Laboratorio di Segnali e Sistemi - Esonero -2 -

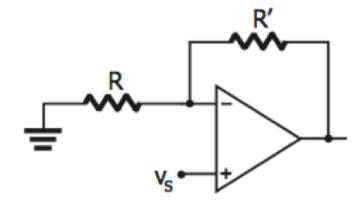
Esercizi OP-AMP

last update : 070117

Esercizio 56

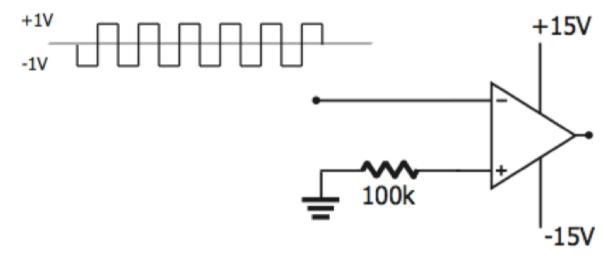
Realizzare, con un amplificatore operazionale, un circuito che fornisca un'amplificazione A=15, con una resistenza d'ingresso di almeno 20 kOhm. Quale sara' la banda passante, nell'ipotesi che il nostro operazionale ha un prodotto banda x guadagno di 10⁶ ?

Esercizio 56

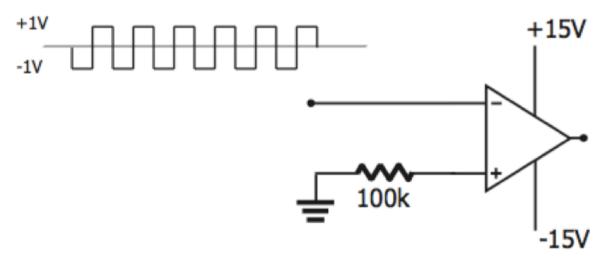

Realizzare, con un amplificatore operazionale, un circuito che fornisca un'amplificazione A=15, con una resistenza d'ingresso di almeno 20 kOhm. Quale sara' la banda passante, nell'ipotesi che il nostro operazionale ha un prodotto banda x guadagno di 10⁶?

Esercizio 56

Il problema può essere risolto realizzando il circuito in figura, dove dovrà avere $R^\prime/R=14$. La banda passante è data da:


$$\frac{10^6}{15} \simeq 0.7 \cdot 10^5 Hz$$

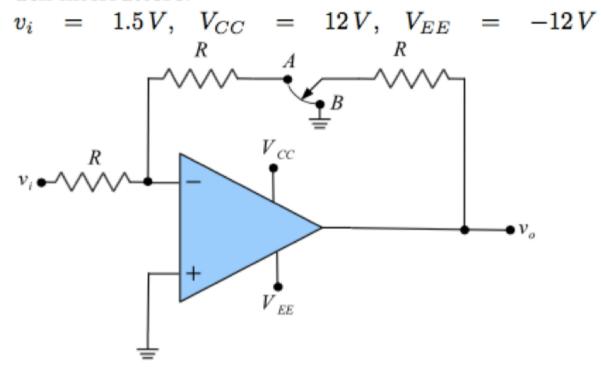
La resistenza d'ingresso e' praticamente infinita.


Esercizio 57

All'ingresso di questo circuito è inviata un'onda quadra con ampiezza 2V e valor medio 0V. Quale sara' la forma della tensione d'uscita?

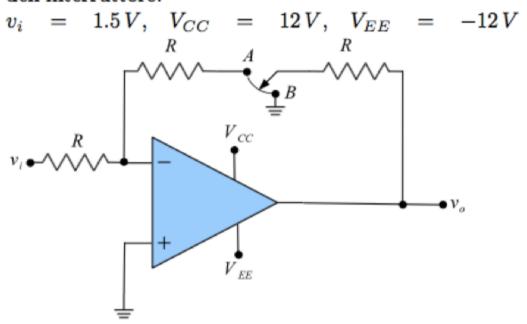
Esercizio 57

All'ingresso di questo circuito è inviata un'onda quadra con ampiezza 2V e valor medio 0V. Quale sara' la forma della tensione d'uscita?



Esercizio 57

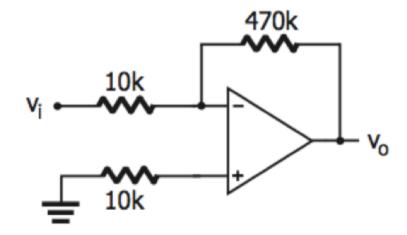
L'amplificatore non è reazionato. L'uscita quindi andrà in saturazione e oscillerà tra le tensioni di alimentazione. In sostanza si avrà un'onda quadra con valor medio nullo, tra -15 e +15 V.


Esercizio 58

Calcolare il valore di v_o per le due possibili posizioni dell'interruttore.

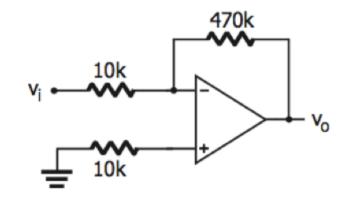
Esercizio 58

Calcolare il valore di v_o per le due possibili posizioni dell'interruttore.



Esercizio 58

Quanto il deviatore e' nella posizione A il circuito è un amplificatore invertente, con $A_v = -2$, pertanto $v_o = -3 V$. Quando il deviatore è nella posizione B l'anello di reazione è aperto, quindi $v_o \simeq V_{EE} \simeq -12 V$.


Esercizio 60

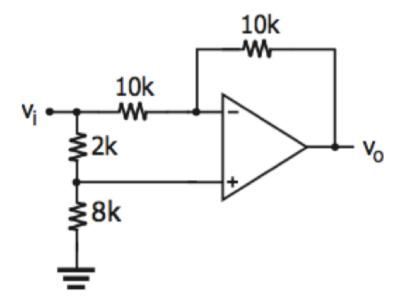
Qual è l'amplificazione di tensione del circuito riportato in figura? Qual è la sua resistenza d'ingresso? Se l'operazionale è alimentato con +15V/-15V, qual è la massima ampiezza di un segnale sinusoidale in ingresso che il circuito è in grado di amplificare senza distorsione?

Esercizio 60

Qual è l'amplificazione di tensione del circuito riportato in figura? Qual è la sua resistenza d'ingresso? Se l'operazionale è alimentato con +15V/-15V, qual è la massima ampiezza di un segnale sinusoidale in ingresso che il circuito è in grado di amplificare senza distorsione?

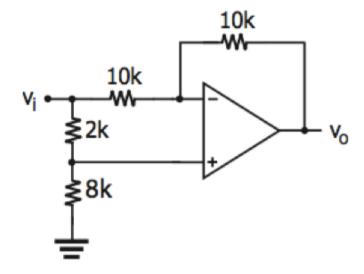
Esercizio 60

L'amplificazione di tensione e' data da


$$A_V = -\frac{470k}{10k} = -47$$

Affinche' non vi sia distorsione nel segnale (sinusoidale) in uscita la sua ampiezza deve essere inferiore a 15 V; quindi la massima ampiezza del segnale in ingresso e' data da:

$$v_{imax} = \frac{15}{47} \simeq 0.3V$$


$$R_i = \frac{V_i}{I_i}$$
; $I_i = \frac{V_i - V_-}{R_1} = \frac{V_i - 0}{R_1} \Longrightarrow R_i = 10 \text{ k}\Omega$

Esercizio 61 Trovare la risposta del circuito in figura

Esercizio 61

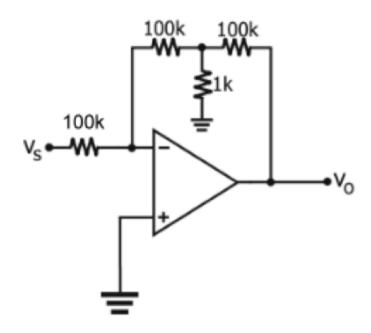
Trovare la risposta del circuito in figura

Esercizio 61

Applicando le regole 'auree' si ricava facilmente

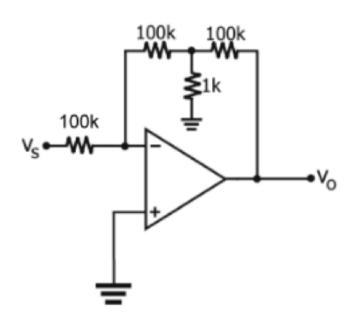
$$v_+=rac{8}{10}v_{in}=v_-$$

Scrivendo poi l'equazione del nodo al morsetto negativo


$$v_{in} - \frac{8}{10}v_{in} = \frac{8}{10}v_{in} - v_o$$

Si ricava facilmente

$$v_o = \frac{6}{10}v_{in}$$


Esercizio 65

Calcolare l'amplificazione di tensione del circuito in figura.

Esercizio 65

Calcolare l'amplificazione di tensione del circuito in figura.

Esercizio 65

L'esercizio si risolve come al solito, assumendo le regole 'auree' di un operazionale. La corrente che entra negli ingressi è trascurabile; i due ingressi sono alla stessa tensione. Si vede subito che i morsetti di ingresso sono entrambi a tensione zero. Conviene scrivere l'equazione del nodo in alto. Detta v_1 la sua tensione si ha:

$$-\frac{v_1}{100k} = \frac{v_1}{1k} + \frac{v_1 - v_o}{100k}$$

Inoltre, guardando il nodo al morsetto d'ingresso, abbiamo che

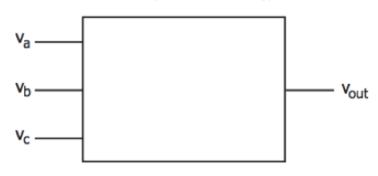
$$\frac{v_s}{100k} = -\frac{v_1}{100k}$$

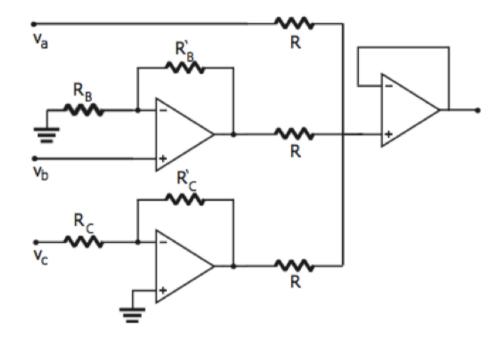
e quindi $v_1 = -v_s$. Sostituendo questo risultato nell'equazione precedente si ottiene facilmente

$$A = \frac{v_o}{v_s} = 102$$

Esercizio 55

Utilizzando degli amplificatori operazionali realizzare un circuito in grado di produrre un'uscita

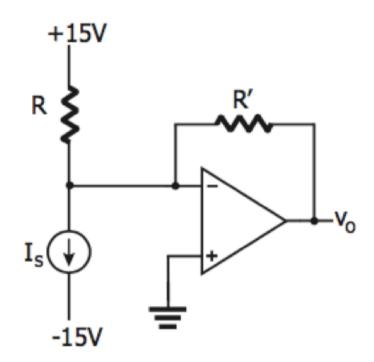

$$v_{out} = (v_a + 2v_b - 3v_c)/3$$


Esercizio 55

Utilizzando degli amplificatori operazionali realizzare un circuito in grado di produrre un'uscita

$$v_{out} = (v_a + 2v_b - 3v_c)/3$$

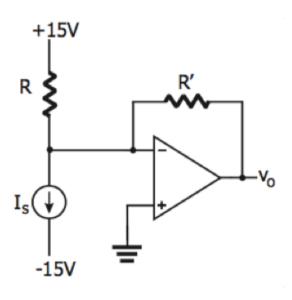
Esercizio 55



Il progetto può essere sviluppato in molti modi, un esempio è mostrato in figura. I resistori R_b ed R_c vanno scelti in modo da avere i corretti rapporti di amplificazione. Il sommatore al secondo stadio divide per 3 la somma dei segnali in ingresso. Si noti che i resistori R (il cui valore numerico non è critico) sono fondamentali per disaccoppiare tra loro i 3 ingressi.

Esercizio 67

Il circuito in figura fornisce un'uscita di tensione linearmente dipendente dalla corrente I_s del generatore di corrente. Scegliere i valori di R ed R' in modo che risulti:


$$V_0 = 0V \text{ per } I_s = 50\mu A$$

 $V_0 = 5V \text{ per } I_s = 150\mu A$

Esercizio 67

Il circuito in figura fornisce un'uscita di tensione linearmente dipendente dalla corrente I_s del generatore di corrente. Scegliere i valori di R ed R' in modo che risulti:

$$V_0 = 0V \text{ per } I_s = 50\mu A$$

 $V_0 = 5V \text{ per } I_s = 150\mu A$

Esercizio 67

Entrambi i morsetti di ingresso sono a tensione zero. Possiamo scrivere l'equazione del nodo

$$\frac{15}{R} = I_s - \frac{v_o}{R'}$$

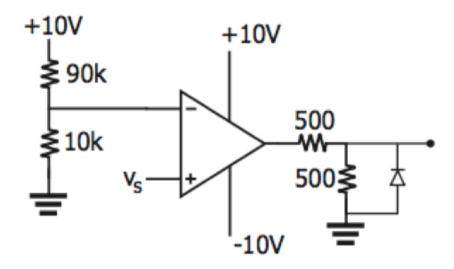
cioe'

$$v_o = R'I_s - 15rac{R'}{R}$$

Imponendo le due condizioni richieste nel testo

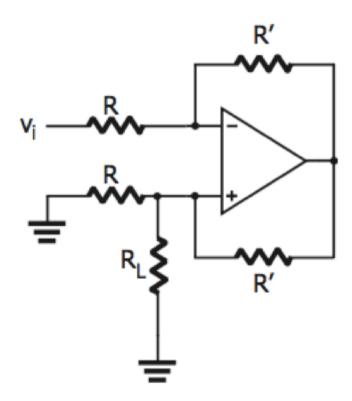
$$(150\mu A)R' - 15\frac{R'}{R} = 5$$

$$(50\mu A)R' - 15\frac{R'}{R} = 0$$

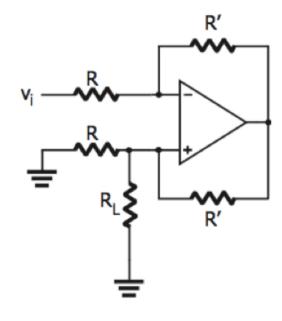

Si trova facilmente la soluzione: R' = 50k e R = 300k.

Esercizio 68

Un generatore fornisce un segnale v_s di ampiezza variabile. Progettare con un amplificatore operazionale un comparatore in grado di fornire un'uscita di +5V quando vs > +1V, e un'uscita di 0 V altrimenti. Si hanno a disposizione due alimentatori rispettivamente da +10V e -10V.


Esercizio 68

Un generatore fornisce un segnale v_s di ampiezza variabile. Progettare con un amplificatore operazionale un comparatore in grado di fornire un'uscita di +5V quando vs > +1V, e un'uscita di 0 V altrimenti. Si hanno a disposizione due alimentatori rispettivamente da +10V e -10V.


Esercizio 74

Dimostrare, nel circuito in figura, che la corrente I_L , circolante nel resistore R_L , è proporzionale alla tensione d'ingresso v_i .

Esercizio 74

Dimostrare, nel circuito in figura, che la corrente I_L , circolante nel resistore R_L , è proporzionale alla tensione d'ingresso v_i .

Esercizio 74

L'esercizio si risolve come al solito, assumendo le regole 'auree' di un operazionale. La corrente che entra negli ingressi è trascurabile; i due ingressi sono alla stessa tensione. Scrivendo le due equazioni dei nodi di ingresso e combinandole si ottiene facilmente:

$$I_L = rac{v_i}{R}$$

naturalmente questo risultato assume la perfetta uguaglianza delle due resistenze R tra loro e delle due resistenze R' tra loro.

Esercizio 79

Il guadagno di tensione ad anello aperto (in continua) di un amplificatore operazionale compensato internamente viene misurato e si trova il valore di 80 dB. A 100 kHz si trova invece il valore di 40 dB. Stimare il valore della frequenza di taglio di questo amplificatore.

Esercizio 79

Il guadagno di tensione ad anello aperto (in continua) di un amplificatore operazionale compensato internamente viene misurato e si trova il valore di 80 dB. A 100 kHz si trova invece il valore di 40 dB. Stimare il valore della frequenza di taglio di questo amplificatore.

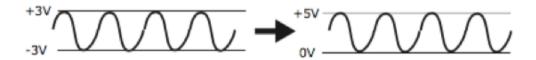
Esercizio 79

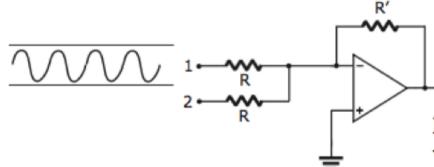
Ricordiamo che il prodotto guadagno \times banda deve essere costante.

Pertanto si deve avere:

$$f_t \times A(0) = f(100kHz) \times A(100khz)$$

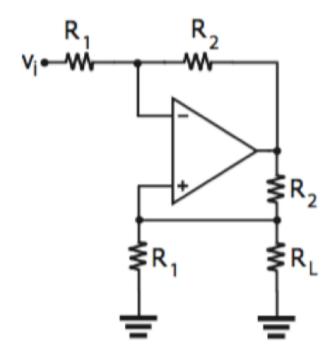
Dai dati del problema si ricava allora $f_t = 1kHz$.


Esercizio 91


Costruire un circuito (con un amplificatore operazionale ideale) che, partendo da un'onda sinusoidale di 6 V picco picco, con valor medio nullo, generi un'onda sinusoidale di 5 V, picco picco, con valor medio 2.5 V.

Esercizio 91

Costruire un circuito (con un amplificatore operazionale ideale) che, partendo da un'onda sinusoidale di 6 V picco picco, con valor medio nullo, generi un'onda sinusoidale di 5 V, picco picco, con valor medio 2.5 V.


Il problema puo' essere risolto con un sommatore invertente, come in figura. Ad un'ingresso si invia l'onda sinusoidale, all'altro una tensione costante $V_2=-3\ V$. Si scelgono poi dei resistori con

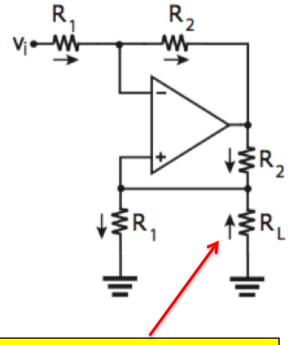
$$\frac{R'}{R} = \frac{5}{6}$$

in modo da avere in uscita il corretto valore di tensione.

Esercizio 90

Trovare la relazione che lega la corrente che circola nel resistore R_L alla tensione vi (assumendo che i resistori con eguale nome siano identici tra loro e che l'operazionale utilizzato sia ideale).

Esercizio 90

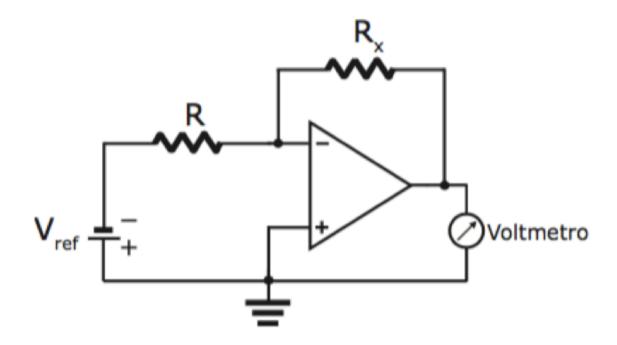

Con riferimento ai versi delle correnti scelti nella figura (tenendo conto delle consuete regole auree dell'operazionale ideale) possiamo scrivere:

$$\frac{v_i - v}{R_1} = \frac{v - v_o}{R_2}$$

$$\frac{v_o - v}{R_2} = \frac{v}{R_1} + i_L$$

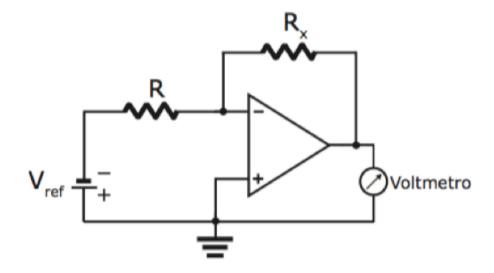
dove V e' la tensione (uguale) dei due ingressi dell'operazionale. Combinando queste due relazioni si ottiene facilmente

$$I_L = \frac{v_i}{R_1}$$



Il verso di questa corrente e' al contrario rispetto all'equazione, dovrebbe andare verso massa.

Dopo aver risolto l'equazione risulta negativa, quindi va come e' riportato sul disegno


Esercizio 92

Il circuito in figura rappresenta un ohmetro, con cui e' possibile misurare la resistenza R_x : la tensione letta sul voltmetro (che ha un fondo scala di 1 V) e' infatti proporzionale ad R_x . Dato $V_{ref} = -10 \ V$ completare il progetto determinando il valore di R in modo che sia possibile misurare resistenze fino ad un valore massimo $10 \ k\Omega$. Si supponga ideale l'amplificatore operazionale.

Esercizio 92

Il circuito in figura rappresenta un ohmetro, con cui e' possibile misurare la resistenza R_x : la tensione letta sul voltmetro (che ha un fondo scala di 1 V) e' infatti proporzionale ad R_x . Dato $V_{ref} = -10 \ V$ completare il progetto determinando il valore di R in modo che sia possibile misurare resistenze fino ad un valore massimo $10 \ k\Omega$. Si supponga ideale l'amplificatore operazionale.

Esercizio 92

La tensione d'uscita e' data da

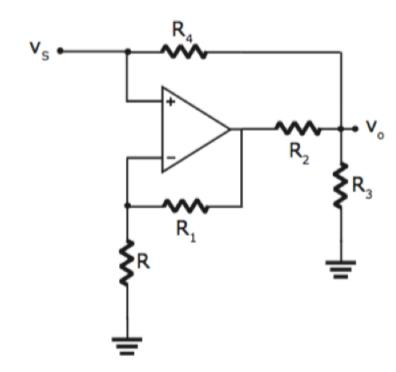
$$V_o = \frac{R_x}{R} V_{ref}$$

Si deve quindi scegliere $R = 100 k\Omega$.

Esercizio 98

Calcolare l'amplificazione di tensione del circuito in figura.

Valori:


$$R = 2.5k$$

$$R_1 = 22.5k$$

$$R_2 = 2k$$

$$R_3 = 4k$$

$$R_4 = 0.5k$$

Esercizio 98

Calcolare l'amplificazione di tensione del circuito in

figura.

Valori:


$$R = 2.5k$$

$$R_1 = 22.5k$$

$$R_2 = 2k$$

$$R_3 = 4k$$

$$R_4 = 0.5k$$

Esercizio 98

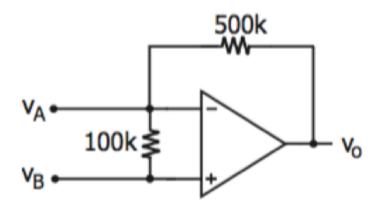
Indicando con v'_o la tensione all'uscita dell'operazionale, si ha, dal morsetto invertente:

$$rac{v_s}{R} = rac{v_o' - v_s}{R_1}$$

E si ricava quindi

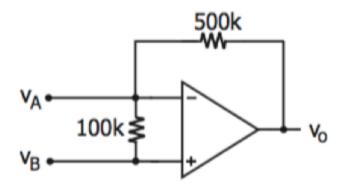
$$v_o' = v_s(1 + \frac{R_1}{R})$$

Dal nodo di uscita si può scrivere


$$\frac{v_s - v_o}{R_4} = \frac{v_o - v_o'}{R_2} + \frac{v_o}{R_3}$$

Combinando queste due relazioni si ottiene facilmente

$$A_v = \frac{v_o}{v_s} = \frac{\frac{1}{R_4} + \frac{1}{R_2}(1 + \frac{R_1}{R})}{\frac{1}{R_4} + \frac{1}{R_3} + \frac{1}{R_2}} \simeq 2.55$$
 2.64?


Esercizio 63

L'amplificatore in figura è alimentato con +12 e -12 V. All'ingresso A si applica una tensione costante pari a +1 V, mentre all'ingresso B si applica un'onda rettangolare con valore medio nullo e semi ampiezza 0.5 V. Qual è la forma d'onda del segnale d'uscita?

Esercizio 63

L'amplificatore in figura è alimentato con +12 e -12 V. All'ingresso A si applica una tensione costante pari a +1 V, mentre all'ingresso B si applica un'onda rettangolare con valore medio nullo e semi ampiezza 0.5 V. Qual è la forma d'onda del segnale d'uscita?

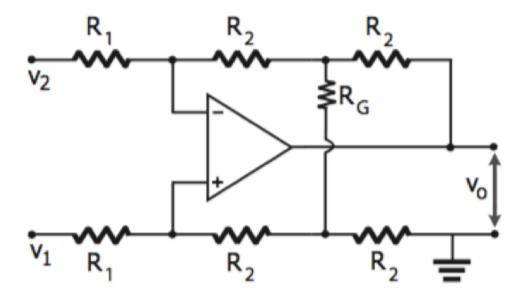
Esercizio 63

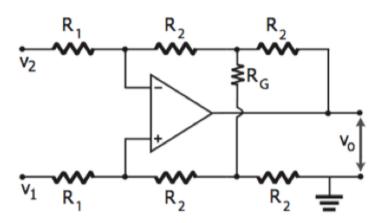
La d.d.p. tra i due ingressi $(V_+ - V_-)$ è un'onda rettangolare con valore medio -1V e semi ampiezza 0.5V. Pertanto l'uscita è sempre in saturazione a -12V. I resistori non giocano alcun ruolo in questo circuito.

Esercizio 77

Un generatore v_s fornisce una tensione di ampiezza variabile tra 0 e +10V. Con un amplificatore operazionale realizzare un comparatore in grado di fornire un'uscita di 0V quando $v_s > +5$ V e un'uscita di +5V quando $v_s < +5$ V.

Esercizio 77


Un generatore v_s fornisce una tensione di ampiezza variabile tra 0 e +10V. Con un amplificatore operazionale realizzare un comparatore in grado di fornire un'uscita di 0V quando $v_s > +5$ V e un'uscita di +5V quando $v_s < +5$ V.


Esercizio 77

Questo esercizio può essere risolto in vari modi. Il più semplice prevede di utilizzare un operazionale tipo LM358 (capace cioè di funzionare con alimentazione singola) alimentato con 0V e +10V. Si invia il segnale v_s all'ingresso invertente, mentre l'ingresso non invertente è collegato a +5V. In questo modo si ha un'uscita di 0V quando $v_s > +5V$ e di 10V quando $v_s < +5V$. Un semplice partitore sull'uscita ci consentirà di riportare la tensione ai livelli desiderati.

Esercizio 84

Calcolare il guadagno di tensione dell'amplificatore differenziale mostrato in figura (assumendo che i resistori con eguale nome siano identici tra loro e che l'operazionale utilizzato sia ideale).

Esercizio 84

Le equazioni dei due morsetti di ingresso sono

$$\frac{V_2 - V}{R_1} = \frac{V - V_A}{R_2}$$

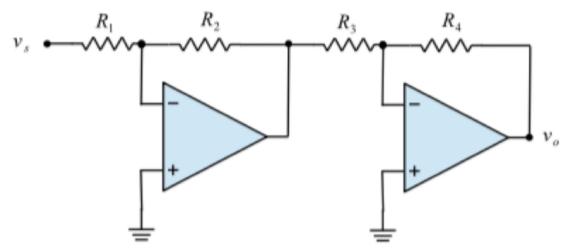
$$\frac{V_1 - V}{R_1} = \frac{V - V_B}{R_2}$$

dove V_A e V_B sono le tensioni dei nodi congiunti da R_G . Sottraendo membro a membro si ottiene

$$V_A - V_B = -\frac{R_2}{R_1}(V_2 - V_1)$$

Le equazioni dei nodi A e B sono

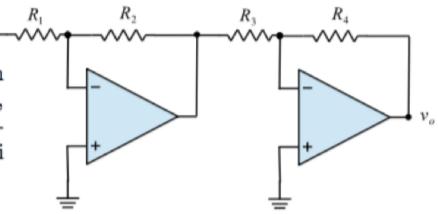
$$rac{V - V_A}{R_2} = rac{V_A - V_B}{R_G} - rac{V_A - V_o}{R_2}$$
 $rac{V - V_B}{R_2} = -rac{V_A - V_B}{R_G} + rac{V_B}{R_2}$


Sottraendo membro a membro si ricava, con alcuni passaggi

$$V_o = 2(1 + \frac{R_2}{R_G})(V_A - V_B)$$

Combinando i risultati ottenuti si ottiene infine

$$V_o = 2\frac{R_2}{R_1}(1 + \frac{R_2}{R_G})(V_1 - V_2)$$


Esercizio 114

L'uscita dell'amplificatore in figura viene inviata ad un carico $R_L = 500\,\Omega$. Il segnale d'ingresso è sinusoidale, $v_s = v_m \sin(2\pi f t)$, con ampiezza $v_m = 100\,mV$ e frequenza $f = 1\,kHz$. Calcolare la tensione massima ai capi del carico e la corrente massima che vi scorre. Valori:

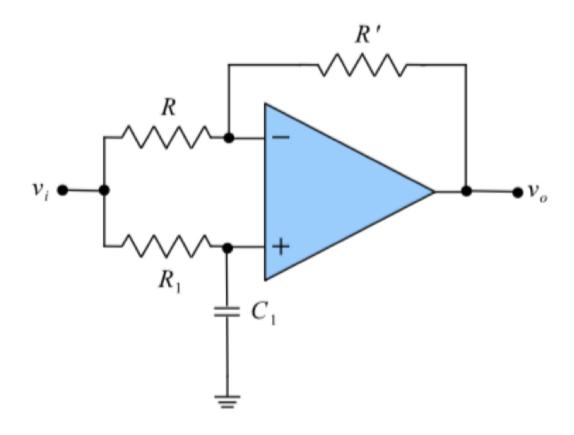
$$R_1 = 1k$$
 $R_2 = 10k$ $R_3 = 1k$ $R_4 = 10k$

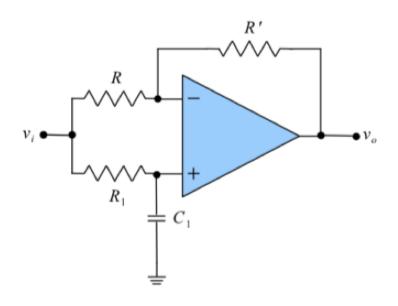
L'uscita dell'amplificatore in figura viene inviata ad un carico $R_L = 500\,\Omega$. Il segnale d'ingresso è sinusoidale, $v_s = v_m \sin(2\pi f t)$, con ampiezza $v_m = 100\,mV$ e frequenza $f = 1\,kHz$. Calcolare la tensione massima ai capi del carico e la corrente massima che vi scorre. Valori:

$$R_1 = 1k$$
 $R_2 = 10k$ $R_3 = 1k$ $R_4 = 10k$

Esercizio 114

I due stadi hanno la stessa amplificazione, $A_1 = A_2 = -10$. L'amplificazione complessiva e' quindi


$$A = A_1 \times A_2 = 100$$


Pertanto la tensione d'uscita e' data da $v_o = Av_m \sin(2\pi ft)$, con un massimo $v_{omax} = 10 V$. La corrente massima e' infine data da $v_{omax}/R_L = 20 \, mA$.

Esercizio 107

Scrivere l'espressione dell'amplificazione di tensione, A_v , per l'amplificatore in figura. Trovare i valori asintotici di A_v per $\omega \to 0$ e $\omega \to \infty$.

L'operazionale può essere considerato ideale.

Esercizio 107

I due ingressi dell'operazionale sono alla stessa tensione, v, che può essere calcolata al morsetto positivo, ovvero

$$v=rac{rac{1}{j\omega C_1}}{R_1+rac{1}{j\omega C_1}}v_i=rac{1}{1+j\omega C_1R_1}v_i$$

Al morsetto negativo abbiamo

$$\frac{v_i - v}{R} = \frac{v - v_o}{R'}$$

Combinando le due relazioni si arriva a:

$$A_v = -\frac{R'}{R} + \frac{1}{1 + j\omega C_1 R_1} (1 + \frac{R'}{R})$$

Per $\omega \to 0$ si ha $A_v = 1$. Per $\omega \to \infty$ si ha $A_v = -R'/R$.

SAPIENZA Fine esercitazione 2