Laboratorio di Segnali e Sistemi - Esercitazione -2 -

Amplificatore ad Emettitore Comune senza capacità sull'emettitore

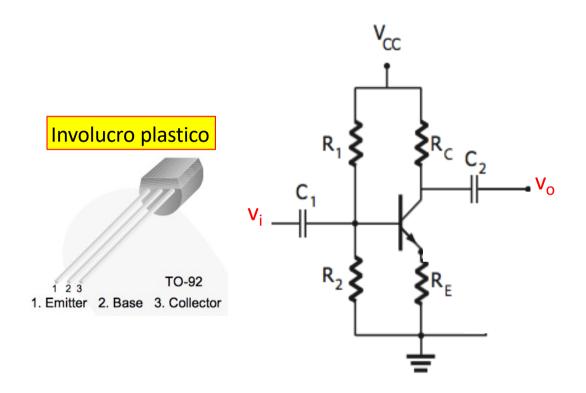
last update : 070117

Esercitazione 2

Amplificatore CE senza capacità in parallelo a R_E

- Misura dell'amplificazione massima (a frequenze intermedie)
- Diagramma di Bode (ampiezza e fase)
- Misura della frequenza di taglio inferiore e superiore
- Misura della massima dinamica d'ingresso
- Misura della resistenza d'uscita
- Misura della resistenza d'ingresso

Es 3: Amplificatore CE con capacità in parallelo a R_E


Stesse misure e in aggiunta anche una stima della r_e

Relazione

- Presentare il set di misure per uno dei due tipi di amplificatore;
- Facoltativo (voto bonus): confronto delle misure tra i due amplificatori (ad esempio amplificazione, resistenza d'ingresso, banda passante ...)

Amplificatore CE

Utilizzeremo il transistor 2N2222A (npn) per realizzare un amplificatore ad emettitore comune senza capacità sull'emettitore

Scegliamo:

- V_{CC}=12 V
- V_{CE} = 5-6 V
- $I_C \sim 1 \text{ mA}$
- $A_V = -(5-6)$
- $f_t \sim 500 \text{ Hz}$

Ad esempio:

- $R_C = 5.6 \text{ k}\Omega$
- $R_E = 1 k\Omega$
- $R_1 = 33 \text{ k}\Omega$
- $R_2 = 5.6 \text{ k}\Omega$
- $C_1 = 68 \text{ nF}$
- $C_2 = 470 \text{ nF}$

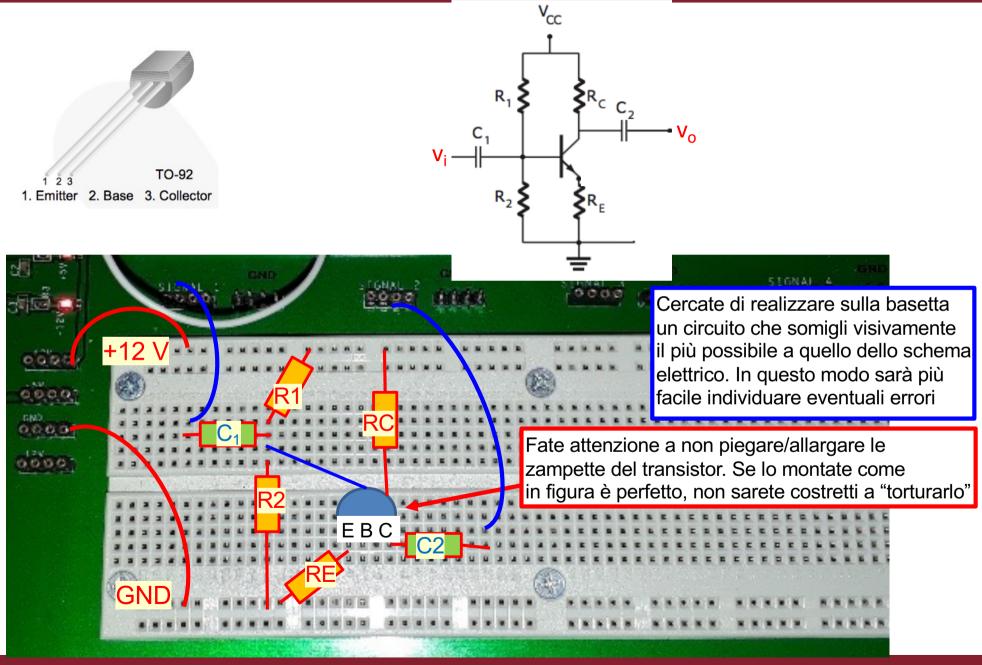
Potete usare anche un altro insieme di valori, questo è solo un suggerimento.

Importante: non smontate il circuito che verrà usato anche nell'esercitazione 3

Scelta dei componenti

- Scegliamo $V_E \sim 10\% \ di \ V_{CC}$. Con $I_C \sim 1 \ mA$, abbiamo: $R_E = 1.0 \ k\Omega$ oppure $1.2 \ k\Omega$
- Se vogliamo $A_V \sim 5-6$, allora possiamo scegliere: $R_C = 4.7 \ k\Omega$ oppure $5.6 \ k\Omega$
- Con: $R_E = 1.0 k\Omega$ e $R_C = 5.6 k\Omega$ abbiamo $V_{CE} = 5.4 V$ (ma anche altre scelte andavano bene)
- Con: $R_E = 1.0 \ k\Omega$ e $I_C = 1.0 \ mA$ abbiamo $V_E = 1.0 \ V \ e \ V_B = 1.7 \ V$
- Trascurando la l_B rispetto alla corrente che scorre nel partitore della base, abbiamo:

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2}$$
; se $R_1 + R_2 = 12 k\Omega \implies R_2 = 1.7 k\Omega e R_1 = 10.3 k\Omega$


però R_2 è troppo piccola (si avrebbe Ri piccola) allora scaliamo tutto per un fattore ~ 3 $R_2=5.6~k\Omega~e~R_1=33~k\Omega$

- Con: $R_B = 4.8 k\Omega$ e $R_{i_trans} \approx hfe \cdot Re \geq 50 k\Omega \Rightarrow R_i \geq 4.4 k\Omega$
- Vogliamo la frequenza di taglio inferiore determinata univocamente da C₁ e pari a circa 500 Hz, quindi:

$$C_1 = \frac{1}{2\pi \cdot Ri \cdot ft} = \frac{1}{2\pi \times 4.4 \cdot 10^3 \times 5 \cdot 10^2} = 72 \, nF$$

• Scegliamo : $C_1 = 68 \, nF$ e C_2 molto più grande, ad esempio $C_2 = 470 \, nF$

Esempio di montaggio

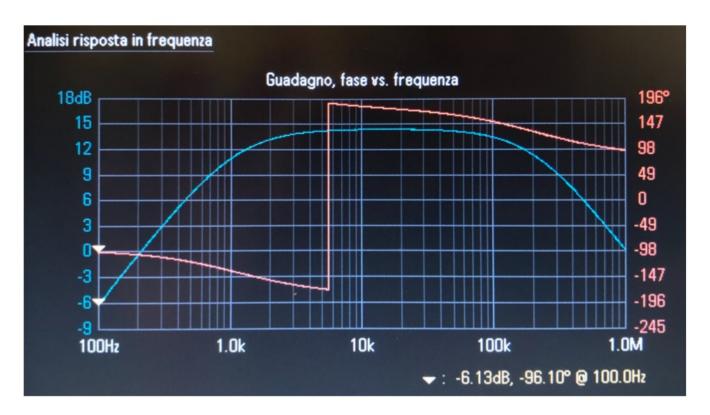
Verifica del circuito

Una volta montato il circuito, occorre fare alcune verifiche preliminari prima di iniziare le misure richieste

- 1. Controllate il punto di lavoro del transistor:
 - **V**_{CE}, **V**_{BE}, **I**_C, **I**_B, **I**_E (dalla I_E ricavate I_B per differenza con la I_C)
- Misurate anche il potenziale della base e dell'emettitore e confrontatelo con i valori aspettati dal progetto
- 3. Una volta verificato che il punto di lavoro corrisponde, grosso modo, a quanto progettato, potete fornire in ingresso un segnale sinusoidale di ampiezza tale da far lavorare il transistor sempre nella zona attiva.

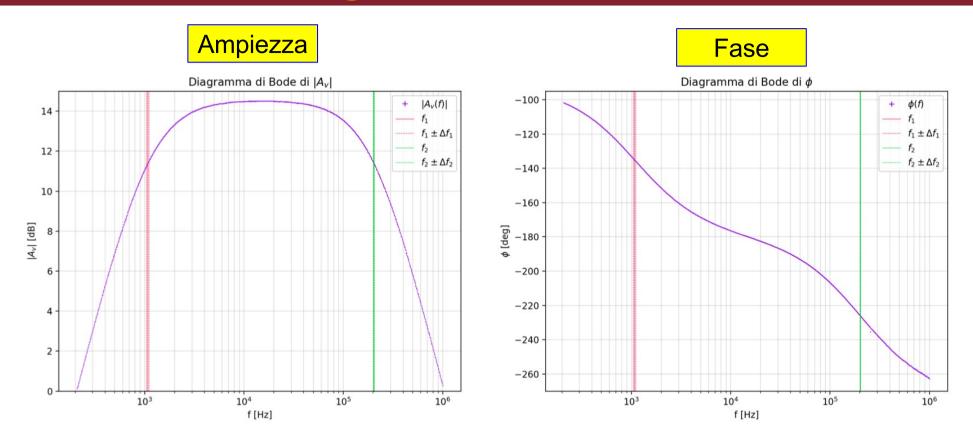
```
(Vi_max = min(V_{CE}-0.2; V_{CC}-V_{CE})/A_V = 5.2/5.6 = 0.93 V)
```

- 4. Fate un rapido scan in frequenze (a mano, non con il generatore dell'oscilloscopio) per individuare il valore dell'amplificazione massima
 - Controllate che il segnale di uscita non sia distorto. Se lo fosse riducete l'ampiezza del segnale d'ingresso. Nel caso il segnale d'ingresso fosse troppo piccolo, aumentatelo controllando sempre che il segnale d'uscita non venga distorto.
 - Controllate che l'amplificazione massima corrisponda al valore aspettato
- 5. Controllate che la posizione della frequenza di taglio, corrispondente al 70% dell'amplificazione massima, sia nell'intorno di quella aspettata

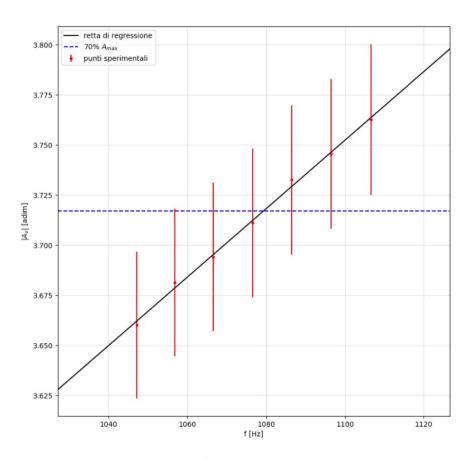

Una volta fatte tutte queste verifiche, che riporterete nella vostra relazione, potete procedere con le misure richieste

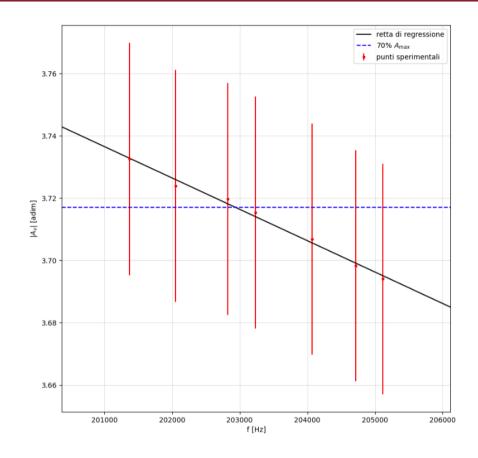
Risposta in frequenza

- Costruite il diagramma di Bode dell'ampiezza della funzione di trasferimento e valutate la banda passante dell'amplificatore.
- Per far questo occorre misurare l'amplificazione di tensione dell'amplificatore in tutto l'intervallo di frequenza esplorabile.
- Possibilmente le misure devono essere equamente distribuite in scala logaritmica
- Tuttavia dovete prendere un numero maggiore di misure intorno alle frequenze di taglio, sia di quella inferiore che di quella superiore.
- Quando vi trovate in un regime di frequenze tali che l'amplificazione diminuisce sensibilmente, potrebbe essere opportuno aumentare l'ampiezza del segnale d'ingresso, facendo sempre attenzione che il segnale d'uscita non venga deformato.
- Una volta effettuato lo scan in frequenza, ricavate il valore delle due frequenze di taglio facendo uso di grafici lineari; non utilizzate il diagramma di Bode per fare ciò.
- Valutate anche lo sfasamento del segnale d'uscita, rispetto a quello d'ingresso, nell'intorno delle due frequenze di taglio e a frequenze intermedie.
- Inserite nella relazione una tabella con tutte le misure effettuate.


Scan in frequenza "automatico"

 Tramite il generatore interno dell'oscilloscopio potete fare uno scan in frequenza più rapido e "professionale". Tuttavia fate alcune misure "a mano" come suggerito in precedenza, sia per controllare quello che ha fatto l'oscilloscopio, e sia per imparare a farle.


• L'oscilloscopio misura gli angoli tra -180° e +180°. Nei vostri grafici aggiungete 360° agli angoli negativi, in modo da averli tra 0 e 360°.


Diagramma di Bode

- Potete misurare le frequenze di taglio da entrambi i diagrammi.
- Dal diagramma della fase si individua bene la frequenza in cui si dovrebbe avere il massimo dell'ampiezza.
- Se misurate la frequenza di taglio con due (o più) metodi diversi, poi dovete combinare i risultati, se sono compatibili, dando un'unico risultato con l'errore appropriato.

Frequenze di taglio

$$f_L = (1.08 \pm 0.23) \ kHz$$

$$f_L = (1.1 \pm 0.2) \, kHz$$

$$f_H = (202.9 \pm 43.6) \ kHz$$

$$f_H = (203 \pm 44) \, kHz$$

Errore del 20% sulla frequenza di taglio? Mi sembra eccessivo.

N.B. – le incertezze relative ai fit si propagano in maniera quadratica.

Frequenze di taglio: un altro gruppo

Prima di iniziare con le misure si effettua a mano un rapido scan in frequenza per verificare che il segnale in uscita non sia distorto e per individuare il valore dell'ampiezza massima. Si trova un valore di $A_{max} = 5.4$.

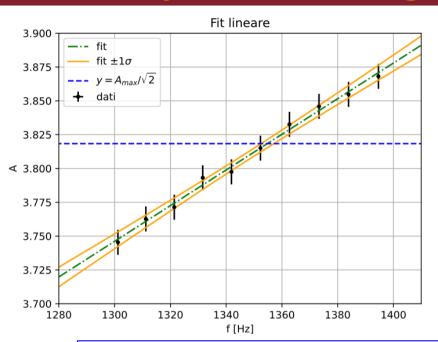
Anche A_{max} ha un errore. Prendete alcuni punti sul plateau e combinateli per diminuire l'errore.

	f [kHz]	V_o [V]	A	A [db]	ϕ [Grad]
:	1.30 ± 0.01 1.31 ± 0.01 1.32 ± 0.01 1.33 ± 0.01 1.34 ± 0.01		3.75 ± 0.10 3.76 ± 0.10 3.77 ± 0.10 3.79 ± 0.10 3.80 ± 0.10	11.47 ± 0.22 11.51 ± 0.22 11.53 ± 0.22 11.58 ± 0.22 11.59 ± 0.22	135.6 ± 0.5 135.8 ± 0.5 135.9 ± 0.5 136.2 ± 0.5 136.3 ± 0.5
	1.35 ± 0.01 1.36 ± 0.01 1.37 ± 0.01 1.38 ± 0.01 1.39 ± 0.01	2.67 ± 0.03 2.68 ± 0.03 2.69 ± 0.03 2.70 ± 0.03 2.71 ± 0.03	3.82 ± 0.10 3.83 ± 0.10 3.85 ± 0.10 3.85 ± 0.10 3.85 ± 0.10 3.87 ± 0.10	11.63 ± 0.22 11.67 ± 0.22 11.70 ± 0.22 11.72 ± 0.22 11.75 ± 0.22	136.6 ± 0.5 136.8 ± 0.5 137.1 ± 0.5 137.3 ± 0.5 137.5 ± 0.5

Tabella 1: Valori di V_o , A e ϕ per valori di f vicini a f_{τ_1} , con $V_i = (0.70 \pm 0.01)V$

5.4/1.414=3.818 (la frequenza di taglio dovrebbe essere intorno a 1.35 kHz)

Frequenze di taglio: un altro gruppo


Prima di iniziare con le misure si effettua a mano un rapido scan in frequenza per verificare che il segnale in uscita non sia distorto e per individuare il valore dell'ampiezza massima. Si trova un valore di $A_{max} = 5.4$.

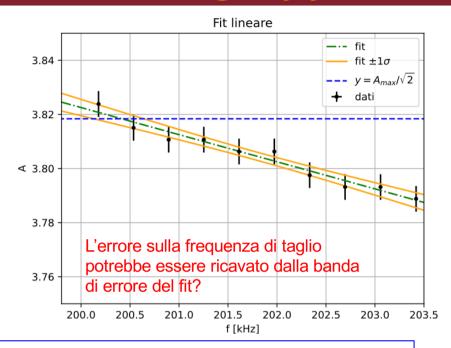

f [kHz]	V_o [V]	A	A [db]	ϕ [Grad]
200.2 ± 0.1	2.68 ± 0.03	3.82 ± 0.10	11.65 ± 0.22	136.1 ± 0.5
200.5 ± 0.1	2.67 ± 0.03	3.82 ± 0.10	11.63 ± 0.22	136.1 ± 0.5
200.9 ± 0.1	2.67 ± 0.03	3.81 ± 0.10	11.62 ± 0.22	136.0 ± 0.5
201.3 ± 0.1	2.67 ± 0.03	3.81 ± 0.10	11.62 ± 0.22	136.0 ± 0.5
201.6 ± 0.1	2.66 ± 0.03	3.81 ± 0.10	11.61 ± 0.22	136.0 ± 0.5
202.0 ± 0.1	2.66 ± 0.03	3.81 ± 0.10	11.61 ± 0.22	135.9 ± 0.5
202.3 ± 0.1	2.66 ± 0.03	3.80 ± 0.10	11.59 ± 0.22	135.9 ± 0.5
202.7 ± 0.1	2.66 ± 0.03	3.79 ± 0.10	11.58 ± 0.22	135.8 ± 0.5
203.1 ± 0.1	2.66 ± 0.03	3.79 ± 0.10	11.58 ± 0.22	135.8 ± 0.5
203.4 ± 0.1	2.65 ± 0.03	3.79 ± 0.10	11.57 ± 0.22	135.7 ± 0.5

Tabella 2: Valori di V_o , A e ϕ per valori di f vicini a f_{τ_2} , con $V_i = (0.70 \pm 0.01)V$

5.4/1.414=3.818 (forse andava preso qualche punto più in alto)

Frequenze di taglio: un altro gruppo

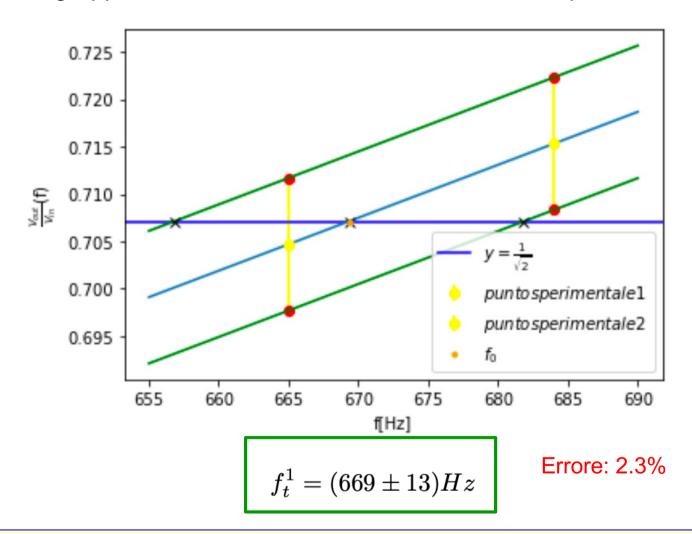
I due fit su y = mx + c restituiscono i seguenti parametri m_1 , c_1 , m_2 e c_2 ; le incertezze a questi associate sono state calcolate con il metodo dei residui per migliorarle rispetto a quelle originariamente associate ai parametri ottenuti dal fit, che risultavano molto elevate:

Non capisco

$$\boxed{f_{\tau_1} = (1.35 \pm 0.07)kHz}$$

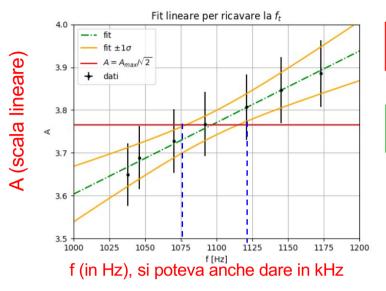
$$1.28 < f_t < 1.42 \text{ kHz}$$

$$f_{\tau_2} = (200.4 \pm 20)kHz$$


$$180 < f_t < 220 \text{ kHz}$$

Queste frequenze non sono presenti in questi grafici: cosa stiamo fittando?

Bisogna tener conto della matrice di covarianza nella propagazione degli errori


Frequenze di taglio: ancora un altro gruppo

Questo gruppo ha deciso di non fare il fit, ma usare il "poor man method"

 Dobbiamo capire meglio come usare il fit lineare per individuare la frequenza di taglio e come attribuire l'errore.

Frequenze di taglio: matrice di covarianza

$$A_v^{max} = \frac{V_{out}^{max}}{V_{in}}$$

$V_{in} \hspace{1cm} V_{out}^{max}$		A_v^{max}	$A_v^{max}/\sqrt{2}$	
$(507\pm5)~\text{mV}$	$(2.70 \pm 0.03) \text{ V}$	$(5.3 \pm 0.1) \text{ V}$	$(3.77 \pm 0.08) \text{ V}$	

$$\boxed{A = m \cdot f + c} \Rightarrow \boxed{\frac{A_{max}}{\sqrt{2}} = m \cdot f_T + c} \Rightarrow f_t = \frac{\frac{A_{max}}{\sqrt{2}} - c}{m}$$

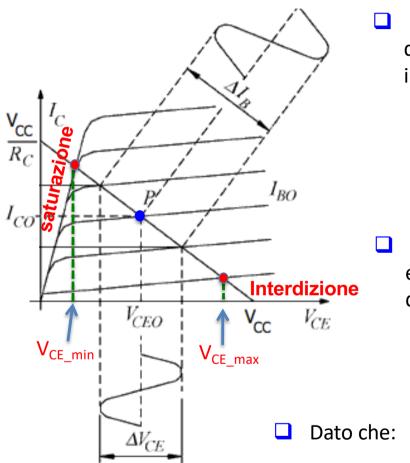
	m	c	Cov[m,c]
Fit a basse frequenze	$(0.0017 \pm 0.0006)~{ m Hz^{-1}}$	(1.9 ± 0.7)	-0.0004
		-	

 $(1.7 \pm 0.6) kHz^{-1}$

• m e c sono due quantità correlate, quindi nella propagazione dell'errore dovete tener conto della matrice di covarianza

$$S_f = \sqrt{\left(\frac{\partial f}{\partial x_1} S_{x_1}\right)^2 + 2\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} S_{x_i, x_j} + \left(\frac{\partial f}{\partial x_2} S_{x_2}\right)^2}$$

• Se ho fatto bene le derivate, e tenendo conto che l'errore sull'amplificazione massima non è correlato:


$$\sigma_{f_T} = \frac{1}{m} \sqrt{\frac{1}{2} \sigma_{A_{max}}^2 + \sigma_C^2 + f_T^2 \cdot \sigma_m^2 + 2f_T \cdot cov[m, c]}$$

Valore teorico	Valore misurato	Compatibilità
$(1060 \pm 20) \ Hz$	$(1100 \pm 40) \ Hz$	0.67σ

Un ulteriore contributo all'errore viene da $\sigma_{A_{max}}$. Dal grafico, considerando solo l'errore sul fit, si avrebbe circa $\pm 25~Hz$

Massima dinamica del segnale d'ingresso

■ Vediamo qual è la massima dinamica del segnale d'ingresso, ovvero qual è la massima escursione del segnale d'ingresso senza che venga introdotta una distorsione nel segnale d'uscita.

Il punto di lavoro non dovrà mai raggiungere la zona di saturazione oppure quella di interdizione, altrimenti il segnale verrà "tagliato"; quindi:

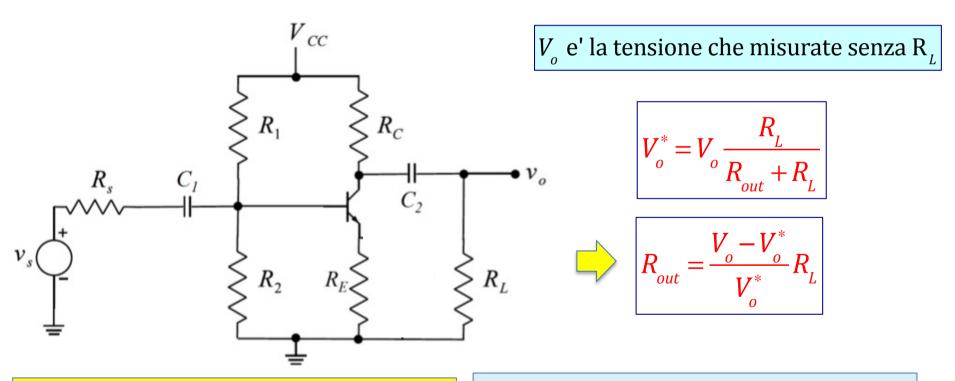
$$V_{CE_min} < V_{CE} < V_{CE_max}$$

$$V_{CE_min} = 0.2 \text{ V}$$
 ; $V_{CE_max} \simeq V_{CC}$

■ Dato il punto di lavoro V_{CEO}, valutiamo la massima escursione che il punto di lavoro può fare a sinistra e a destra e prendiamo il minimo tra i due valori:

$$\Delta V_{\scriptscriptstyle CE}^{\scriptscriptstyle MAX} = \min \left[\left(V_{\scriptscriptstyle CE\,0} - V_{\scriptscriptstyle CE_{
m min}}
ight)$$
 , $\left(V_{\scriptscriptstyle CE_{
m max}} - V_{\scriptscriptstyle CE\,0}
ight)
ight]$

$$\Delta V_{CE} \equiv \mathbf{v}_o = A_{v} \cdot \mathbf{v}_i$$

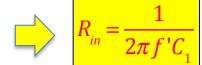


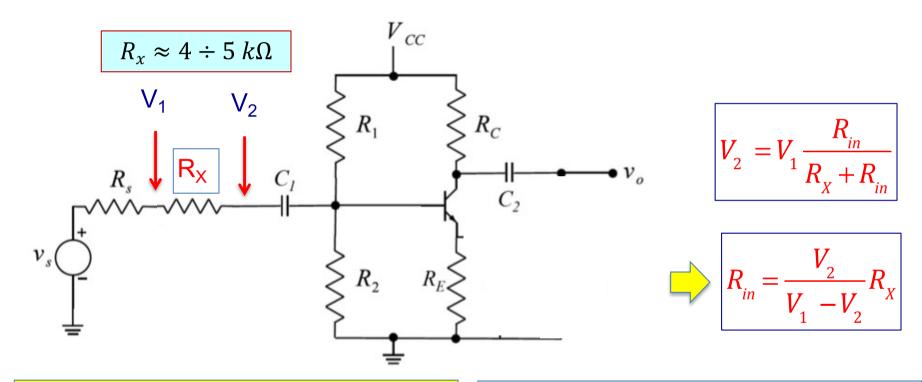
$$\mathbf{v}_{i}^{MAX} = \frac{\Delta V_{CE}^{MAX}}{A_{v}}$$

Per misurarlo dovete aumentare l'ampiezza del segnale d'ingresso fino a quando vedete che il segnale d'uscita si distorce. Confrontatelo con quello che vi aspettate.

Resistenza d'uscita

- Misurate ore la resistenza d'uscita Ro dell'amplificatore a frequenze intermedie.
- Per farlo occorre confrontare la tensione d'uscita con e senza un carico R_L esterno.
- Il carico R_L deve essere tale da ottimizzare la sensibilità della misura, quindi esso deve avere un valore vicino alla Ro che si vuole misurare, che sappiamo essere uguale a R_C.
- Non dimenticate di inserire il condensatore C₂.




Le tensioni vanno misurate con l'oscilloscopio

Andrebbero fatte diverse misure al variare di R_L

Resistenza d'ingresso

- proviamo a valutare la resistenza d'ingresso dell'amplificatore.
- puo' essere valutata dalla misura della frequenza di taglio
- oppure modificando il circuito nel modo seguente:

Le tensioni vanno misurate con l'oscilloscopio

Andrebbero fatte diverse misure al variare di R_X

☐ Utilizzate la resistenza d'ingresso misurata, unitamente alla capacità C₁, per valutare la frequenza di taglio inferiore e confrontatela con quella ricavata dal grafico dell'amplificazione.

Che succede se cambiamo Rc? (facoltativo)

- ☐ La corrente di collettore I_C dipende solo dal potenziale dell'emettitore e dalla R_F.
- ☐ A sua volta il potenziale dell'emettitore dipende dal potenziale della base, assumendo che il transistor lavori sempre nella regione attiva.
- \square Quindi la I_C dipende solo da R_1 , R_2 e R_E .
- Domanda: cosa succede se cambiamo la R_c?
- ☐ Provate ad esempio ad usare:

$$R_c = 8.2 k\Omega$$

- ☐ Misurate di nuovo il punto di lavoro del transistor: V_{CE}, V_{BE}, I_C, I_B, I_E
- ☐ Poi mettetevi a frequenze intermedie e misurate:
 - L'amplificazione di tensione
 - La massima dinamica del segnale d'ingresso

Una volta fatta la misura rimettere la R_C originaria.

SAPIENZA Fine esercitazione 2