A1 Laurea in Fisica - Anno Accademico 2017-2018 20 dicembre 2017 - Secondo esonero del Lab di Seg. e Sistemi

Nome: Cognome:

<u>Matricola :</u> Canale/Prof : <u>Gruppo Lab.:</u>


Riportate su questo foglio le risposte numeriche con la relativa unità di misura.

Esercizio 1. (6 punti)

Si determini il valore della tensione d'uscita del seguente amplificatore operazionale. Si applichi l'approssimazione di V1 • OpAmp ideale.

Dati numerici: $R_1=4~k\Omega;~R_2=8~k\Omega;~R_3=500~\Omega;~V_1=5~V;~I_g=2~mA$

$$V_o = \underline{\hspace{1cm}}$$

Esercizio 2. (6 punti)

Un albero di Natale ha delle lucine rosse e delle lucine verdi. Esse sono collegate ad un circuito digitale che fa accendere e spegnere contemporaneamente le due luci alla frequenza di 1 Hz per un periodo di 8 secondi, poi per altri 8 secondi le due luci si accendono alternativamente sempre alla frequenza di 1 Hz. E poi il ciclo si ripete. Progettare la logica digitale che esegue questa sequenza.

Suggerimento: vi sono naturalmente tante soluzioni. Una possibilità è di usare un contatore a 4 bit insieme ad altri circuiti digitali.

Esercizio 3. (6 punti)

Si costruisca un circuito "rivelatore di minoranza" a 3 bit, cioè una logica che produca un segnale Q uguale a 1 quando la minoranza dei suoi bit d'ingresso è a 1 (lo stato 0-0-0 produce 0). Per semplicità si usino porte logiche a tre ingressi.

(Se è possibile disegnare il circuito nello spazio qui a fianco).

\sim			
ω	=		

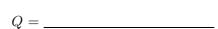
A2 Laurea in Fisica - Anno Accademico 2017-2018

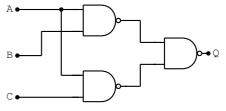
20 dicembre 2017 – Secondo esonero del Lab di Seg. e Sistemi

Nome: Cognome:

<u>Matricola :</u> Canale/Prof : Gruppo Lab.:

Riportate su questo foglio le risposte numeriche con la relativa

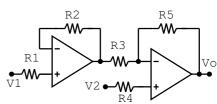

Esercizio 4. (6 punti)


Si ha un segnale sinusoidale con valore di picco di $500~\rm mV$ e valor medio nullo. Si costruisca, con uno o più amplificatori operazionali, un dispositivo che fornisca in uscita un segnale sinusoidale che vari tra 0 e $10~\rm V$.

(Se possibile riportare lo schema nello spazio a fianco.)

Esercizio 5. (6 punti)

Si ricavi la tavola della verità corrispondente al circuito in figura. Si scriva poi la funzione in forma canonica e la si riduca ai minimi termini.



Esercizio 6. (6 punti)

Determinare la tensione d'uscita del seguente circuito formato da due amplificatori operazionali ideali.

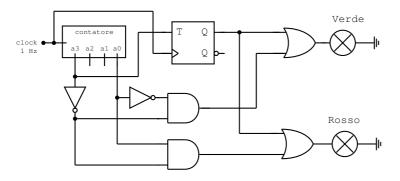
Dati numerici:
$$V_1=5~V;~V_2=2~V;~R_1=500~\Omega;~R_2=1~k\Omega;~R_3=2~k\Omega;~R_4=500~\Omega;~R_5=4~k\Omega$$

Soluzioni Esonero di Lab S.S. del 20-12-2017 - A1

Soluzione Esercizio 1

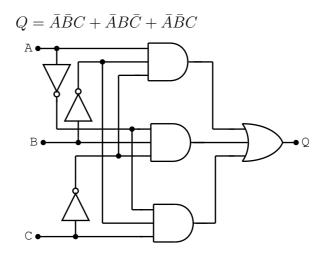
Procediamo con l'ipotesi che l'amplificatore non assorba corrente e le tensioni ai due ingressi sono uguali; in questo caso particolare la tensione è nulla perché l'ingresso non invertente è collegato a massa tramite la resistenza R_3 che assolve solo questo compito. Scrivendo l'uguaglianza delle correnti abbiamo:

$$I_{R1} = I_g + I_{R2}$$


Scriviamo esplicitamente il valore delle correnti:

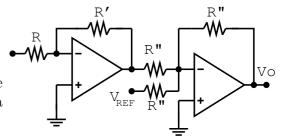
$$I_{R1} = \frac{V_1 - 0}{R_1}$$
; $I_{R2} = \frac{0 - V_o}{R_2} = -\frac{V_o}{R_2}$

Sostituendo le espressioni delle correnti nella prima equazione si ottiene la formula finale:


$$V_o = R_2 \cdot I_g - \frac{R_2}{R_1} \cdot V_1 = 8 \cdot 10^3 \times 2 \cdot 10^{-3} - \frac{8}{4} \cdot 5 = 6 V$$

Soluzione Esercizio 2

Soluzione Esercizio 3


Α	В	С	Q
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Soluzioni Esonero di Lab S.S. del 20-12-2017 - A2

Soluzione Esercizio 4

Una possibile soluzione è lo schema riportato in figura. Scegliendo le resistenze R' e R nel rapporto R'/R=10, il primo stadio amplifica il segnale di un fattore 10 producendo così una sinusoide con tensione di picco di 5 V. A questo punto si pu`o sommare una tensione continua V_{REF} di -5 V e avremo cos`ı la tensione d'uscita nell'intervallo voluto.

Soluzione Esercizio 5

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Q = A\bar{B}C + AB\bar{C} + ABC = A\bar{B}C + AB = A(B + \bar{B}C) = A(B + C)$$

Soluzione Esercizio 6

Il primo amplificatore operazionale è un emitter follower, il valore delle resistenze R_1 e R_2 è ininfluente; di conseguenza il segnale V_1 è applicato alla resistenza R_3 . Sull'ingresso non invertente del secondo OpAmp c'è la tensione V_2 (anche qui il valore di R_4 è ininfluente, perché per ipotesi l'OpAmp non assorbe corrente e quindi su R_4 non c'è nessuna caduta di tensione). Quindi anche sull'ingresso invertente c'è la tensione V_2 . Per risolvere l'esercizio imponiamo l'uguaglianza delle correnti che scorrono su R_3 e R_5 .

$$I_{R3} = I_{R5}$$

$$I_{R3} = \frac{V_1 - V_2}{R_3} \; ; \; I_{R5} = \frac{V_2 - V_o}{R_5}$$

Risolvendo l'equazione si trova la formula finale:

$$V_o = V_2 + \frac{R_5}{R_3} \cdot (V_2 - V_1) = 2 + \frac{4}{2} \times (2 - 5) = -4 V$$