechanics, but it is also valid in this context:

‘2

7 . p(E) <——| Phase space

27
Wy = 7‘Mﬁ
N
\

Matrix element

Transition probability per unit of time

* The amplitude My, contains the dynamical information of the process

* The phace space contains only the kinematical information of the process. It depends on
the masses, energies and momenta of the particles involved in the process. It is more
likely a process to occur if there is “more room to manoeuver”.

> For istance a particle does not decay in two particles whose masses are bigger than the initial
mass because the phase space is zero.

N.B. Wj is a relativistic invariant. Mg and p(E) could be both invariant or just as
a product
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An example: QED

* QED handles the interaction of electrons/positrons with an electromagnetic field e.m.

I, = N g;(x)(iyﬂﬁﬂ - m)y/(x) - %(5VA,,(X)5VA“ (X))}

L =1+

LI/=,N -FOOA) | = N e w(x)rAOw(x) |

Normal order product: creation operators on the left and annihilation operators on the right

. H o=-L= -e/v[&(x)/a((x)w(x)}z —eN| |y +w}(/x+ +/§\')(w+ +‘/"%\ Create

/ 1\ \ posit.
Annihil. Create || Annihil. || Create | | Annihil.
posit. elec. photon photon elect.
* Example: Compton scattering e 4+ y o e+ y
Destroyed Creatéd

* The Normal order product, at the lowest order, must contain the operators:

- — - + s
Create elect. \Ll// A l//+ﬁ< Annihilate photon

Create photon /, \

Annihilate elect.
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QED: Feynman’s diagrams

* |If we multiply the operators among themselves we have eight processes:

-+ —4+ - e
y Kfy” y Kty~ t y Ky' y Ky
e + + + +
AVAVAVAY ’\/\_/
; Y
e+ . .
all particles destroyed positron scattering e*e” annihilation positron scattering
y Kty? y Kty~ v Ky* Ay~
W _ % y .
) g o
electron scattering all particles created

electron scattering pair production

* All these processes do not conserve the quadrimomentum at the vertex. In order to have
real processes we must combine two diagrams, that is we have to go to the secord order

of the S matrix expansion.

F1SVy=0 = (159
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Compton scattering

+
t

e +y > e+ vy r VN 2rs 2 4 €

+W

© 1 e / Xl

* The photon can be destroyed in X, and created in X; or the contrary;

propagator —%

* The propagator connects two vertexes. It is a virtual particle for which hold the relation:

E2 -p? = m?

* In case of fermionic propagator, if t; < t, we can think of it as a virtual electron that goes
from X; to X,, otherwise it is a virtual positron. The Time order product takes care of this.

X, e
m electron that moves back

in time = positron

For example:

Claudio Luci — Introduction to Particle Physics — Chapter 1



Radiative Correction

» Let’s take, for instance, the fundamental vertex of QED and let’s see how it is modified by
the four contributions of the second order terms of the S matrix expansion:

c; c.',

(-

* If we apply the Feynman rules to compute the second order terms, we find that these are
divergent, that is they give as a result infinite (this divergence is also present in the
classical electrodynamics, let’s take for instance the self-energy of the electron: U=e?/r).

* The “solution” of the problem is complex but just to make it simple we could say:
> an electron not interacting has a bare mass and a bare charge that are infinite as well;
> the interaction with the field changes these infinite values toward the values measured

experimentally:
# oo — oo = finite value
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Anomalous magnetic moment of the electron
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Anomalous magnetic moment of the electron




QED Feynman rules
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Mandelstam’s variables

p p'
* Let’s consider any kind of a 2 particles = 2 particles process: ' ;
* The 4 quadrimomenta are on shell and satisfy the relations: —_—
t
2 _ 2 m2 2 2 ;2 s 2 2 p [
Py =My, Py =My, Py =1y, Py =M, 2

* Moreover we have the total quadrimomentum conservation: Py +P, — p'l - P'Z =0

e All Lorentz invariant combination of the 4 external momenta may be expressed in terms of
the particles’ masses and 3 Mandelstam’s variables:

2 T
s-channel: annihilation

5= (p,+ pz)z =(p'y+P')
2

é—
<« |t-channel: scattering

t= (p,-p) = (p-p))

. (p1 _plz)z = (p'1_ p2)2

* Only two of these variables are independent, while their sum has a fixed value:

2 2 12 12
s+t+u—m1 +m2 +m1 +m2
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SAPIENZA  End of chapter 1
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