Laboratorio di Segnali e Sistemi - Esercitazione -3 -

Amplificatore ad Emettitore Comune con capacità sull'emettitore

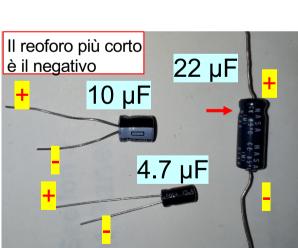
last update : 070117

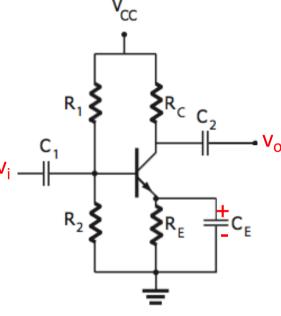
Esercitazione 3

Amplificatore CE con capacità in parallelo a R_E

- Misura della frequenza di taglio per due valori diversi della capacità C_F
- Misura dell'amplificazione massima (a frequenze intermedie)
- Diagrammi di Bode (ampiezza e fase)
- Misura della r_e
- Misura della resistenza d'uscita nel caso di massima larghezza di banda
- Misura della resistenza d'ingresso nel caso di massima larghezza di banda
- Studio dell'amplificatore con una piccola reazione negativa (voto bonus)

Relazione


- Presentare il set di misure per uno dei due tipi di amplificatore (con o senza C_E);
- Facoltativo (voto bonus): confronto delle misure tra i due amplificatori (ad esempio amplificazione, resistenza d'ingresso, banda passante ...)

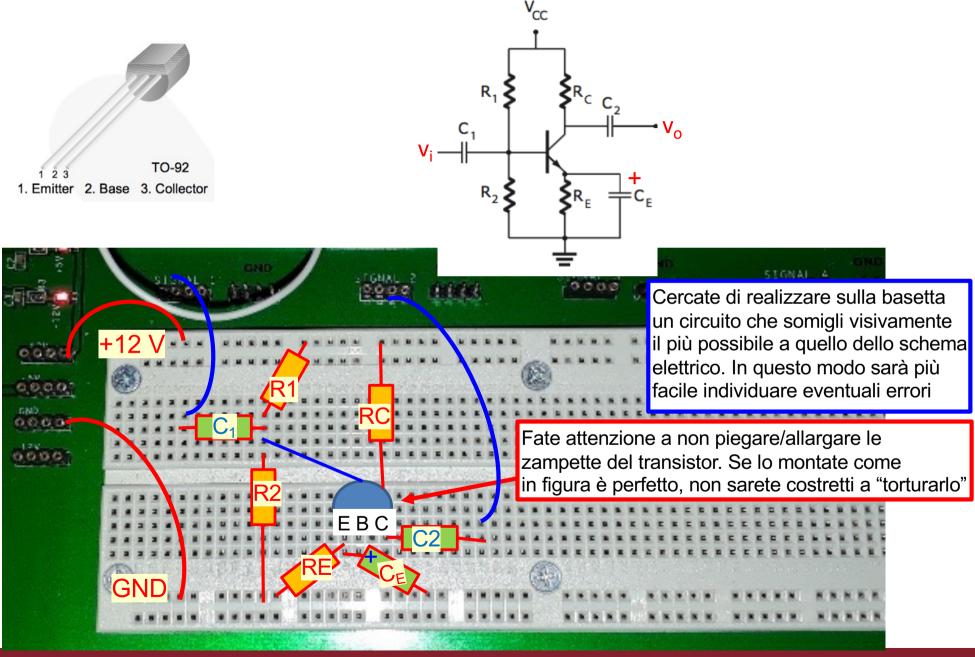

Amplificatore CE

Utilizzeremo il transistor 2N2222A (npn) per realizzare un amplificatore ad emettitore comune **con capacità** sull'emettitore. Vogliamo studiare l'effetto di questo condensatore sul diagramma di Bode del circuito. Utilizziamo il circuito dell'esercitazione precedente, ma dobbiamo cambiare

Il valore di C₁ (Nelle tabelle sono indicati i valori delle resistenze scelti la volta scorsa)

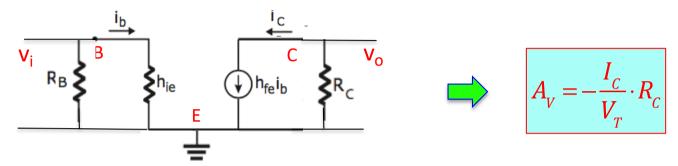
Vedremo con che criterio scegliere C₁ e C_E. Vogliamo avere la frequenza di taglio indotta da C₁ intorno a 100 Hz e scegliamo diversi valori della frequenza di taglio indotta da C_E

Se volete diminuire l'amplificazione → cambiate R₁


Abbiamo scelto:

- V_{CC}=12 V
- $V_{CE} = 5-6 \text{ V}$
- $I_C \sim 1 \text{ mA}$
- $A_{V} = -(5-6)$
- $f_t \sim 500 \text{ kHz}$

Ad esempio:


- $R_{\rm C} = 5.6 \, \text{k}\Omega$
- $R_E = 1 k\Omega$
- $R_1 = 33 \text{ k}\Omega \rightarrow 47 \text{ k}\Omega$
- $R_2 = 5.6 \text{ k}\Omega$
- $C_1 = 68 \text{ nF} \rightarrow 1-2.2 \,\mu\text{F}$
- $C_2 = 470 \text{ nF} \rightarrow 1-2.2 \mu\text{F}$
- C_E = xx μF (el.)

Esempio di montaggio

Amplificazione del circuito

Lavoriamo a frequenze intermedie in modo da trascurare tutte le capacità del circuito

• L'introduzione della C_E non ha cambiato il punto di lavoro del transistor che avete gia misurato:

$$A_v = -\frac{1 \cdot 10^{-3}}{25 \cdot 10^{-3}} \cdot 5.6 \cdot 10^3 = -224$$
 Molto grande!

• Dinamica d'ingresso: $(Vi_max = min(V_{CE}-0.2; V_{CC}-V_{CE})/A_V = 5.2/224 = 23 mV)$

$$Vi_{\text{max}} = \frac{V_{CC} - V_{CE}}{A_V} = \frac{(R_C + R_E)I_C}{R_C I_C / V_T} = V_T \times \left(1 + \frac{R_E}{R_C}\right)$$

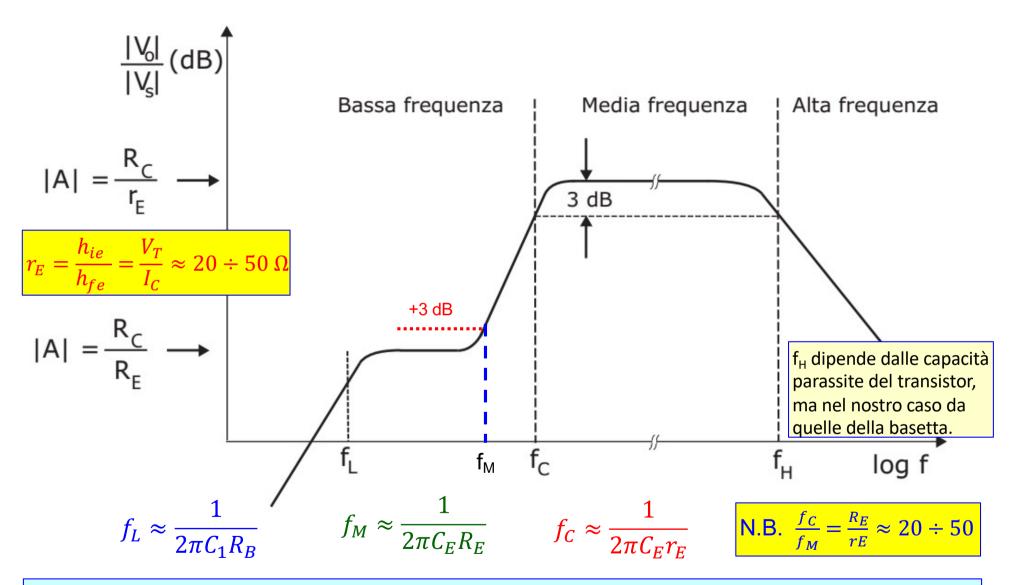
Se
$$V_{CE}$$
-0.2 < V_{CC} - $V_{CE} \rightarrow Vi_max < V_T$

Si può lavorare con un segnale così basso ma facciamo attenzione.

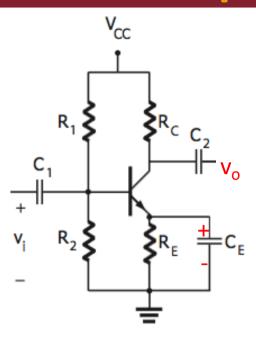
Come diminuire la I_c

Si potrebbero avere problemi con un'amplificazione così grande (ad esempio non si raggiunge il plateau), quindi proviamo a diminuirla: $A_v = I_C \cdot R_C/V_T$

- Questo può essere fatto riducendo I_C oppure R_C
- $I_C = V_E/R_E$; quindi aumentando R_E oppure diminuendo V_E
- Però avere una R_E quasi uguale alla R_C non è una buona cosa (la retta di carico dinamica si discosterebbe troppo da quella statica), quindi è meglio abbassare la V_E abbassando la V_B. Questo si fa prendendo una R₂ più piccola
- Per avere una I_C ad esempio di 0.5 mA, occorre avere V_E = 0.5 V e quindi V_B =1.2 V


•
$$V_B = V_{CC} \frac{R_2}{R_1 + R_2}$$
; se $R_1 + R_2 = 12 k\Omega \implies R_2 = 1.2 k\Omega e R_1 = 10.8 k\Omega$

però R₂ è troppo piccola, allora le scaliamo per un fattore ~ 4.5


$$R_2=5.6~k\Omega~e~R_1=47~k\Omega~$$
 (di fatto cambiamo R_1 e non R_2 !) $V_B=V_{CC}\frac{R_1}{R_1+R_2}=12\times\frac{5.6}{5.6+47}=1.28~V$ (dovrebbe andare bene)

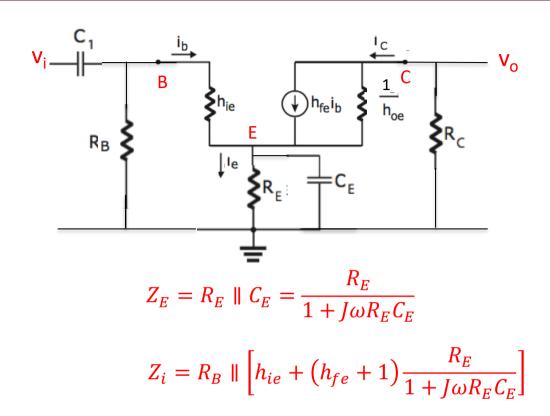
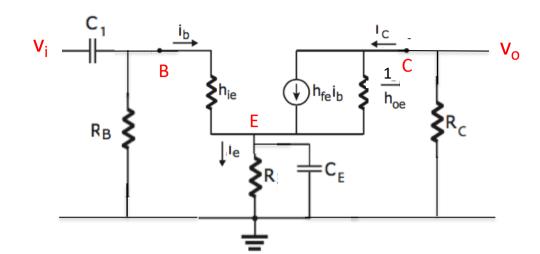

Fate verifica veloce dell'amplificazione massima, della dinamica d'ingresso e della frequenza di taglio inferiore e di quella superiore (avendo messo la C_E grande, come vedremo in seguito).

Diagramma di Bode



Molto difficile vedere nello stesso plot i due plateaux. Scegliamo la C_1 la più grande possible in modo che f_L sia la più piccola possible. D'altra parte, l'effetto di C_1 l'abbiamo valutato nella precedente esercitazione.

- □ La frequenza di taglio inferiore introdotta da C₁ dipende da C₁ e Z_i, la quale a sua volta dipende da C_E. Per semplificare scegliamo C₁ e C_E in modo tale che la frequenza di taglio di C₁ sia piccola e che la reattanza di C_E sia grande rispetto a R_E a quella frequenza e possiamo fattorizzare i contributi di C₁ e C_E nell'andamento in frequenza dell'amplificatore.
 - 1. $\omega_L \approx \frac{1}{R_B C_1}$; facciamo in modo che: $\frac{1}{\omega_L C_E} \gg R_E$, cioe' $\omega_L \ll \omega_M = \frac{1}{R_E C_E}$
 - 2. Se f_M >> f_L allora i due contributi sono distinti tra loro, altrimenti la frequenza di taglio inferiore dipende da entrambi i condensatori

$$V_B = h_{ie}i_b + (h_{fe} + 1)Z_E i_b$$
$$V_O = -h_{fe}i_b R_C$$

$$\Rightarrow \frac{V_o}{V_B} = -\frac{h_{fe}R_C}{h_{ie} + (h_{fe} + 1)Z_E}$$

$$r_E = \frac{h_{ie}}{h_{fe}}$$

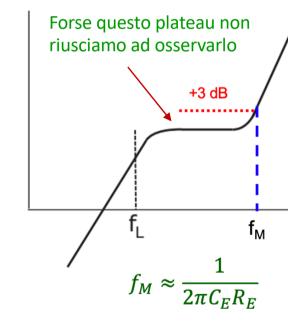
Sostituiamo l'espressione di Z_E nella formula e ricordiamo che *hie/hfe* è la resistenza r_E che interviene nel modello a T del transistor; r_E schematizza la resistenza del silicio tra il contatto metallico dell'emettitore e la giunzione base emettitore, essa è dell'ordine di una decina di Ohm.

$$A_V = -\frac{R_C}{r_E} \frac{1}{1 + \frac{R_E}{r_E}} + \frac{1}{1 + I\omega R_E C_E}$$

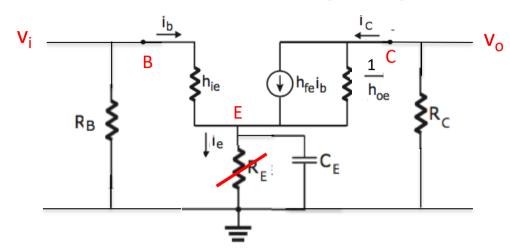
□ Da notare che:

$$\lim_{\omega \to \infty} A_V = -\frac{R_C}{r_E} = \frac{h_{fe}R_C}{h_{ie}}$$

$$\lim_{\omega \to 0} A_V = -\frac{R_C}{R_E}$$


$$A_{V} = -\frac{R_{C}}{r_{E}} \frac{1}{1 + \frac{R_{E}}{1 + I\omega R_{E}C_{E}}} = -\frac{R_{C}}{r_{E}} \cdot \frac{1 + J\omega R_{E}C_{E}}{1 + \frac{R_{E}}{r_{E}} + J\omega R_{E}C_{E}} \approx -\frac{R_{C}}{r_{E}} \cdot \frac{1 + J\omega R_{E}C_{E}}{\frac{R_{E}}{r_{E}} + J\omega R_{E}C_{E}}$$

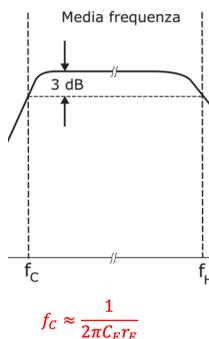
☐ Troviamo il modulo:


$$|A_V| = \frac{R_C}{r_E} \cdot \frac{\sqrt{1 + (\omega R_E C_E)^2}}{\sqrt{\left(\frac{R_E}{r_E}\right)^2 + (\omega R_E C_E)^2}}$$

 \square Calcoliamo quanto vale per $\omega_M = \frac{1}{R_E C_E}$:

$$|A_V| = \frac{R_C}{r_E} \cdot \frac{\sqrt{1+1}}{\sqrt{\left(\frac{R_E}{r_E}\right)^2 + 1}} \approx \frac{R_C}{r_E} \cdot \frac{\sqrt{1+1}}{\sqrt{\left(\frac{R_E}{r_E}\right)^2}} = \frac{R_C}{R_E} \cdot \sqrt{2} = \frac{R_C}{R_E} + 3 \text{ dB}$$

☐ Vediamo ora che succede per frequenze f molto maggiori di f_M:


$$\omega \gg \omega_M = \frac{1}{R_E C_E} \implies \frac{1}{\omega C_E} \ll R_E$$

$$V_B = h_{ie}i_b + (h_{fe} + 1)\frac{1}{j\omega C_E}i_b$$

$$V_o = -h_{fe}i_bR_C$$

$$\Rightarrow \frac{V_o}{V_B} = -\frac{h_{fe}R_C}{h_{ie} + (h_{fe} + 1)\frac{1}{j\omega C_E}} = -\frac{R_C}{r_E} \cdot \frac{1}{1 + \frac{1}{J\omega r_E C_E}}$$

- \square Per $\omega_C = \frac{1}{r_B C_B}$ si ha: $|A_V| = \frac{R_C}{r_B} \cdot \frac{1}{\sqrt{2}}$

$$f_C \approx \frac{1}{2\pi C_E r_E}$$

Scelta dei condensatori

 \Box Vogliamo quanto vale fL scegliendo C₁ di 1 μF (NON elettrolitico). La resistenza d'ingresso dell'amplificatore, trascurando la C_F, è pari a circa 4.5 kOhm

$$f_L = \frac{1}{2\pi C_1 R_i} = \frac{1}{2\pi \cdot 10^{-6} \cdot 4.5 \cdot 10^3} = 35 \, Hz$$
 Con C₁ = 2.2 µF è la metà

1. Proviamo a misurare f_C; scegliamo una C_E tale da avere una frequenza di taglio di 3 kHz:

Se
$$r_E = \frac{V_T}{I_C} = \frac{25 \, mV}{0.5 \, mA} = 50 \, \Omega$$
 possiamo scegliere:

$$C_E = \frac{1}{2\pi f_C r_E} = \frac{1}{2\pi \cdot 3 \cdot 10^3 \cdot 50} = 1.1 \,\mu F \implies 1 \,\mu F$$

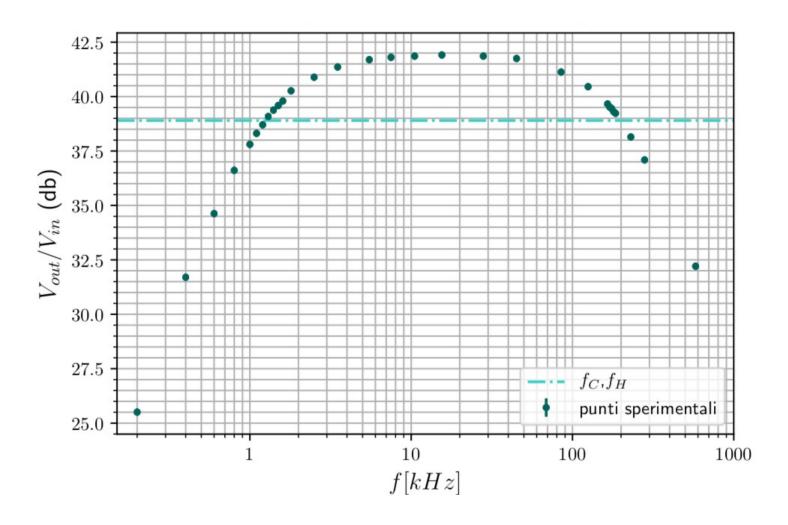
2. A questo punto mettete una C_E grande, in modo da avere una f_C la più piccola possibile, ad esempio:

$$C_E = 100 \, \mu F \Rightarrow f_C = 165 \, Hz$$

questa frequenza di taglio è confrontabile con quella indotta da C₁, che ora dovrebbe essere aumentata perché la resistenza interna dell'amplificatore è diminuita.

Verifica del circuito

Una volta montato il circuito, occorre fare alcune verifiche preliminari prima di iniziare le misure richieste


- 1. Controllate il punto di lavoro del transistor:
 - V_{CE}, V_{BE}, I_C, I_B, I_E
- 2. Misurate anche il potenziale della base e dell'emettitore e confrontatelo con i valori aspettati dal progetto
- Una volta verificato che il punto di lavoro corrisponde, grosso modo, a quanto progettato, potete fornire in ingresso un segnale sinusoidale di ampiezza tale da far lavorare il transistor sempre nella zona attiva.
- 2. Fate un rapido scan in frequenze per individuare il valore dell'amplificazione massima
 - Controllate che il segnale di uscita non sia distorto. Se lo fosse riducete l'ampiezza del segnale d'ingresso
- 3. Controllate dove si trova la posizione della frequenza di taglio, corrispondente al 70% dell'amplificazione massima.

Fate questa verifica con la C_E grande

Misura di f_c e f_H e stima di r_E

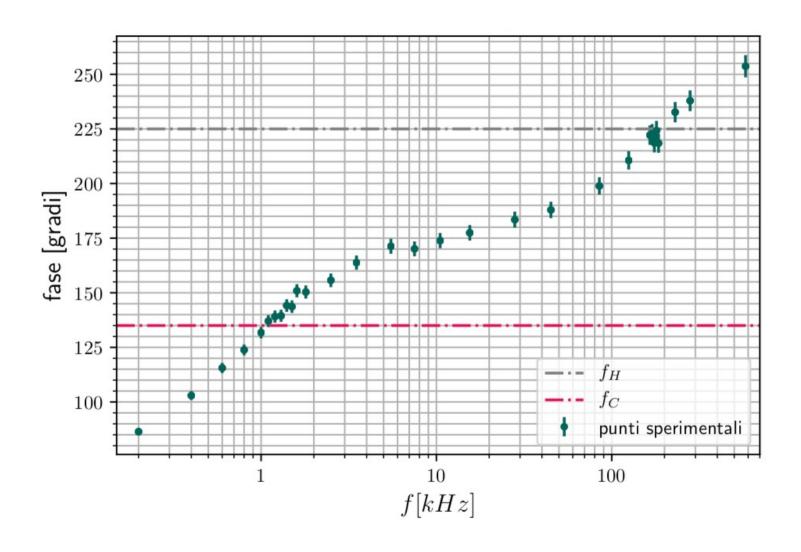
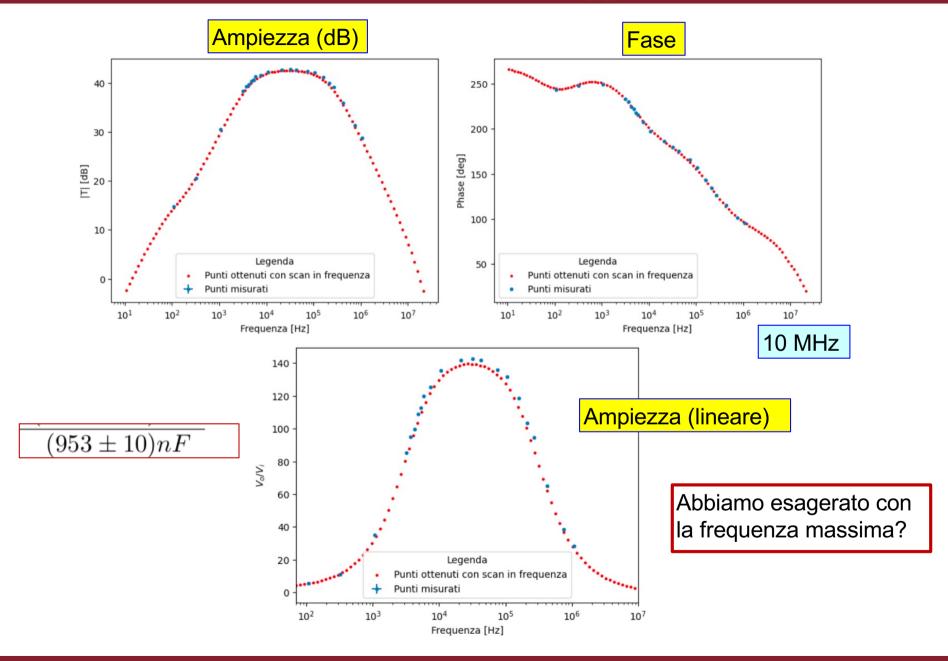

- Con $C_E = 1.0 \,\mu\text{F}$ la frequenza di taglio è intorno a 3 kHz. Potete scegliere altri valori se volete aumentarla un po' o diminuirla. Ad esempio con 3.3 μF avete circa 1 kHz.
- Fate uno scan in frequenza partendo da frequenze basse (50-100 Hz).
- Potreste avere un piccolo plateau, da verificare, ma è difficile.
- Aumentate la frequenza in modo da vedere la risalita dell'amplificazione
- Dovreste raggiungere il secondo plateau alla massima amplificazione
- Aumentate ancora la frequenza in modo da vedere la discesa dell'amplificazione
- Su questo grafico dovreste essere in grado di misurare f_C , f_H e il plateau. Confrontate f_H con quella misurata la volta scorsa con l'amplificatore senza C_E .
- Controllate se torna con quanto ci aspettiamo in base ai calcoli fatti in precedenza.
- Se f_C è molto diversa da quello che ci aspettiamo, 3 kHz, vuol dire che la stima che abbiamo fatto di r_E non è corretta. Provate a cambiare C_E in modo da avere f_C nell'intervallo voluto.
- Provate a stimare r_E anche dal valore del'amplificazione al plateau. Due valori di r_E misurati con f_C e con Av_{max} dovrebbero essere compatibili tra loro.

Diagramma di Bode con C_{E1}



Frequenza di taglio	Valore teorico	Valore sperimentale
f_c [kHz]	1.18 ± 0.02	1.21 ± 0.13

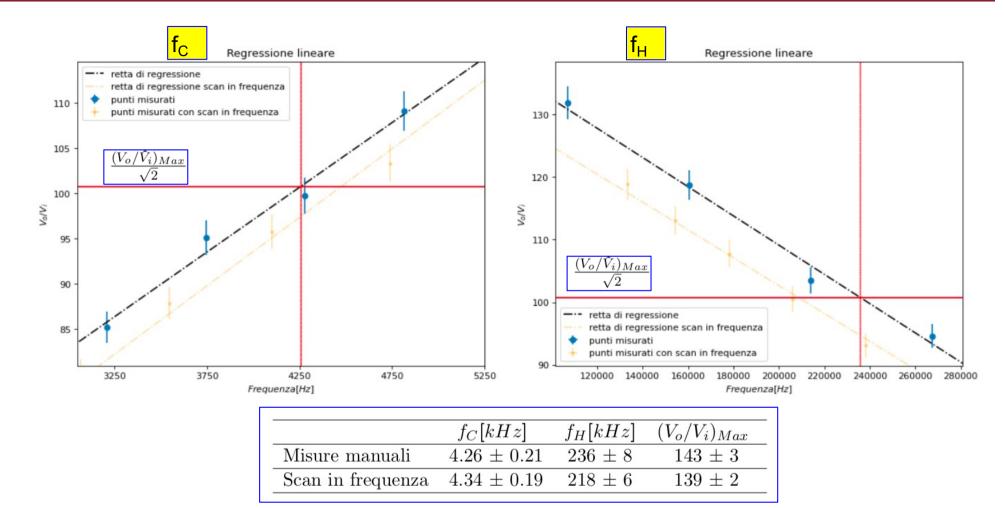
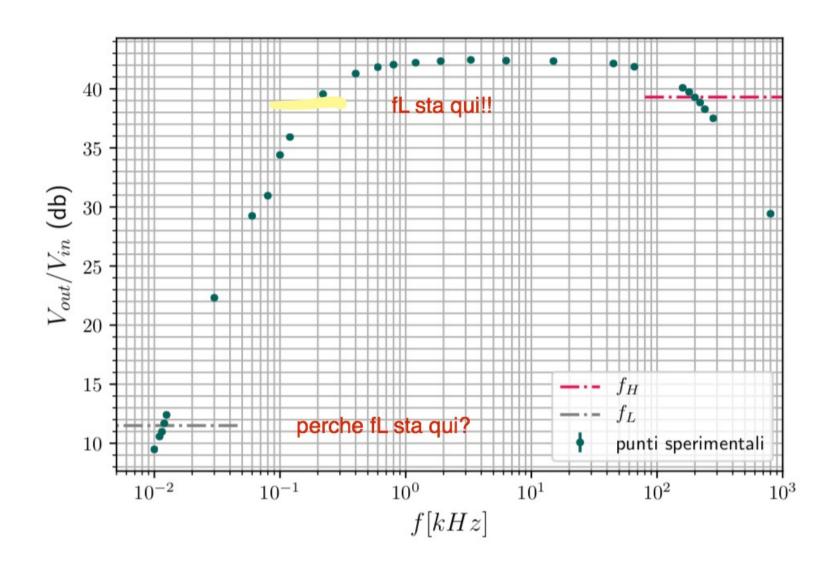

Diagramma di Bode con C_{E1}

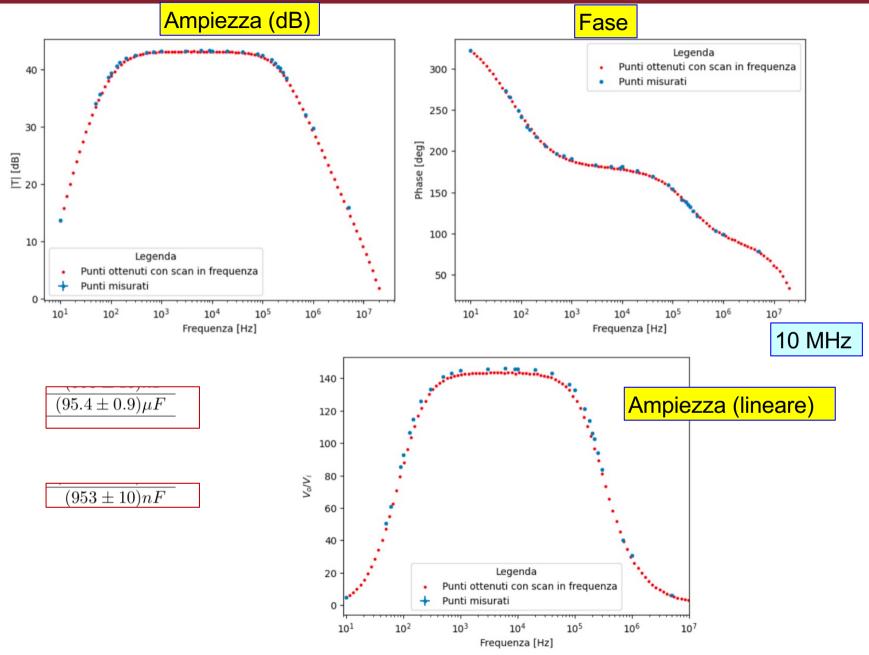
Diagramma di Bode con C_{E1} (un altro gruppo)

Diagramma di Bode con C_{E1} (un altro gruppo)

$$r_E = 1/(2\pi C_{E_2} f_C)$$


$$r_E = \frac{R_C}{(V_o/V_i)_{Max}}$$

	$r_E[\Omega]$ (da f_C)	$r_E[\Omega]$ (da $(V_o/V_i)_{Max}$)
Misure manuali	39.2 ± 1.7	39.0 ± 1.2
Scan in frequenza	38.5 ± 1.2	40.1 ± 1.3


Massima larghezza di banda

- Utilizzate C_E = 100 μF
- Dovremmo avere una frequenza di taglio molto piccola.
- Fate uno scan in frequenza partendo da frequenze basse (10-20 HZ).
- Verificate che si raggiunge abbastanza presto il plateau alla massima amplificazione
- Aumentate ancora la frequenza in modo da vedere la discesa dell'amplificazione
- Su questo grafico dovreste essere in grado di misurare f_L, f_H e il plateau.
- Controllate se torna con quanto ci aspettiamo in base ai calcoli fatti in precedenza.
 La frequenza di taglio inferiore f_L dovrebbe essere diversa da quella misurata in precedenza, perché ora concorrono sia C₁ che C_E.
- Se il polo introdotto da C₁ e da C_E sono alla stessa frequenza di taglio, per questo valore la funzione di trasferimento diminuisce di 6 dB e lo sfasamento dovrebbe essere di 90 gradi. Provate a vedere se qualitativamente osservate questi comportamenti.
- Ovviamente quando l'amplificazione diminuisce molto potete/dovete aumentare la tensione del segnale d'ingresso per migliorare la misura.

Diagramma di Bode con C_{E2}

Massima larghezza di banda con C_{E2} (un altro gruppo)

Massima larghezza di banda con C_{E2} (un altro gruppo)

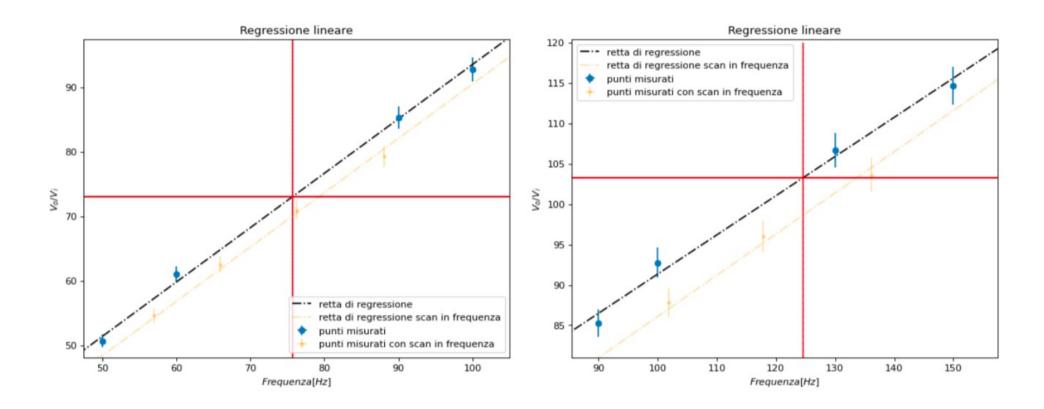
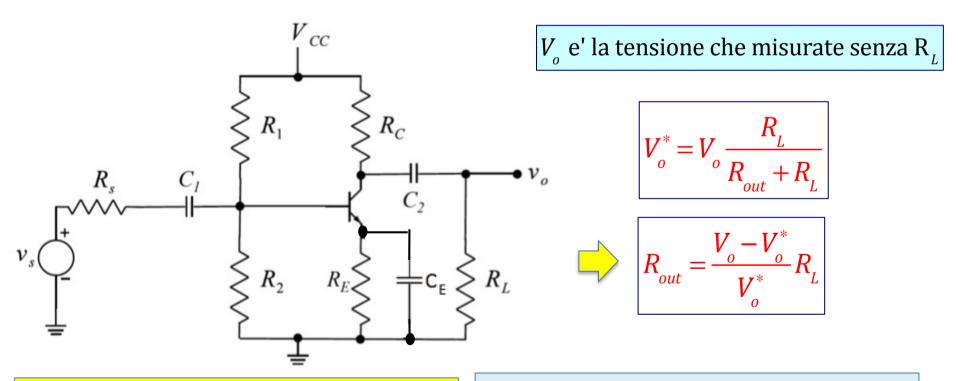
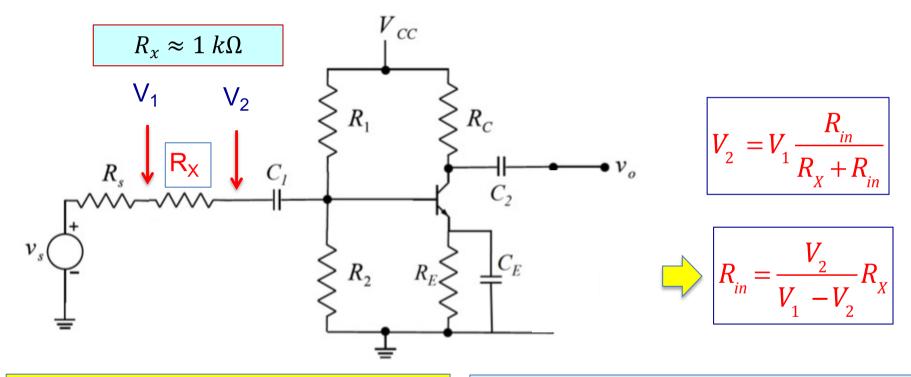



Figura 10: Fit lineari, frequenza di taglio f_L (sx) e f_H (dx)

	$f_L[Hz]$	$f_H[kHz]$	$(V_o/V_i)_{Max}$
Misure manuali	130 ± 4	216 ± 6	146 ± 3
Scan in frequenza	125 ± 4	202 ± 6	142 ± 3

Resistenza d'uscita (fatta con la C_E grande)

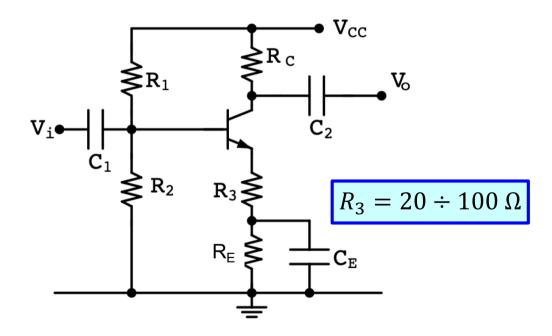
- Misurate ore la resistenza d'uscita Ro dell'amplificatore a frequenze intermedie.
- Per farlo occorre confrontare la tensione d'uscita con e senza un carico R_L esterno.
- Il carico R_L deve essere tale da ottimizzare la sensibilità della misura, quindi esso deve avere un valore vicino alla Ro che si vuole misurare, che sappiamo essere uguale a R_C.
- Non dimenticate di inserire il condensatore C₂.


Le tensioni vanno misurate con l'oscilloscopio

Andrebbero fatte diverse misure al variare di R_L

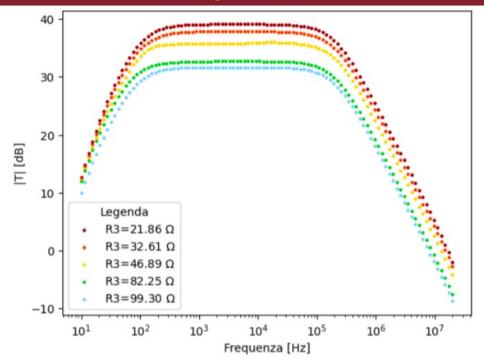
Resistenza d'ingresso

- \square proviamo a valutare la resistenza d'ingresso dell'amplificatore. (usate la C_F grande)
- ☐ puo' essere valutata dalla misura della frequenza di taglio
- oppure modificando il circuito nel modo seguente:


Le tensioni vanno misurate con l'oscilloscopio

Andrebbero fatte diverse misure al variare di R_X

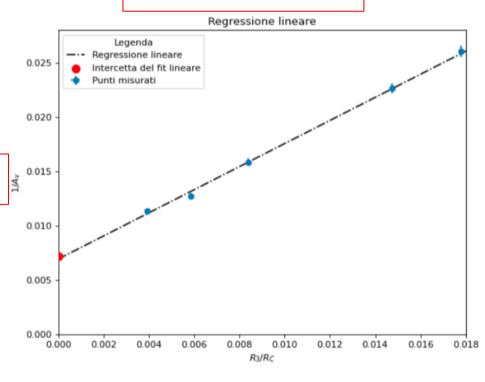
☐ Utilizzate la resistenza d'ingresso misurata, unitamente alla capacità C₁, per valutare la frequenza di taglio inferiore e confrontatela con quella ricavata dal diagramma di Bode.


Amplificatore con piccola reazione

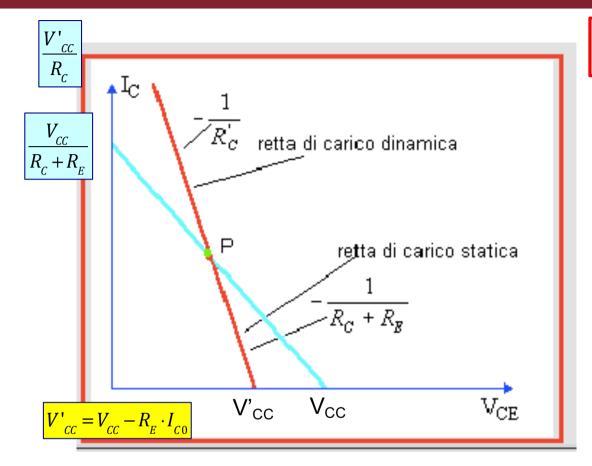
- Modificate leggermente il circuito aggiungendo una piccola reazione negativa tramite la resistenza R_3 . Utilizzate la C_F grande.
- ☐ Fate il diagramma di Bode.
- ☐ Se avete tempo, provate a fare la misura per diversi valori di R₃
- Misurate l'amplificazione massima e le due frequenze di taglio. Confrontate i risultati ottenuti con il caso precedente senza la R_3 .

Provate a calcolare da soli qual e' l'amplificazione massima aspettata.

Amplificatore con piccola reazione



$$\frac{1}{A_v} = \frac{R_3}{R_C} + \frac{r_E}{R_C}$$
, con $\frac{r_E}{R_C}$ intercetta del fit.


Si può ricavare r_E dall'intercetta

R_3 [Ω]	$f_L[Hz]$	$f_H[kHz]$	$(V_o/V_i)_{Max}$
21.9 ± 0.2	109 ± 4	205 ± 6	86.2 ± 1.7
32.6 ± 0.3	104 ± 3	203 ± 6	77.7 ± 1.6
46.9 ± 0.5	90.2 ± 1.9	213 ± 6	63.0 ± 1.3
82.3 ± 0.8	75.5 ± 1.4	207 ± 6	43.4 ± 0.9
99.3 ± 1.0	87.8 ± 1.8	207 ± 6	38.4 ± 0.7

Retta di carico dinamica

Esempio:
$$V_{CC} = 10 \text{ V}, I_{C} = 1 \text{ mA}$$

 $R_{C} = 1.2 \text{ k e } R_{E} = 1.3 \text{ k}$

$$V'_{CC} = V_{CC} - V_{E} = 10 - 1.3 = 8.7 \text{ V}$$

$$\left| \frac{V_{CC}}{R_C + R_E} \right| = \frac{10}{1.2 + 1.3} = 4 \text{ mA}$$

$$\frac{V'_{CC}}{R_{c}} = \frac{8.7}{1.2} = 7.25 \text{ mA}$$

A parita' di ΔI_B , la ΔV_{CE} e' la meta' sulla retta dinamica

$$\Delta V_{CE}^{\text{max}} = V_{CC}^{\prime} - V_{CE0} = 8.7 - 7.5 = 1.2 \text{ V}$$

$$\Delta V_{I}^{\text{max}} = \frac{\Delta V_{CE}^{\text{max}}}{A_{V}} = \frac{1.2}{50} = 24 \text{ mV}$$

E' importante a questo punto osservare che in realtà il punto di lavoro non si sposta lungo la retta di carica statica, ma lungo quella di carico dinamica che può essere abbastanza facilmente individuata perché se ne conosce la pendenza $\left(-\frac{1}{R_C'}\right)$ e un punto che è sempre quello di lavoro determinato in precedenza. Infatti quando il segnale sinusoidale passa per lo zero, il p.d.l. diventa quello del progetto statico.

SAPIENZA Fine esercitazione 3