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Abstract

I discuss theoretical issues related to the top mass measurements
in hadronic collisions.
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1 Introduction

There is something strange about the current status of top mass measure-
ments at hadron colliders. Regarding the most precise measurements, per-
formed by kinematic reconstruction of the full tt̄ event, and commonly re-
ferred to as “Standard Measurements”, often it is not stated clearly what is
measured, in contrast with the very small error that is proudly quoted by the
experimental collaborations. In some circumstances, it is claimed that what
is measured is a “Monte Carlo” mass, i.e. just a parameter in the generator
used to perform the analysis. But yet extensive variations of Monte Carlo
parameters are performed in order to estimate errors, in a clear effort to
reach something more fundamental. Other measurements, for example from
the total cross section, or from some kinematic distributions, are presented
collectively as “Pole Mass Measurement”, that is (in the context of pertur-
bation theory) a theoretically well defined parameter. No attempt is made
to combine these pole mass measurements with the direct measurements.1

I remember having a discussion on this issue with Guido Altarelli, many
years ago, at an Italian conference on LHC physics. Much time has gone by,
and I do not remember the exact year and conference. A recurring argument
was circulating among theoretical physicists, stating that top mass mea-
surements at hadron colliders were just extracting the Monte Carlo mass,
a parameter that did not have a well defined field theoretical definition.
The argument went as follows: the top mass is extracted by fitting Monte
Carlo templates to measured distributions; Monte Carlo generators have just
leading order accuracy; different mass renormalization schemes cannot be
distinguished at leading order, since renormalization enters at least at one
loop; hence the Monte Carlo mass is not in a definite mass scheme. One-
line arguments like this are quite catchy, and tend to spread very quickly,
since they do not require any specialized knowledge to be understood. I
strongly disagreed with it. The measurements were clearly aiming at ob-
servables that were strongly correlated to the mass of the system of decay
products, i.e. were aiming at the pole mass. And the error associated with
the LO accuracy of the Monte Carlo were estimated by several methods,
typically by varying parameters in the Monte Carlo, and by comparing its
output to more precise next-to-leading order calculations. I expressed my
disappointment about the diffusion of this “Monte Carlo mass” concept to
Guido Altarelli. I told him that the argument was just used to scare the
experimentalists with theoretical concept that they were not very familiar
with, which was in fact an aspect of the issue that I was finding most irri-
tating. Guido’s answer was that, rather than scaring them, the argument
should have made them think. I could not reply to that, since for an instant

1I have heard a presentation where the speaker has jokingly introduced the subjects
saying that the top is the only Standard Model particle with more than one mass.
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I thought that perhaps he was subtly implying that I myself should have
done more thinking. This was quite typical of my exchanges with Guido.
They were never free of some sort of friction. And that was certainly not the
only occasion when I departed from a discussion with him with a slightly
sore feeling. I must admit that I was never great at verbally arguing about
physics issue, while Guido was clearly excellent at it. Yet, I was always ea-
ger to discuss with him. I had the perception (that I believe was shared by
many others) that in order to settle an issue you had to convince him, since
he was the uncontested authority in our field, and with the good reasons
that we all know. And discussing with him always helped me to acquire a
more detached and focused view of the problems. It is unfortunate that this
discussion stopped at that point, since I didn’t worry about this issue any
more until recent time.

In this work I express my personal views on this subject, that at the
moment is undeniably very controversial.

In the first section I will illustrate how and why the current status of
the theoretical interpretation of top mass measurements has been reached.
I will not try to fully reconstruct the historical development of all related
arguments, and thus I will certainly omit quoting more than one important
paper on this topic. I will rather focus on the arguments and papers that
have had more influence in determining the current status. The message that
I would like to convey is that, rather than finding or denying some relation
of the Monte Carlo mass parameter to some well defined field theoretical
parameters, we should find ways to estimate the error on the extraction
of a theoretically well defined mass parameters when using a Monte Carlo
generator.

In the second part of this work I will illustrate what I believe has been a
small but useful progress, i.e. an improved understanding of the relation of
the pole mass to the MS mass. It is a self-contained subject where analytic
calculations, not requiring modeling of non-perturbative and hadronization
effects, can lead to a partial progress in our understanding of the top mass
issues. I will expose this topic avoiding technicality as much as possible, yet
discussing what I believe are its most relevant aspects.

Needless to say, I am trying to convince Guido.

2 The top mass problem

The top quark mass is a key parameter of the Standard Model. Its large size,
of the order of the Electro-Weak scale, is associated with a Yukawa coupling
of order 1, that gives important contributions, via radiative corrections, to
Standard Model observables. After the Higgs boson discovery and the ac-
curate measurement of its mass, the allowed values of the W -boson and
top-quark masses have become strongly correlated, so that an accurate de-
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termination of both would lead to a SM test of considerable precision [1, 2].
At present there is some tension, at the 1.6σ level, between the indirect top-
mass determination from electroweak precision data (177 ± 2.1 GeV) and
the combination of direct measurements at the Tevatron and at the LHC [3],
that yields 173.34±0.76 GeV. More recent determinations [4, 5, 6, 7] favour
an even lower value, close to 172.5 GeV.

The top mass value is also critical in the issue of vacuum stability in
the Standard Model [8, 9, 10]. At high scales, the Higgs quartic coupling λ
evolves to increasingly small values as mt grows, and above mt = 171 GeV,
i.e. very close to the present world average, λ becomes negative at the
Planck scale, rendering the electroweak vacuum meta-stable, while for mt >
176 GeV the electroweak vacuum becomes unstable. The only conclusion
that can be drawn from this result is that the current value of the Top and
Higgs masses are such that no indication of new physics at any scale can
be inferred by imposing the stability or metastability of the vacuum. On
the other hand, the fact that the Higgs quartic coupling nearly vanishes at
the Planck scale may have some deep meaning that we are now unable to
unveil.

The abundant production of top pairs at the Large Hadron Collider (LHC)
provides an opportunity for accurate top mass measurements, that are gener-
ically performed by fitting mt-dependent kinematic distributions to Monte
Carlo predictions. The most precise ones rely upon the full or partial
reconstruction of the system of the t and t̄ decay products. The CMS
measurement of Ref. [5], yielding the value mt = 172.44 ± 0.13 (stat) ±
0.47 (syst) GeV, falls into this broad category.2

In contrast with the increasing experimental precision with which the
Top mass is measured at the LHC, the theoretical interpretation of the
measurements seems to be in a questionable state. The so called “direct
measurements”, i.e. those that rely upon the reconstruction of the kinemat-
ics of the tt̄ system, have been heavily criticized by some theorists as not
possessing a clear relation between the extracted mass and a well defined
quantum field theory parameter of the underlying theory.

As a consequence of that, in many experimental papers and talks, it is
preferred not to qualify the measured mass parameter with a precise field-
theoretical attribute, such as the “pole mass” or the “MS mass”, and, at
times, even to qualify it as a “Monte Carlo” mass [1, 3, 12]. This has led
to the paradoxical situation that the most precise measurement available is
not receiving the attention that it deserves from the theoretical community,
and the interpretation of the measurement is left in a “limbo”, with the
hope that some theoretical work may clarify it in the future. At the same
time, several theorists have suggested observables that allegedly overcome

2A similar measurement performed at 13 TeV [11] yields a value of 172.25±0.08(stat+
JSF )± 0.62(syst) GeV.
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the problems of the direct measurements. Although all these suggestions are
valuable, since they can provide alternative determinations and consistency
checks, none of them seem to possibly lead to an accuracy comparable with
the direct determination. Furthermore, these alternative measurements are
grouped in a different category by the experiments, that do not attempt to
combine them with the standard measurements.

The aspect of the top mass measurement that is mostly puzzling the
theoretical community, is that the top mass cannot be defined in terms of
the mass of the system of its decay products. Since top is a coloured object,
no final-state hadronic system can be unambiguously associated with it. On
the other hand, the top mass bears certainly some relation to the mass of the
system of objects arising from its decay (i.e. leptons, neutrinos and hadronic
jets). The mass distribution of this system can be computed, and the top
mass enters as a parameter in this computation. This is in fact the case
for many parameters that are measured in high energy physics experiment.
In the case of top, however, the computation in question is performed by a
parton shower generator. Thus the idea that what is measured is a “Monte
Carlo” mass. This idea has been expressed by several authors, but not
always in the same sense: one line of thinking has to do with the perturbative
accuracy of Monte Carlo generators, while others worry about the non-
perturbative effects that they model. As far as the “perturbative accuracy”
is concerned, the argument is essentially as follows: since shower Monte
Carlo are only accurate at leading order, they cannot possibly distinguish
mass parameter definitions that differ only at next-to-leading order, like the
pole mass and the MS mass, whose difference amounts to several GeV’s.

In the following I will examine more carefully the arguments and the
studies that have led to the current situation. I will show that the most
disturbing aspect of the “Monte Carlo Mass” concept is its ambiguous role.
In other words, it has acquired a different significance according to different
authors, up to the point where it is used to support conflicting points of
view.

2.1 The “Perturbative” argument

Fixed order theoretical calculations of (infrared safe) final state distributions
can be catalogued according to their perturbative accuracy as Leading Order
(LO), next-to-leading order (NLO) and so on. The top mass parameter in
a theoretical calculation must be defined within a given renormalization
scheme, since (divergent) perturbative corrections arise order by order in
perturbation theory. For the top mass parameter, one such scheme is the
pole mass scheme, that prescribes to subtract the divergent mass corrections
in such a way that the pole in the quark propagator remains fixed order by
order in perturbation theory. Alternatively, the MS scheme prescribes to
subtract the pure 1/ε pole in the divergent mass correction. Thus, in the MS
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scheme the position of the pole in the top propagator receives corrections at
all orders in perturbation theory. The two definitions lead to perturbatively
equivalent theories, in the sense that there is a perturbative expression of
the pole mass in terms of the MS mass that allows one to translate a physical
result in the pole mass scheme into the corresponding physical result in the
MS scheme. We notice that the MS mass begins to differ from the pole mass
at first order in perturbation theory, that contributes about 7.5 GeV to the
total difference.

We report below the relation between the top pole mass mp and MS
mass m up to the four loops level [13],

mp = m+ 7.557︸ ︷︷ ︸
NLO

+ 1.617︸ ︷︷ ︸
NNLO

+ 0.501︸ ︷︷ ︸
N3LO

+ 0.195± 0.005︸ ︷︷ ︸
N4LO

GeV. (1)

for m = 163.643 GeV and α
(6)
s (m) = 0.1088, in order to show the typical

numbers that come into play. Thus, the “perturbative argument”, if pushed
to its extreme, would lead us to conclude that the relation of the extracted
mass parameter to some physically well defined one has an ambiguity of the
order of 10 GeV.

The earliest written record of this argument that I found is in ref. [14],
where it is stated quite clearly that “the top-quark mass derived from the
kinematical reconstruction does not correspond to a well defined renormal-
ization scheme leading to a theoretical uncertainty in its interpretation. Nev-
ertheless it is usually interpreted as the top-quark pole mass”. In the same
work it was proposed to extract the top mass by comparing kinematic ob-
servables in tt̄ events involving one additional jet. Such process can be com-
puted at NLO level, and so it must use a well defined mass renormalization
scheme.3

This argument has also been used to support mass measurement based
upon the tt̄ cross section, that is now computed at NNLO order [15].

Sometimes, all the mass measurement techniques that refer to a fixed
order calculation beyond the Leading Order are collected together and pre-
sented as “measurements of the top pole mass”, in contrast with direct
measurement where the mass scheme is never specified (see https://twiki.
cern.ch/twiki/pub/CMSPublic/PhysicsResultsTOP/pole_mtop.pdf).

2.2 The “Non Perturbative” argument

There are claims in the literature that the difference between the top pole
mass and the mass extracted in direct methods arises due to non-perturbative

3 It should be recalled, however, that the difference between the pole and the MS mass
receives contributions beyond the NLO order that amount to more than 2 GeV. Thus, one
may also argue that in an NLO calculation the pole mass parameter used there is related
to a fundamental parameter of the theory with an uncertainty of at least 2 GeV.

5

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsTOP/pole_mtop.pdf
https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsTOP/pole_mtop.pdf


effects, that are only modelled in a shower Monte Carlo. This claim is cer-
tainly true, although the difficult bit in it is to quantify this difference.
Again, this difference is used to motivate a “Monte Carlo mass” concept,
that cannot be related to a well defined theoretical parameter because of
these non-perturbative effects. It does not have the same meaning as the
“Perturbative” difference discussed previously. But also if we restrict our-
selves to this “Non Perturbative” meaning, different authors interpret it
differently.

In ref. [16], the direct measurements are criticized on the basis that they
reconstruct the top mass making use of jets, and jet reconstruction is affected
by hadronization effects that are modelled by the shower Monte Carlo. In
contrast, they propose using observables that only depend upon the lepton
kinematics and that are insensitive to production dynamics, and thus should
not (in their opinion) be affected by hadronization effects.

Other kind of lepton observables have also been advocated in ref. [17],
There, however, an attempt is made to single out those observable that seem
less affected by shower and hadronization effects, on the basis of Monte Carlo
simulation study. In other words, the authors rightfully recognize that also
leptonic observables may be subject to hadronization corrections, and try
to quantify these effects by Monte Carlo studies.

A considerably more elaborated argument was first put forward in ref. [18],

where it is stated quite explicitly that “it is not mpole
t that is being mea-

sured by the Tevatron analyses”. The argument goes through several steps,
that I can only summarize here. First of all, it is argued that the pole mass
scheme is a poor choice, because of the presence of an ambiguity of order
ΛQCD associated with the mass infrared renormalon (that I will discuss later
in this work), and that the so called MSr scheme avoids this problem. The
MSr mass is a mass parameter that depends upon a scale R. It is defined
using the same self-energy diagrams that contribute to the pole mass, but
their contribution is limited to loop momenta of order larger than R. Thus,
as R becomes small, the MSr mass approaches the pole mass. It is argued
in [18] that an MSr mass, with R taken of the order of 1 GeV, should be
used as mass parameter.

The argument is further developed by considering top production at high
momentum in e+e− collisions at energies much larger than the top mass. It
is argued that the hemisphere masses (defined by dividing the event with a
plane orthogonal to the trust axis) are calculable using SCET techniques,
up to the inclusion of power suppressed effects of order Λ, provided the
mass parameter is the MSr mass. From this framework, implications for the
standard measurements at the Tevatron are drawn. However, they suffer for
the fact that in standard measurement the top is not ultrarelativistic, and
the SCET factorization cannot be applied.

It must be stressed that in ref. [18] it is recognized that the Monte Carlo
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mass parameter should be quite close to the pole mass. More specifically, it
is claimed that it should be close to the MSr mass evaluated at a small scale,
that in turn is close to the pole mass. This point of view is very different
from the “perturbative” one, that leads to differences of order αsmt between
the pole and the Monte Carlo mass.

There are several followups of the work in ref. [18]. In ref. [19], it was
argued that, in general, an additional uncertainty of 1 GeV should be ac-
counted for in top mass measurements at hadron colliders. It is also argued
that the top pole mass in general cannot be determined with a precision
better than 1 GeV because of the mass renormalon problem. Although it
is stated somewhere in this paper that 1 GeV “is the energy value I use
in this talk for what theorists call hadronization scale”, this value, quoted
in the abstract and in many places in the paper, has been echoed as is in
several other publications and talks, to be taken as a serious hard limit on
the precision that can be achieved in the measurement of the top mass by
direct methods. In subsequent works [20], Hoang and collaborators attempt
to quantify a relation between the so called Monte Carlo mass and an MSr
mass evaluated at 1 GeV. Essentially, always in the framework of highly
boosted tops, they compute the jet mass using both an NNLL SCET calcu-
lation, and the Pythia8 [21] shower Monte Carlo. They absorb the difference
in the two results by a shift in the Pythia8 mass parameter with respect to
the MSr mass used in SCET, and argue that this shift is the difference be-
tween the Monte Carlo and the MSr mass. Indeed, they find that the Monte
Carlo mass exceeds the MSr mass by about 200 MeV with an uncertainty
of about the same size. On the other hand, also the pole mass exceeds the
MSr mass by a similar amount. Whatever method one adopts to resum the
divergent series that gives the pole mass in terms of the MSr mass, it seems
that the difference between the pole mass and the Monte Carlo mass should
be significantly less than 1 GeV.

We also observe that in [20], effects that are accounted for in the SCET
results (that is supposed to be NNLL accurate) and are not present in
Pythia8 (that certainly cannot claim this accuracy) are absorbed into a shift
in the mass. It thus seems that the mass shift they find, rather than having
a universal character, should be dependent upon the chosen observable.

2.3 Summary of the issue

We have seen at least three arguments that are used to criticize the standard
top mass measurements:

1. The perturbative argument (i.e., MC are only LO accurate)

2. A non perturbative argument: jets have non-perturbative corrections,
thus we should avoid top mass observables that involve jets, (i.e., use
leptonic observables).
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3. A deeper non perturbative argument: since MC’s implement ad hoc
models of non-perturbative effects, we should not rely upon them, since
they imply an irreducible non-perturbative error. Rather, we should
resort to methods that allow to treat non-perturbative corrections from
first principles.

These arguments have different meaning, and in particular the first one is
independent from the remaining two, since it deals with perturbative effects,
while the other two address non-perturbative issues. Yet, for example, in
ref. [22] it is stated that the translation from the Monte Carlo mass to a short
distance mass can only be estimated within a 1 GeV accuracy, quoting in
particular [18],4 and this statement is used to advocate that it is preferable
to extract the top mass by considering observables that can be calculated
in QCD at least at NLO. It is unclear why NLO precision should get rid of
non-perturbative effects.

Regarding the first of the three arguments listed above, it should be
reminded that one cannot simply say that a Monte Carlo has only LO ac-
curacy. The accuracy of a Monte Carlo depends upon the observable, and
there is no simple statement that can qualify it for all observables.

The production and decay dynamics of a coloured resonance in the
narrow-width limit factorize in perturbation theory, and become indepen-
dent, as a consequence of the fact that the resonance can propagate a long
time before decaying. Thus, in the narrow width limit and in perturbation
theory, there is an unambiguous definition of the system of the resonance
decay products, whose mass coincides with the resonance pole mass to all
orders in perturbation theory if the pole mass scheme is used. The factor-
ization feature of perturbation theory is also implemented in Shower Monte
Carlo generators, where radiation in production and decay are developed
independently, and preserve the mass of the decaying resonance. Thus, up
to non-perturbative effects and soft radiation of energy comparable to the
resonance width (that can violate factorization because of interference be-
tween production and decay) the resonance mass appearing in the Monte
Carlo can be identified with the pole mass.

One could still argue that the accuracy of the Shower Monte Carlo gener-
ator does play a role in the mass determination. Typically, in top production,
the radiation generated at the production stage can enter the b-jet cone, or
radiation from the b-quark can escape the jet cone, thus altering the mass
of the reconstructed decay system. These effects can lead to an error on the
extracted mass. This error, however, can be reduced by improving the per-
turbative accuracy of the Monte-Carlo, or by tuning the Monte Carlo in such
a way that it better describes radiation in production and the structure of
the b-jet. In other words, these errors are modeling errors, and their impact

4 A few months later, this 1 GeV accuracy would have gone down to 200 MeV in
ref. [20].
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can be estimated (and in fact is estimated by the experiments) by varying
suitable parameters in the shower Monte Carlo. But none of these errors is
associated to problems in the perturbative definition of the top mass.

Fixed order calculations of kinematical distributions involving top quarks
are also subject to soft radiation and non-perturbative effects, and thus can-
not be considered as privileged observables for pole mass determinations, to
be presented in isolation from those obtained with direct measurements. If
the former can be considered pole mass determinations, the same holds for
the latter. Notice that this also holds for total cross section. Even if one
is willing to believe that the total cross section has no linear power cor-
rections (i.e. a correction suppressed by a single power of a hadronic scale
divided by the top mass), one should remember that total cross section mea-
surements requires extrapolations outside of a fiducial region, and fiducial
regions have cuts that can introduce linear power corrections. Associated
non-perturbative effects must thus be estimated also in this case.

We can also add that the accuracy of the Monte Carlo generators cur-
rently used in standard measurements make use of POWHEG or MC@NLO genera-
tors, including NLO corrections in production. Most modern Monte Carlos,
like Pythia8 [21] and Herwig7 [23], include matrix element corrections to
top decay, that makes them essentially (up to an irrelevant normalization
factor) NLO accurate in decay. Herwig7 also implements its own POWHEG

implementation of NLO corrections to top decay. Furthermore, there are
recent NLO+PS generators that implement top production and decay in-
cluding finite width, non-resonant effects and interference of radiation in
production and decay [24].

The second argument is based upon the general feeling that leptonic
observables should not be affected by hadronization effects. It is easy, with
a simple example, to convince ourselves that this may not be the case.
Consider the decay of the top into a W and a b jet. The emission of an extra
soft pion at large angle with respect to the b jet can represent a typical non-
perturbative effect. Such emission would always subtract an energy of the
order of few hundred MeV’s from theW , thus reducing also the lepton energy
by few hundred MeV’s. Thus, it is likely that linear power corrections are
also present in leptonic observables, and a corresponding uncertainty should
be estimated and associated with them.

The third item in the list should be regarded more carefully. It is cer-
tainly undeniable that shower Monte Carlo do not implement a solid theory
of the leading power suppressed effects. It would certainly be desirable to
have such a theory, or to perform top mass measurement in frameworks
where such a theory is available. This seems to be the case for top mass
measurements performed by a threshold scan of the e+e− cross section (see
[25] and references therein), or for the recently proposed mass measurement
based upon the shape of the γγ mass spectrum at the LHC [26]. While
the first possibility is conditioned by the future developments of high energy
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physics experiments, the second one seems to be limited by statistics even
at the high luminosity LHC phase.

We have seen that there is a sequel of papers that advocate the use of
highly boosted top-quark jets, claiming that they can be computed up to the
leading power suppressed correction. These approaches require validation
against data,5 full scrutiny and criticism by the theoretical community, and,
most important, should be demonstrated to be practically useful, i.e. they
should lead to top mass measurements with an an error smaller than the
leading power suppressed effects that they claim to model correctly. At the
moment, these conditions do not seem to be fulfilled.

So, the question remains about what to do with top mass measurements
by direct methods at hadron colliders. It is obvious that we have an error due
to non-perturbative effects that should be estimated, but it is not enough
to state that it is an error of the order of 1 GeV. We should understand
whether it is 1 or more, 0.5, 0.2 or less GeV’s. Some authors, typically those
advocating the use of boosted tops, have argued in the past for uncertainties
of non-perturbative origin, of magnitude near 1 GeV, affecting the relation
of the Monte Carlo mass, and also of the pole mass, to some short distance
mass. As we have seen, however, the 1 GeV figure is scarcely motivated as a
hard limit. One also gets the impression that these “near a GeV” uncertainty
keep decreasing with time, as more thorough analyses are performed, leaving
us wondering why such a large value was ever quoted in a first place.

2.4 What to do

We have seen that the theoretical problems related to the determination of
the top mass at hadron colliders boil down to the problem of quantifying
how power suppressed corrections affect the measurement. More specifi-
cally, it has to do with the uncertainties associated with how Monte Carlos
implement power suppressed effects, and how they match them to perturba-
tive effects. These Monte Carlo uncertainties have been translated by some
authors into the concept of a Monte Carlo mass.

Translating a Monte Carlo inaccuracy into a Monte Carlo mass concept
has also led to the equation: the Monte Carlo implements perturbation
theory at leading order, thus its mass parameter cannot be associated with a
well defined mass scheme. In this second case, it is quite clear that the right
question to ask should have been: what is the error on the measurement
due to the fact that the Monte Carlo is only accurate at leading order.
This question has in fact been asked by the experimentalists, that have
studied the errors associated with the MC perturbative inaccuracies with
several techniques, and by theorists, that have developed improvements in
the generators to promote the accuracy of the Monte Carlo to the NLO level.

5We should remember that this is always the case in perturbative QCD, that is a
consistent framework, but is based upon some unproven assumptions.
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The question now is whether uncertainties due to power suppressed ef-
fects can be reliably estimated in similar ways, i.e. by varying Monte Carlo
parameters, or by including plausible alternatives in the model of hadron
formation that they implement. This is currently done by the experimental
collaborations and by Monte Carlo developers.6 Yet, with these methods
the doubt remains that we may be missing something, and investigations
aiming at a better understanding of power suppressed effects, and their
eventual interplay with renormalons, would be welcome. At the moment,
however, there is no sound argument that suggests that the Monte Carlo
mass is related to some well-defined mass parameter via a systematic shift.
It has been argued by some authors that, since shower Monte Carlo have a
1 GeV cut off on soft radiation,7 their mass parameter should be identify
with an MSr mass at a scale R = 1 GeV, rather than a pole mass, which
yields a difference of few hundred MeV’s. It should be recalled, however,
that Monte Carlos implement soft radiation by ensuring that virtual effects
cancel completely the real emission corrections in inclusive quantities, via
a mechanism known as “shower unitarity”. This mechanism implements
in practice the cancellation of soft singularities. However, also finite, non-
singular soft effects are cancelled out in this way, and we should remember
that self energy mass corrections are non-singular. Thus, the “Shower cut
off” argument does not track down Monte Carlo effects that can convert a
pole mass to an MSr one.

Notice that it is also easy to set up simple and catchy arguments to
prove that the Monte Carlo mass parameter is the top pole mass. One could
argue, for instance, that, since Monte Carlos implement a top propagator
with a complex pole at a fixed position, that pole must be at the (complex)
top pole mass, since the use of a short distance mass would yield a pole
position that is blurred by the mass renormalon effects. Needless to say,
also this argument is not very convincing, and it is clear that these issues
require more serious thinking. However, it doesn’t seem appropriate to tell
the experimental community that until such thinking is done they are not
allowed to tell what they are actually measuring. Rather than telling the
experimentalists to wait for new theoretical developments to interpret their
results, it would be far more constructive to point out to them methods to
estimate the uncertainties associated with the limitations of the generator
they use. For example, if the lack of radiation below the Monte Carlo cutoff
scale is a concern, one should recall that this cutoff scale can be changed.
One could setup a different tune of the Monte Carlo, using a different cut-off
scale, and examine whether it leads to relevant differences in the extracted

6As an example, the increase in the error in the 13 TeV top mass measurement of CMS
reported in [11] relative to the previous 8 TeV measurement is due to the introduction of
alternative models of colour reconnection in Pythia8 (see [27, 28]).

7We note again the loose use of the 1 GeV figure. In Pythia8, such cutoff is by default
500 MeV.
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top mass. I would also like to stress that this work should not be necessarily
done by the experimentalists. It can be done by theorists as well, using
simplified version of top mass observables and of detector effects.

3 The renormalon problem

If the renormalon ambiguity on the top pole mass was as large as 1 GeV, it
would make no sense to measure the top pole mass with the experimental
precision that is quoted today. Fortunately, it turns out that this ambiguity
is in fact much smaller. In refs. [29] and [30] the relationship of the pole mass
to the MS mass for the top quark is studied. They find compatible results
for the central values, while for the renormalon ambiguity they quotes values
of 110 MeV and 250 MeV respectively, both safely below currently quoted
systematic errors.8

In the rest of this article I will briefly review the mass renormalon prob-
lem. I will also try to clarify why the quoted errors are so different in the
two publications.

3.1 A simplified description of the renormalon problem

The quark mass parameter m that we introduce in our Lagrangian does not
necessarily coincide with the quark pole mass, which is the position of the
pole in the quark propagator. More precisely it coincides with it only at
zeroth order in perturbation theory. At higher orders the mass parameter
requires renormalization, but this can be carried out without ever referring
to the pole position, like for example when using the MS prescription.

In the following I will denote with m the mass parameter renormalized
in the MS scheme.9 The O(αs) correction to the position of the pole in the
heavy quark propagator turns out to have a linear infrared sensitivity to the
scale of the momentum flowing in the loop, i.e. to yield a contribution of
the form ∫ m

0
dl αs, (2)

where l is the scale of the loop momentum. The upper cutoff arises since
we have assumed that ultraviolet divergences related to the large l region
have been subtracted by renormalization. Here we assume that the renor-
malization scale is taken equal to m. Thus, the pole position is given by an

8In fact, values in this range were obtained much earlier in refs. [31, 32], mostly in a
bottom physics context, but since the renormalon ambiguity does not depend upon the
heavy quark mass, they also apply to top.

9It is common practice to use the term “MS mass” (that we call m in this paper)
to denote the running MS mass, m(µ), that depends upon a scale µ, evaluated self-
consistently at the scale µ = m(µ).
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expression of the form

mP = m+N

∫ m

0
dl αs +O(α2

s), (3)

where N is a suitable normalization factor.
We now assume heuristically that we can obtain the higher order terms

by simply writing

mP = m+N

∫ m

0
dl αs(l), (4)

with

αs(l) =
1

b0 ln l2/Λ2
=

αs(m)

1− αs(m) b0 ln m2/l2
=

∞∑
n=0

αn+1
s (m) bn0 lnn

m2

l2
.

(5)
Inserting (5) in (4), and recalling that∫ m

0
dl lnn

m2

l2
= m 2n

∫ 1

0
dx lnn

1

x
= m 2nn! (6)

we get

mP = m+N

∞∑
n=0

m (2b0)
n αn+1

s (m)n! . (7)

The factorial growth of the coefficients of the perturbative expansion is what
is called “renormalon”, where the name is suggested by the fact that it arises
due to the renormalization group evolution of the coupling constant. It leads
to a power expansion that has zero radius of convergence. This is related
to the fact that the integral in eq. (4) runs over the Landau Pole, i.e. the
divergence of αs(l) when l = Λ. The terms in the sum (7) initially decrease
for αs(m) small enough, but at some value of n they start growing again.
The value at which the minimum is attained is easily obtained by use of the
Stirling approximation n! ≈

√
2πn exp(n lnn− n). The term of order n+ 1

in Eq. (7) can be written as

δm(n+1) = Nmαs(m)
√

2π exp

[(
n+

1

2

)
lnn− n+ n ln(2b0αs(m))

]
, (8)

that has a minimum when the derivative of the exponent with respect to n
vanishes

lnn+
1

2n
+ ln(2b0αs(m)) = 0 . (9)

Under this condition the minimal term can be written as

δmmin = Nmαs(m)
√

2π exp

[
1

2
lnnmin − nmin −

1

2

]
. (10)
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Solving eq. (9), we get the value of n at the minimum

nmin =
1

2b0αs(m)
− 1

2
+O(αs(m)) (11)

so that

δmmin ≈ Nm

√
παs(m)

b0
exp

1

2b0αs
= N

√
παs(m)

b0
Λ. (12)

A rough procedure to sum divergent series is to sum up the terms as long
as they decrease, stopping at the minimum, that therefore gives a first indi-
cation of the uncertainty in the result.

An alternative way to deal with factorially divergent expansion is by use
of the Borel transform. Given the power series

f(αs) =
∞∑
n=0

cnα
n+1
s , (13)

the corresponding Borel transform is defined as

B[f ](t) =
∞∑
n=0

cn
tn

n!
(14)

and we have formally

f(αs) =

∫ ∞
0

dt e−t/αsB[f ](t). (15)

In the case of eq. (7), where cn = N(2b0)
nn!, we get

mP −m = Nm

∫ ∞
0

dt e
− t
αs(m)

∞∑
n=0

(2b0)
ntn = Nm

∫ ∞
0

dt e
− t
αs(m)

1

1− 2b0t
.

(16)
The presence of the pole along the real axis is again a manifestation of the
renormalon problem.

The Borel procedure gives an alternative, more educated method for the
summation of a factorially divergent power expansion: one takes as result the
principal value of the integral, and as uncertainty something proportional to
the (absolute value) of the imaginary part that arises when the contour of
integration is distorted above or below the singularity (at t = 1/(2b0) in our
case) in the complex plane. In ref. [33] it is proposed to take the absolute
value of the imaginary part divided by π as the one-sided ambiguity, that
in our case leads to

Nm
1

2b0
e

1
2b0αs(m) =

N

2b0
Λ. (17)

In the following we will call this method for estimating the renormalon
ambiguity the “Im/Pi method”. In ref. [29] the Im/Pi method is adopted,
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with the motivation that it works well in context where the renormalon effect
can be related to some physical observable [33], and one can check with data
that it gives reliable results.

Notice that the form of the minimal term in eq. (12) differs parametri-
cally by the one in eq. (17), due to the presence of the extra factor

√
αs(m).

In fact, in order to use the minimal term to estimate the ambiguity of the
result we should also account for the fact that several terms of similar size
may lie near the minimum. Starting again from eq. (7), we can expand the
exponent around the minimum to get

δmn+1 ∼ δmmin exp

[
(n− nmin)2

2nmin

]
∼ δmmin

[
1 +

(n− nmin)2

2nmin

]
. (18)

It is clear now that the size of the region where the terms of the series have
similar size is proportional to

√
nmin. For definiteness, let us define this

region by requiring[
1 +

(n− nmin)2

2nmin

]
< f, with f > 1. (19)

This leads to
|n− nmin| <

√
2(f − 1)nmin (20)

and by multiplying the size of this region by the minimal term we get.

√
2(f − 1)nminN

√
παs(m)

b0
Λ = N

√
(f − 1)π

b0
Λ (21)

This has the same parametric form of the ambiguity determined with the
Im/Pi method, and is in fact identical to it if we choose f = 1 + 1/(4π).

In the context of this oversimplified illustration of the mass renormalon
problem, we also introduce the concept of the so called MSr mass [34]. We
define it as

mMSr(R) = m+N

∫ m

R
dl αs(l) . (22)

or, equivalently

mP = mMSr(R) +N

∫ R

0
dl αs(l) . (23)

Comparing eq. (23) to eq. (4) and (7), we see that the difference between the
pole mass and the MSr mass is given by the same power expansion as the
difference between the pole mass and the MS mass, with the only difference
that αs is evaluated at the scale R rather than the scale m.

The MSr mass looks like a formal interpolation between the MS mass m
(when R = m) and the pole mass (when R = 0). However, at the low end,
when µ = l the integral does not exist. For µ > l, on the other hand, the
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whole series is convergent, and does not manifest any factorial growth for
large n. In fact, the coefficients grow factorially as long as n < log(m/µ).
For larger n, the factorial growth is damped out.

Since mP is µ independent, we can also derive from (23) an evolution
equation

µ
dmMSr(µ)

dµ
= −Nµαs(µ), (24)

that, unlike the typical renormalization group evolution equations, has also
a linear dependence upon the scale µ. This allows for the solution to have
a well-defined perturbative expansion in terms of the coupling evaluated at
some fixed scale, relative to its value at µ = 0. On the other hand, it is also
associated with the factorial growth of its coefficients. Notice also that if we
use the notation mP(m) to denote the pole mass, and mMSr(m,R) the MSr
mass of a heavy quark with MS mass m, we have

mP(m)−mMSr(m,R) = mP(R)−R . (25)

In fact, the left hand side is equal to

N

∫ R

0
dl αs(l) , (26)

according to equation (23), and the right hand side is equal to the same
quantity according to eq. (4) with m replaced by R, and mP taken as the
pole mass corresponding to a MS mass equal to R.

As a last point, we can ask what happens if there are other heavy flavours
(typically bottom and charm) below the top mass. The answer is quite
obvious: we just replace αs(l) in eq. (4) with a variable flavour αvf

s (l) that
solves the evolution equation

µ2
d

dµ2
1

αvf
s (µ)

= −bvf0 (µ), bvf0 (µ) =
11Ca − 4Tf [3 + θ(µ−mc) + θ(µ−mb)]

12π
.

(27)
We can immediately anticipate that the change in the mass relation will
not be dramatic, since it is induced by a relatively small change in αs in a
relatively small region of the integration domain. However, the renormalon
uncertainty will be determined by eq. (17) with Λ corresponding to the 3-
flavour Λ. This is easily understood, since the factorial growth at large order
is controlled by increasingly small momenta, and thus cannot be sensitive
to flavours with large mass.

3.2 The full story

The Pole Mass mP is given in terms of the MS mass m by an expansion of
the form

mP = m(µm)

{
1 +

∞∑
n=0

cn(µ, µm,m(µm))αn+1
s (µ)

}
, (28)
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where m(µm) is the MS mass evaluated at the scale µm, and µ is the renor-
malization scale. The coefficients have been evaluated up to the fourth order
in αs [13, 35]. For the moment we assume that we have only one massive
flavour, and all other are massless. Formula (28) was originally presented in
the 6-flavour scheme, where also divergences arising from the heavy flavour
loops are subtracted according to the MS prescription. The coupling con-
stant is in this case the (nl + 1)-flavours (where nl is the number of light
flavours) coupling constant. The same result can be expressed in the so
called decoupling scheme, which is the scheme where divergences caused by
the heavy flavour loops are subtracted at zero momentum [36], in which case
the coupling constant is the nl flavours one.

In order to obtain the decoupling scheme formula, it is enough to ex-
press the (nl + 1)-flavours strong coupling in terms of the nl one, according
to the standard matching formulae (see the QCD review in ref. [1]) and
expand to the relevant order. Since the matching conditions are known at
four loops [37, 38]), the full four loop accuracy of eq. (28) can be retained.
From now on, we assume that formula (28) is expressed in the decoupling
scheme. We stress that also in this case heavy fermion loops do enter in the
calculation, but they are renormalized by zero momentum subtraction.

The leading IR renormalon divergence implies the following large-n be-
haviour of the perturbative coefficients [39] and [33]10

cn(µ, µm,m(µm)) −→
n→∞

N
µ

m(µm)
c(as)n , (29)

where

c
(as)
n+1 = (2b0)

n Γ(n+ 1 + b)

Γ(1 + b)

(
1 +

s1
n+ b

+
s2

(n+ b)(n+ b− 1)
+ · · ·

)
.(30)

The b and si coefficients can be found in ref. [29]. The si coefficients of the
sub-leading O(1/ni) behaviour can all be given in terms of the coefficients
of the beta-function [39]. We notice that m(µm) cancels when inserting (29)
in (28).

Although the proof of the form of the asymptotic expansion is non-
trivial, it is not difficult to understand its properties. First of all, the leading
asymptotic behaviour arises from the region of small momenta running in
the loops. Since we are using a decoupling scheme, it is then natural that
the heavy quark mass and the scale at which it is evaluated drop out. So,
the only scale that can appear in the mass correction is µ. If we neglect for
the moment the mass of the light flavours, the form in eq. (29) is the only
one allowed by dimensional analysis. The form of eq. (30) then follows by
imposing that in the derivative of the mass correction with respect to µ the
factorially growing terms should cancel at high orders, consistently with the
fact that factorial growth should arise from the low momentum region.

10Here we follow the notation of ref. [29]
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The coefficient N cannot be computed exactly from first principles at
the moment. In the large nl limit (both positive or negative) it assumes the
form [40]

lim
|nl|→∞

N =
Cf
π
× e

5
6 , (31)

which equals 0.97656 for Nc = 3 (Cf = 4/3). In ref. [41] it was noticed
that the third and fourth known terms of the mass conversion formula (28)
already show the renormalon asymptotic behaviour, and this can be used
to infer higher order terms in the top pole mass relation. This was used
in ref. [29] to extract the value of N by fitting the third and fourth order
coefficient of the exact calculation and give an improved determination of
the mass relation including the resummation of the asymptotic terms.11 The
mass relation was determined by using the Borel prescription, illustrated
earlier. The asymptotic expansion was evaluated by taking the principal
value in the inverse Borel transform formula. Then, its first four terms where
subtracted and replaced with the exact ones. The renormalon ambiguity,
obtained according to the Im/Pi prescription, was determined to be 70 MeV,
in the case in which the bottom and charm quark mass effects are neglected.

The procedure is modified when the charm and bottom mass effects
are included. I will not describe it here in detail. I only wish to remark
that in this case the renormalon ambiguity is obtained from the asymptotic
expansion of the pole mass relation with three light flavours. In other words,
the leading renormalon ambiguity only depends upon the number of light
flavours, and nothing else. It is thus the same for the top, bottom and charm
pole masses, and it was determined to be 110 MeV.

Adopting αs(MZ) = 0.1181±0.0013 and mt = 163.508 GeV (that yields
αs(mt) = 0.108531 for the 5-flavour coupling constant, the results can be
summarized by the formulae

mc, mb massless:
mt,P

mt
= 1.06164+0.00086

−0.00089 ± 0.00043 (32)

mc = 1.3, mb = 4.2 GeV:
mt,P

mt
= 1.06213+0.00088

−0.00096 ± 0.00066, (33)

where the last error is the irreducible ambiguity in the Borel integral, ob-
tained with the Im/Pi prescription, and the upper and lower error on the
central value are the sum in quadrature of all (reducible) errors in the pro-
cedure, that are largely dominated by the uncertainty in αs.

In ref. [30], the same task was dealt with a rather different method.
Before discussing it, it is useful to compare the final result with that of
ref. [29]. For a top MS mass of mt = 163 GeV used in [30], formulae (32)
and (33) yield mt,P = 173.047 and 173.127 respectively, to be compared

11 Yet again, the observation of ref. [41] was made much earlier in a bottom physics
context, and fits to extract the value of N were performed even before the fourth order
term was known, see refs. [31, 42].
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with the 173.086 and 173.165 values reported on the last column of table 5
in ref. [30], in the row corresponding to the R value equal to mt. The final
value they quote at the end of section 4.4 is 173.186 GeV, about 60 MeV
larger than the one obtained here using the result of ref. [29], and thus well
within the uncertainty. On the other hand, they quote a larger uncertainty,
of 180 MeV when the bottom and charm masses are neglected, and of 250
MeV when they are taken into consideration. It is instructive to examine
the source of the differences. For simplicity, I will focus upon the case of
massless bottom and charm quarks.

In ref. [30], an extensive use is made of the MSr mass. In the case of
massless bottom and charm, this is defined as

mP = mMSr(R) +R

∞∑
n=0

c′n(µ,R,R)αn+1
s (R), (34)

where αs is defined in the 5-flavours scheme, and the coefficients c′n are
almost the same as those in eq. (28), since they are given by the same set
of Feynmann diagrams except for those involving top loops. Was it not for
this difference, we would have mMSr(mMSr) = m(m). This is the first of a
number of subtleties involved in the definition of the MSr mass in ref. [30].
More subtleties come into play when the effects of the bottom and charm
masses are included. For the present discussion, however, these subtleties are
irrelevant. The important point is that we can express mMSr(R), for R near
the top mass, in terms of the MS mass m, and, as shown in our elementary
example, the MSr mass obeys an evolution equation free of renormalons, so
that it can be computed at any scale R below the top mass, at least for not
too low values of R. Thus, we have the freedom to evaluate the pole mass
in eq. (34) at a scale R of our choice, with the first term evaluated using the
evolution equation for mMSr(R), while the second term is evaluated using
some prescription to handle the factorial growth of the coefficients, that is
again given by eq. (29).

The method used in [30] to estimate the asymptotic sum is as follows:

1. Define: mP(n) to be given by eq. (34) truncated up to (and including)
the nth order, and define ∆(n) = mP(n)−mP(n− 1).

2. Find the minimal term ∆(nmin) and the set {n}f = {n : ∆(n) ≤
f×∆(nmin)}. The factor f is defined to be “larger but close to unity”,
and the value f = 5/4 is adopted, without further justification, in
ref. [30].

3. The midpoint of the covered range of values in mP(n) for n ∈ {n}f
is used as central value, and the error is taken as half the size of the
covered range. Scale variation is applied to the results within the range
and included in the error.
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Figure 1: In the left figure, the terms in the perturbative expansion for the
pole mass relation are plotted as a function of the order. In the right figure,
the pole mass ambiguity as a function of the pole mass, determined using
the methods D and I described in the text are plotted as a function of the
MS mass m for two choices of the parameter f . The value corresponding to
the Im/Pi method is also shown. The vertical lines correspond to m = 1.3,
4.2, 20 and 163 GeV.

First of all, we notice that this method resembles the one presented in the
previous section, eq. (19), except for point 3. In fact, rather than taking
half the size of the range of values covered by mP(n), it seems more natural
to take the sum of all ∆(n) divided by two.12 In the following we will
adopt this amendment for item 3, and furthermore we will not consider scale
variation effects, that we will discuss further on, and refer to this procedure
as “method D”, where D stands for “discrete”. According to the discussion
following eq. (17), the Im/Pi method should roughly correspond to method
D, with the choice f = 1 + 1/(4π).

The situation is illustrated in fig 1, where the size of the terms for the
perturbative expansion of the pole mass relation13 are shown as a function of
the order in the left plot. In the right plot, we show the ambiguity in the top
pole mass as a function of the top mass m, taking f = 5/4 or f = 1+1/(4π).
As suggested by eq. (25), a plot analogous to the right plot in fig. 1 could be
shown representing the renormalon ambiguity, for a fixed MS mass, of the
second term of eq. (34) as a function of R. Such plot is easy to obtain, and
it is indistinguishable from the one shown in fig. 1. Thus I will not include
it here. The reader should thus keep in mind that the plot shown in fig. 1 is

12Following literally the procedure of item 3 one would get a null error if the set {n}f
consisted of a single element.

13They are taken from ref. [29], table 2, multiplied by 163 GeV and by the factor
N = 0.4616, according to the same reference.
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also representative of the renormalon ambiguity as determined in ref. [30] as
a function of R instead of m, and that the vertical black lines in the figure
correspond to the specific values considered there.

The pole mass ambiguity should not depend upon m, since it is deter-
mined by the small momentum region. However, because of the “jumpy”
nature of the D prescription, we see considerable variations in the error es-
timate, that get worse as the mass decreases. In order to remedy to this
problem, we can improve the procedure by extrapolating it to non-integer
values of n. This approach was also used in ref. [29] in order to give an
alternative estimate of the sum of the asymptotic series, and turned out to
give a result that exceeded the one obtained with the Borel prescription by
only 22 MeV. Here I adopt a related procedure, that has the advantage of
requiring a shorter and more transparent explanation:

• Calling mP(n) the sum of the asymptotic expansion up to (and in-
cluding) the nth term, one finds the value of n0 such that mP(n0) −
mP(n0−1) is at a minimum. In other words, the nth term of the series
is the smallest one.

• One finds a cubic polynomial P (n) such that P (n) = mP(n) for n =
n0 − 2, n0 − 1, n0 and n0 + 1. The polynomial P (n) is taken as the
extension of the series to non integer values of n. In particular, the
value of the terms of the series at any n are now given by dP (n)/dn.

• One finds nmin such that d2P (n)/dn2 = 0 for n = nmin, and interprets
it as the location of the minimal term. P (nmin) is taken as the central
value for the resummed result.

• The error is taken equal to dP (n)/dn evaluated at n = nmin, times
half the range in n such that dP (n)/dn does not exceed its minimal
value by more than a factor f .

We call the above procedure “method I”, where I stands for “interpolation”.
The pole mass ambiguity obtained with this method is also shown in fig. 1,
where it is seen to stabilize considerably the result down to masses of a few
GeV. It can also be noticed that, in an average sense, it seems consistent
with the discrete method. At very low values of the mass, however, it
also becomes unreliable. This is not unexpected: at low value of the mass
the minimal term occurs very early, when the series has not reached its
asymptotic form. Therefore, the use of a method based upon the size of the
minimal term cannot be recommended in this case. On the other hand, the
Im/Pi method always yields a constant ambiguity of 70 MeV, irrespective
of the value of the mass. We notice that method I, with f = 1 + 1/(4π), is
fairly consistent with the Im/Pi method, as the simple argument following
eq. (17) suggests.
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A point that needs discussion is the method adopted in ref. [30] to per-
form scale variation. The minimal term and the set {n}f is found for the
central value of the scale, and then the scale variation is performed on the
result. However, one should keep in mind that also the set {n}f can be
affected by scale variation, and its change should be included, since it leads
to scale compensation. This is an important point, that deserves a more
detailed discussion.

If we knew the whole perturbative expansion for the pole mass relation,
it would be formally independent of the renormalization scale. The series,
however, is only asymptotic, and we should devise a method to sum it up.
Such method better be scale independent too, so that the result of the sum
is also scale independent. It is easy to show with an example, borrowed from
our oversimplified model, that this is the case for the Borel method. Let us
assume that the top mass relation is exactly given by the formula

mP = m+

∫ m

0
dl αs(l), (35)

where αs(l) is the one-loop strong coupling constant, and we assume that
the only massive flavour is the top. We know how to express the above mass
relation in terms of α(m), by using the Melling transform technique, that
we now interpret as a formal, order-by-order procedure:

mP −m =

∫ m

0
dl αs(l) = m

∫ ∞
0

dt e−t/αs(m) 1

1− 2b0t
. (36)

We now want to express the same relation using α(µ), with µ of order m,
but different from it. This can be done as follows:

mP −m =

∫ m

µ
dl αs(l) +

∫ µ

0
dl αs(l)

=

∫ m

µ
dl αs(l) + µ

∫ ∞
0

dt e−t/αs(µ)
1

1− 2b0t
. (37)

The first term can be expressed as a function of αs(µ) as long as µ >
ΛQCD, and in fact it has a convergent expansion in terms of αs(µ), while the
second term has the divergent, asymptotic expansion, still in terms of αs(µ).
We now show that the two expressions, if the Borel integral is evaluated
according to the principal value prescription, are identical, i.e. the scale
variation of the series resummed according to the principal value in the
Borel integral is zero. In order to prove it, we take the difference of the two
formulae both regulated according to the principal value prescription. We
get ∫ m

µ
dlαs(l) +

∫ ∞
0

dt
[
µe−t/αs(µ) −me−t/αs(m)

] 1

1− 2b0t
= 0 . (38)
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Figure 2: Scale dependence of the pole - MS mass difference. The scale is
varied by a factor of two above and below m. The curves labelled as “fixed
range” are obtained by holding the position of the minimal term and of the
range fixed while varying the scale; the curves labelled as “variable range”
are obtained by recomputing the minimal term and the range for each scale
choice. In the case of method I the result does not depend upon f , while in
the case of method D a mild dependence upon f is found, as can be easily
understood from the definition of the method.

But now we see that the principal value prescription is no longer needed,
since both terms in the square bracket become equal to ΛQCD for 1−2b0t = 0.
At this point we have to show that the expression vanishes. It certainly
vanishes for µ = m, and its derivative with respect to µ, given by

−αs(µ) +

∫ ∞
0

dt

[
e−t/αs(µ)

(
1 + µ

∂

∂µ

−t
α(µ)

)]
1

1− 2b0t

= −αs(µ) +

∫ ∞
0

dt
[
e−t/αs(µ) (1− 2b0t)

] 1

1− 2b0t

= −αs(µ) +

∫ ∞
0

dte−t/αs(µ) = 0, (39)

vanishes also, and thus we have full scale independence of the result.
In resummation methods that rely upon the minimal term, scale inde-

pendence is no longer exact, since a truncation of the series is involved. But
it is quite clear that the location of the minimal term must be kept variable
with the scale, since it leads to scale compensation. This is illustrated in
fig. 2. The figure was obtained from eq. (4), and its expansion given by
the terms in eq. (7), by expressing αs(m) as a function of αs(µ) (using the
leading order formula) and expanding again in powers of αs(µ), a procedure
that can be easily performed using algebraic manipulation programs. The
scale µ is taken equal to 2m and m. The series can then be resummed using
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our prescriptions D and I that rely upon the minimal term. We consider the
two approaches: one where we recompute the location of the minimal term
and of the range for each scale choice, and one where we do not, this last
one corresponding to ref. [30]. It is clear that in both the D and I methods,
further scale compensation takes place if we recompute the location of the
minimal term and the range when we vary the scale. When using method
I, the scale variation almost disappears, which is consistent with the obser-
vation that this method is fairly close to the Im/Pi prescription. Again,
in the D method, due to its jumpy nature, scale compensation, although
considerable, is less effective. When going at very low value of the mass,
both methods become quite unstable, again suggesting that it is better to
avoid the use of minimal term based prescriptions in this case.

In summary, although some freedom in the determination of the renor-
malon ambiguity cannot be avoided, one can identify three aspects in the
procedure of ref. [30] that should be amended: the choice of the parame-
ter f ; the insistence in evaluating the sum of the asymptotic expansion at
low scales using a minimal term based, discrete method; and the procedure
adopted to determine scale variation uncertainty. As far as the choice of f
is concerned, some justification for the chosen value is clearly missing. As
far as going to low scales for determining the renormalon ambiguity, it is
clear that when using resummation methods based upon the minimal term
there is essentially no limit to the size of the ambiguity that one can get,
since at sufficiently low scales the first term of the expansion is the minimal
term, and it can become as large as one pleases because of the Landau pole.
Finally, the method adopted for the scale variation uncertainty does not
include effects (i.e. the displacement of the minimal point and the range)
that lead to scale compensation.

As a conclusion of this discussion, we may wonder whether the issue of
the size of the mass renormalon ambiguity will ever have any importance at
the LHC. If we are arguing about whether the ambiguity is 110 or 250 MeV,
this seems, at the moment, very unlikely. While the mass renormalon is
now the only non-perturbative ambiguity that we can discuss to such detail,
there are certainly other non-perturbative effects, very likely associated with
renormalon uncertainty, that are much less understood, and that pose a
much more serious threat to the accuracy of the top mass determination at
the LHC.

4 Conclusions

The problem of the top mass measurement at hadron colliders is certainly a
very subtle one, and has received the attention of many researchers. At the
moment, there is no wide consensus in the theoretical community on how it
should be dealt with.
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In the present work I have reviewed the current theoretical status, high-
lighting several issues that need to be resolved. In the following, I summarize
my view on the subject.

In Monte Carlo generators the top decay products are distributed with a
Breit Wigner distribution. Thus, the corresponding mass parameter should
be qualified as the top pole mass. It is clear that Monte Carlos represent
physics processes only in an approximate sense, and thus, if we use them to
extract the pole mass by fitting mass sensitive distributions, the result will
be subject to errors due to Monte Carlo inaccuracies. However, this is true
of any calculation of a physics process. Thus, I do not accept the view that,
because of these inaccuracies, one should qualify the fitted mass parameter
as a “Monte Carlo mass” rather than the top pole mass. What one should
instead do is to ask how the approximations and inaccuracies of the Monte
Carlo propagate into mass sensitive observables, thus leading to an error on
the extracted top pole mass. Observe that this is the same approach that we
adopt when we perform fixed order calculations, or resummed calculations
at various level of precision. There is no reason why Monte Carlo generators
should be treated differently.

We can loosely separate the approximations and inaccuracies of the
Monte Carlo into two categories: those that affect the perturbative part,
and those that affect hadronization phenomena and their matching to the
perturbative part.

In relation to the Monte Carlo inaccuracies and approximations in the
perturbative part, much has been done in order to understand their impact.
We have now at our disposal generators of increasing perturbative accuracy,
that include only the shower, the shower with the inclusion of matrix el-
ement corrections (MEC), or the shower matched to an NLO calculation
(NLO+PS) of top production and decay. By comparing them, we can assess
the errors associated with the less accurate generators, and at the same time
get an estimate of the remaining inaccuracies.

It is clear that for the standard measurements of the top mass, the most
relevant component of the perturbative model is the formation of the b jet.
Thus, a shower Monte Carlo that handles production with only leading
order accuracy, but performs matrix element corrections to top decay, may
be quite adequate for this purpose. Thus, it is important to examine the
Monte Carlo accuracy for the observable at hand. By relying upon the
generic statement that Monte Carlos have only leading order accuracy, we
simply miss the point.

Notice that in higher orders calculations to be used for top mass extrac-
tion in standard measurements, such as those that enter the NLO+PS gen-
erators, we must use a mass scheme such that the top mass is close enough
to the pole mass (i.e. that differs from it by less than the top width), oth-
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erwise an important shift in the mass of the reconstructed top14 at the next
perturbative order would systematically arise. Thus, we might as well use
the pole mass scheme in these contexts.

More subtle effects, not correctly modelled with the Monte Carlo, have to
do with interference of radiation in production and decay. It is unclear in this
case whether the radiated parton should be considered part of the system
of the top decay products (this phenomenon is a perturbative precursor of
the non-perturbative color reconnection problem). The worry is that these
emissions, if not implemented correctly, may induce systematic shift in the
mass of the reconstructed top that would be difficult to characterize.

In recent times, techniques to deal with interference effects in produc-
tion and decay within the framework of NLO+PS generators have become
available [43, 44], and have been used to build a tt̄ generator [24]. This has
been compared to a generator that does not include these features [45], and
it was found to yield very similar results. This can be taken as evidence
that interference in production and decay has little impact on top mass
measurements.

In a recent study [46] it has been shown that the new generator of
ref. [24], interfaced with Pythia8, yields results on the mass of the recon-
structed top that differ from the ones obtained with POWHEG-hvq interfaced
with Pythia8 (that is now the default of the LHC experimental collabora-
tions) by less than 50 MeV, if one assumes to have full access to the “particle
truth” level, or less than 200 MeV, if the experimental resolution is taken
into account. Results like this give us confidence that we have control over
the perturbative side of our generators. They should be challenged and scru-
tinized by the theoretical community, also by building and trying different
generators with the same or better accuracy.

Monte Carlo inaccuracies due to the modeling of non-perturbative ef-
fects, and to their interplay with renormalons, are certainly harder to ex-
amine. Even there, however, some recent progress has taken place. The
calculation of the fourth order term in the relation of the pole mass to the
MS mass, yielding a contribution of 200 MeV, has allowed to make reliable
projections on the size of higher order terms, to the point where one can
be confident that the pole mass can be safely used for the LHC top mass
measurements. I recognize, however, that this is just one piece of the puzzle.
Other power suppressed effects may be more tricky to estimate.

Notice that estimating a “perturbative precursor” of a non-perturbative
effect does not necessarily yield an upper bound on the latter. For exam-
ple, the fact that at leading order interference between radiation in pro-
duction and decays is small does not imply that colour reconnection effects

14Here, by “reconstructed top” I mean a system defined at the particle level that is
likely to have originated from the decay of a top quark. We may define it, for example, as
the hardest b-jet, the hardest positive lepton and the hardest neutrino of matching flavour.
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are small. This counter-intuitive fact may be also understood if we assume
that non-perturbative effects are associated to renormalons, in which case a
contribution at a given perturbative order may be followed by others that
decrease less than geometrically and have all the same sign. Under these
conditions, the given contribution cannot be considered a good estimate of
the error due to the missing terms of higher order.

It is clear that more theoretical work is badly needed in this framework,
with new ideas on how to estimate linear power suppressed effects and their
interplay with renormalons. The works of ref. [18] and its followups go in
the right direction, but should be extended to cover top quarks of moderate
transverse momenta in order to be useful for standard top mass measure-
ments, and should focus upon assessing the errors associated with direct
measurement techniques.

There are other kinds of studies that are, in my opinion, even more
urgent. Since Monte Carlos do fit the data, and since there is much arbi-
trarity in the way they model non-perturbative effects, studies that exploit
this arbitrarity to estimate the associated uncertainties are badly needed.
The inclusion of alternative models of colour reconnection in Pythia8 is one
such example. These alternative models have been used by CMS, and have
led to an increase of the systematic error of the top mass determination in
the recent 13 TeV measurement. Needless to say, these model should un-
dergo further scrutiny by the theoretical community. We should examine
and criticize them, and reach a consensus on whether they are acceptable,
too extreme or too narrow.

I firmly believe that more studies of this sort are needed. They should
proceed as follows:

1. Choose a parameter that is a matter of concern for the top mass mea-
surement. Rather than varying a parameter, one may also consider
more drastic variations, like changing a full component or the whole
generator with a different one.

2. Vary the parameter and re-tune the generator (or change the gener-
ator). Restrict the range of variation of the parameter so that an
acceptable tune can be achieved (or make sure that the new generator
gives a good description of the data).

3. Set up a simplified framework to assess the impact on top mass mea-
surement, and determine how much the extracted mass changes with
the new setting.

Notice that this implies a lot of work, and furthermore, by proceding in this
way we may end up uncovering problems that we have not yet foreseen. In
other words, it takes courage to do it. However, I believe that this is the
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only way to set up a reliable method to assess the uncertainties, and gain
an increased confidence on the reliability of our result.15

As an example, in the work of ref. [46] it was found that by using Her-
wig7 rather than Pythia8 as shower generator, the reconstructed top peak
according to the particle level truth (i.e. assuming that we can detect and
identify all final state particles including neutrinos and b hadrons) is dis-
placed by less than 100 MeV when using the new generators of ref. [24] and
[45], and by less than 250 MeV when using the old POWHEG-hvq one. This
result is quite remarkable, since the shower models (and, as a consequence,
their interface to hadronization) and the hadronization models themselves
are totally different in the two generators, and yet they cause a displacement
in the top reconstructed peak that is significantly below the 1 GeV level.
The same study also finds important differences, of the order of 1 GeV, if
experimental resolution effects are taken into account. This should be con-
sidered, however, a less severe problem, since in principle this error could
be reduced by increasing the resolution. 16

To conclude, let me say again that I am very aware that this is a contro-
versial subject. The overall view that I have expressed should be taken as
my personal one. However, several points that I made are shared by many
theorist colleagues, and my current opinions have been deeply influenced by
discussing with them. None of these views have been expressed in writing so
far, so I have just done it here, in the hope that a more transparent debate
on this subject will be started, and some wider consensus may be reached
in the future.

5 A personal note

My last exchange with Guido was by e-mail, on the 16th of April 2015,
when I learned that he had been awarded the EPS High Energy and Particle
Physics Prize. I did not know of his disease at that time. I sent him a very
synthetic e-mail, that had a ’CONGRATULAZIONI PER L’EPS!’ in the
subject, and “Era ora ... ciao, Paolo” in the body. His reply was particularly
warm: “Caro Paolo, ti ringrazio moltissimo. Sei un caro amico. Saluti G”.
I now find this exchange particularly moving.
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15This can also guide us in improving the measurement method, along lines similar to
those explored in ref. [47].

16Furthermore, in the same study some evidence was found that it may not be possible
to fit the same data set with both generators. In other words, it may not be possible to
satisfy item (2) in the above list with both generators.

28



References

[1] Particle Data Group Collaboration, C. Patrignani et al., Review of
Particle Physics, Chin. Phys. C40 (2016), no. 10 100001.

[2] Gfitter Group Collaboration, M. Baak, J. Cth, J. Haller,
A. Hoecker, R. Kogler, K. Mnig, M. Schott, and J. Stelzer, The global
electroweak fit at NNLO and prospects for the LHC and ILC, Eur.
Phys. J. C74 (2014) 3046, [1407.3792].

[3] ATLAS, CDF, CMS, D0 Collaboration, First combination of
Tevatron and LHC measurements of the top-quark mass, 1403.4427.

[4] ATLAS Collaboration, M. Aaboud et al., Measurement of the top
quark mass in the tt̄→ dilepton channel from

√
s = 8 TeV ATLAS

data, Phys. Lett. B761 (2016) 350–371, [1606.02179].

[5] CMS Collaboration, V. Khachatryan et al., Measurement of the top
quark mass using proton-proton data at

√
(s) = 7 and 8 TeV, Phys.

Rev. D93 (2016), no. 7 072004, [1509.04044].

[6] CMS Collaboration, Measurement of the top quark mass with
lepton+jets final states in pp collisions at

√
s = 13 TeV, .

[7] ATLAS Collaboration, Measurement of the top quark mass in the tt̄
lepton+jets channel from

√
s=8 TeV ATLAS data, .

[8] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice,
G. Isidori, and A. Strumia, Higgs mass and vacuum stability in the
Standard Model at NNLO, JHEP 08 (2012) 098, [1205.6497].

[9] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala,
A. Salvio, and A. Strumia, Investigating the near-criticality of the
Higgs boson, JHEP 12 (2013) 089, [1307.3536].

[10] A. Andreassen, W. Frost, and M. D. Schwartz, Scale Invariant
Instantons and the Complete Lifetime of the Standard Model,
1707.08124.

[11] CMS Collaboration Collaboration, Measurement of the top quark
mass with lepton+jets final states in pp collisions at

√
s = 13 TeV,

Tech. Rep. CMS-PAS-TOP-17-007, CERN, Geneva, 2017.

[12] CMS Collaboration, Measurement of the ttbar production cross
section in the emu channel in pp collisions at 7 and 8 TeV, .

[13] P. Marquard, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser,
Quark Mass Relations to Four-Loop Order in Perturbative QCD,
Phys. Rev. Lett. 114 (2015), no. 14 142002, [1502.01030].

29

http://xxx.lanl.gov/abs/1407.3792
http://xxx.lanl.gov/abs/1403.4427
http://xxx.lanl.gov/abs/1606.02179
http://xxx.lanl.gov/abs/1509.04044
http://xxx.lanl.gov/abs/1205.6497
http://xxx.lanl.gov/abs/1307.3536
http://xxx.lanl.gov/abs/1707.08124
http://xxx.lanl.gov/abs/1502.01030


[14] S. Alioli, P. Fernandez, J. Fuster, A. Irles, S.-O. Moch, P. Uwer, and
M. Vos, A new observable to measure the top-quark mass at hadron
colliders, Eur. Phys. J. C73 (2013) 2438, [1303.6415].

[15] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark
Pair-Production Cross Section at Hadron Colliders Through O( 4

S ),
Phys. Rev. Lett. 110 (2013) 252004, [1303.6254].

[16] S. Kawabata, Y. Shimizu, Y. Sumino, and H. Yokoya, Weight function
method for precise determination of top quark mass at Large Hadron
Collider, Phys. Lett. B741 (2015) 232–238, [1405.2395].

[17] S. Frixione and A. Mitov, Determination of the top quark mass from
leptonic observables, JHEP 09 (2014) 012, [1407.2763].

[18] A. H. Hoang and I. W. Stewart, Top Mass Measurements from Jets
and the Tevatron Top-Quark Mass, Nucl. Phys. Proc. Suppl. 185
(2008) 220–226, [0808.0222].

[19] A. H. Hoang, The Top Mass: Interpretation and Theoretical
Uncertainties, in Proceedings, 7th International Workshop on Top
Quark Physics (TOP2014): Cannes, France, September 28-October 3,
2014, 2014. 1412.3649.

[20] M. Butenschoen, B. Dehnadi, A. H. Hoang, V. Mateu, M. Preisser,
and I. W. Stewart, Top Quark Mass Calibration for Monte Carlo
Event Generators, Phys. Rev. Lett. 117 (2016), no. 23 232001,
[1608.01318].
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