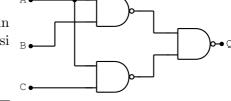
C1Laurea in Fisica - Anno Accademico 2017-2018

20 dicembre 2017 – Secondo esonero del Lab di Seg. e Sistemi

Nome: Cognome:

Matricola: Canale/Prof: Gruppo Lab.:

Riportate su questo foglio le risposte numeriche con la relativa unità di misura.

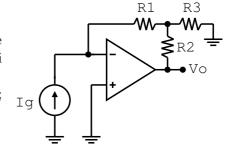

Esercizio 1. (6 punti)

Un albero di Natale ha delle lucine rosse e delle lucine verdi. Esse sono collegate ad un circuito digitale che fa accendere e spegnere contemporaneamente le due luci alla frequenza di 1 Hz per un periodo di 8 secondi, poi per altri 8 secondi le due luci si accendono alternativamente alla frequenza di 0.5 Hz. E poi il ciclo si ripete. Progettare la logica digitale che esegue questa sequenza.

Suggerimento: vi sono naturalmente tante soluzioni. Una possibilità è di usare un contatore a 4 bit insieme ad altri circuiti digitali.

Esercizio 2. (6 punti)

Si ricavi la tavola della verità corrispondente al circuito in figura. Si scriva poi la funzione in forma canonica e la si riduca ai minimi termini.


R3

Esercizio 3. (6 punti)

Si determini il valore della tensione d'uscita del seguente amplificatore operazionale. Si applichi l'approssimazione di OpAmp ideale.

Dati numerici: $R_1 = 40 \ k\Omega; \ R_2 = 80 \ k\Omega; \ R_3 = 20 \ k\Omega;$ $I_q = 50 \ \mu A$

C2 Laurea in Fisica - Anno Accademico 2017-2018

20dicembre2017 – Secondo esonero del Lab di Seg. e Sistemi

Nome: Cognome:

<u>Matricola :</u> Canale/Prof : Gruppo Lab.:


Riportate su questo foglio le risposte numeriche con la relativa unità di misura.

Esercizio 4. (6 punti)

Determinare la tensione d'uscita del seguente circuito formato da due amplificatori operazionali ideali.

Dati numerici: $V_i=4~mV;~R_1=15~k\Omega;~R_2=1.2~M\Omega;~R_3=10~k\Omega;~R_4=140~k\Omega$

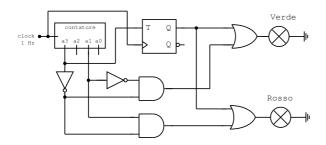
$$V_o = \underline{\hspace{1cm}}$$

Esercizio 5. (6 punti)

Si costruisca un circuito che restituisca il valore 1 quando i 3 bit d'ingresso contengono un numero dispari di bit a 1 ed il numero codificato dall'ingresso sia maggiore di uno (ovvero 2, 3, etc...).

(Se possibile disegnare il circuito nello spazio a fianco)

$$Q = \underline{\hspace{1cm}}$$


Esercizio 6. (6 punti)

Si ha un segnale sinusoidale con valore di picco di $500~\rm mV$ e valor medio nullo. Si costruisca, con uno o più amplificatori operazionali, un dispositivo che fornisca in uscita un segnale sinusoidale che vari tra 0 e 8 V.

(Se possibile riportare lo schema nello spazio a fianco.)

Soluzioni Esonero di Lab S.S. del 20-12-2017 - C1

Soluzione Esercizio 1

Soluzione Esercizio 2

Α	В	С	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Q = A\bar{B}C + AB\bar{C} + ABC = A\bar{B}C + AB = A(B + \bar{B}C) = A(B + C)$$

Soluzione Esercizio 3

Nell'amplificatore non entra corrente e i due ingressi hanno la tensione uguale a zero, dato che l'ingresso non invertente è collegato a massa. Indichiamo con V_A la tensione del nodo.

$$I_g = I_{R1} = \frac{0 - V_A}{R_1} \quad \Rightarrow \quad V_A = -Ig \cdot R_1$$

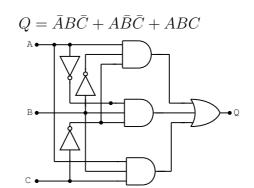
Adesso scriviamo l'equazione delle correnti nel nodo:

$$I_g = I_{R2} + I_{R3} = \frac{V_A - V_o}{R_2} + \frac{V_A}{R_3}$$

Sostituendo V_A nell'equazione delle correnti si trova il risultato finale:

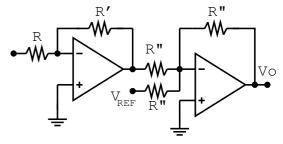
$$V_o = -I_g R_1 \cdot \left(1 + \frac{R_2}{R_3}\right) - I_g R_2 = -50 \cdot 10^{-6} \times 40 \cdot 10^3 \times \left(1 + \frac{80}{20}\right) - 50 \cdot 10^{-6} \times 80 \cdot 10^3 = -14 \ V$$

Soluzioni Esonero di Lab S.S. del 20-12-2017 - C2


Soluzione Esercizio 4

Il primo Op Amp rappresenta un amplificatore invertente, quindi la sua tensione d'uscita, che chiameremo V_+ è uguale a: $-\frac{R_2}{R_1}V_i$. Il secondo Op Amp è un amplificatore non invertente, quindi la sua tensione d'uscita vale:

$$V_o = \left(1 + \frac{R_4}{R_3}\right) \cdot V_+ = -\frac{R_2}{R_1} \cdot \left(1 + \frac{R_4}{R_3}\right) \cdot V_i = -\frac{1.2 \cdot 10^3}{15} \times \left(1 + \frac{140}{10}\right) \times 4 \cdot 10^{-3} = -4.8 \text{ V}$$


Soluzione Esercizio 5

Α	В	\mathbf{C}	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Soluzione Esercizio 6

Una possibile soluzione è lo schema riportato in figura. Scegliendo le resistenze R' e R nel rapporto R'/R = 20, il primo stadio amplifica il segnale di un fattore 20 producendo così una sinusoide con tensione di picco di 4 V. A questo punto si può sommare una tensione continua V_{REF} di +4 V e avremo così la tensione d'uscita nell'intervallo voluto.

