Laboratorio di Segnali e Sistemi - Capitolo 3 -

Transistor BJT

last update : 070117

Sommario del capitolo:

- L'invenzione del transistor
- Il transistor BJT
- vari tipi di polarizzazione delle due giunzioni
- principio di funzionamento
- relazioni tra le correnti
- cenni al modello di Ebers-Moll (non fa parte del programma)
- Tipi di collegamento del transistor in un circuito
- Curve caratteristiche ad emettitore comune
- rette di carico e punto di lavoro
- Cenni all'effetto Early
- polarizzazione del transistor
- progettazione di un circuito

L'invenzione del transistor

il transistor: un po' di storia

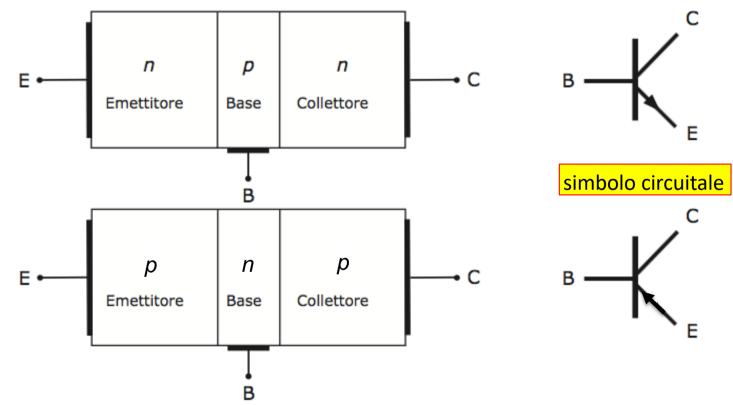
- Negli Stati Uniti, nei primi anni del '900, inizia a diffondersi sempre più l'uso del telefono.
- Affinché fosse possibile comunicare a grandi distanze era necessario che il signale venisse amplificato di tanto in tanto lungo il percorso. Questo fu reso possibile dall'invenzione del triodo da parte di Lee De Forest nel 1906.
- Tuttavia il triodo aveva diversi inconvenienti: dissipava troppa potenza, si scaldava e si rompeva con troppa frequenza.

- Nel 1945, subito dopo la guerra, Bill Shockley, un giovane teorico, fu incaricato di dirigere il gruppo di ricerca che doveva "risolvere" il problema.
- Shockley chiamò nel gruppo un altro brillante teorico, John Bardeen e, tra gli altri, Walter Brattain.
- I primi tentativi furono infruttuosi e Shockley incaricò Bardeen e Brattain di capire come mai. I due ad un certo punto iniziarono ad andare per conto loro senza comunicare più a Shockley il progredire delle loro ricerche.
- Il 23 dicembre del 1947 Bardeen e Brattain comunicarono alla dirigenza dei Bell Labs di aver inventato il "transistor a punta di contatto":
- Una sottile lamina d'oro, divisa in due, era attaccata ad un triangolo di plastica premuto contro un cristallo di germanio drogato n, che a sua volta era appoggiato su una superficie metallica collegato ad un generatore.
- Quando una piccola corrente veniva iniettata su uno dei due fili d'oro, sull'altro si aveva il passaggio di una corrente molto più grande!!

Triodo

il transistor: un po' di storia

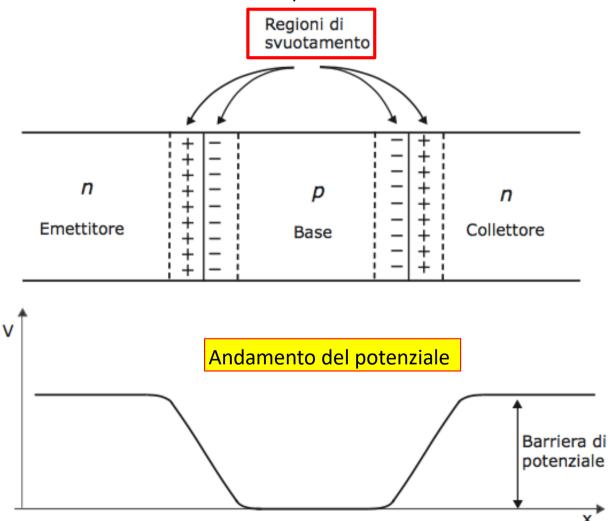
- Shockley fu contento che il suo team avesse ``inventato'' il transistor ma nello stesso tempo non la prese bene di non esserne stato messo al corrente e decise di farne uno ``migliore''.
- Nel giro di quattro settimane inventò (su carta) il "transistor a giunzione" completamente basato sui semiconduttori, ma ci vollero circa due anni prima di riuscire a costruirne uno.
- Il transistor a giunzione aveva prestazioni superiori al transistor a punta di contatto ed era più facile da costruire, quindi esso soppiantò completamente il transistor di Bardeen e Brattain.
- Il 30 giugno 1948 i laboratori Bell rivelarono la loro invenzione e John Pierce propose il nome TRANSISTOR (dall'unione di transfer e resistor)
- Nel 1956 Bardeen, Brattain e Shockley vinsero il premio Nobel per l'invenzione del transistor


il transistor: un po' di storia

- Il transistor bipolare a giunzione (BJT) fu realizzato sperimentalmente soltanto nel 1951 a causa delle difficoltà tecnologiche nella crescita dei cristalli di semiconduttore e del loro drogaggio.
- Nel frattempo Shockley portò avanti la sua idea di realizzare un transistor in cui il campo elettrico fosse perpendicolare al flusso delle cariche e non parallelo come nel caso del BJT. Questa classe di transistor si chiama FET (Field Effect Transistor).
- Dapprima fu realizzato il JFET e successivamente negli anni '60 il MOSFET.
- Il transistor, come vedremo, può svolgere sia la funzione di switch (commutatore o interruttore) che quella di amplificatore
- Riassumendo, si possono individuare 2 grandi categorie di transistor in base al verso di scorrimento della corrente rispetto alla giunzione:
 - transistor bipolari a giunzione (BJT) corrente perpendicolare alla giunzione
 (bipolare perché la conduzione elettrica avviene tramite due portatori di carica (elettroni e lacune)
 - ➤ transistor ad effetto di campo (JFET e MOSFET) corrente parallela alla giunzione (in questo caso la corrente è unipolare: solo elettroni o solo lacune).
- In questo corso studieremo solo il BJT

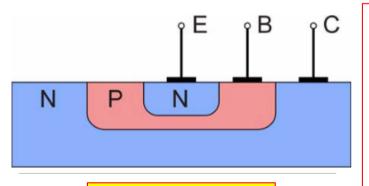
Il transistor BJT: principi di funzionamento

Il transistor bipolare a giunzione (BJT)


- BJT: Bipolar Junction Transistor (transistor bipolare a giunzione)
- Il BJT è un dispositivo realizzato con un cristallo semiconduttore composto da tre regioni di diverso drogaggio: due di tipo n ed una di tipo p (transistor npn) oppure due di tipo p ed una di tipo n (transistor pnp).
- Le tre regioni si chiamano Emettitore, Base e Collettore.

- Simbolo circuitale del transistor: la freccia nel terminale di emettitore ricorda il verso della giunzione pn tra base ed emettitore.
- In laboratorio utilizzeremo il transistor npn 2N2222A. In seguito useremo sempre il BJT npn.

transistor BJT: regioni di svuotamento

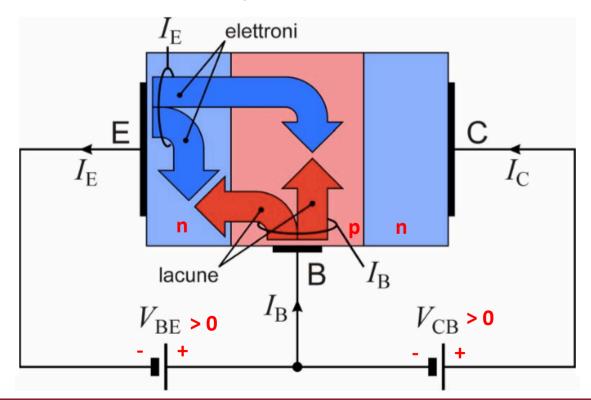

- Quando il transistor non è connesso con l'esterno si crea una situazione di equilibrio con due regioni di svuotamento.
- Si hanno due barriere di potenziale.
- Le correnti di drift e di diffusione sono complessivamente nulle.

Tipi di polarizzazione del transistor

- Per far "funzionare" il transistor occorre polarizzare le due giunzioni base-emettitore e basecollettore;
- Vi sono quattro possibili modi di realizzare queste polarizzazioni:

Polarizzazione della	Polarizzazione della	Modo		
giunzione Emettitore - Base	giunzione Collettore - Base			
diretta	inversa	Attivo	Amplificatore	
inversa	inversa	Interdizione	Interruttore	
diretta	diretta	Saturazione	(elec. digitale)	
inversa	diretta	Attivo-inverso	In realtà non si usa	

Transistor planare


- Come vedremo, il principio di funzionamento del BJT prevede che l'emettitore "emetta" elettroni e il collettore li "raccolga";
- il principio costruttivo di un transistor planare permette di ottimizzare la raccolta degli elettroni da parte del collettore;
- Questo però comporta che i ruoli dell'emettitore e del collettore non siano più interscambiabili, quindi il modo "attivo-inverso" non è il modo più efficiente di utilizzare il BJT

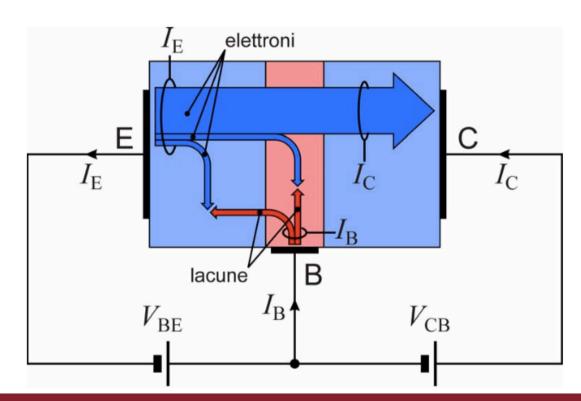
BJT: principio di funzionamento

Polarizzazione attiva: $V_{BE} > 0$; $V_{CB} > 0$ (BJT npn)

Ipotesi (accademica): base "larga" e con drogaggio simile a quello dell'emettitore

- Non si hanno interazioni tra le due giunzioni;
- il dispositivo si comporta come una coppia di diodi; il diodo base-emettitore polarizzato direttamente ed il diodo base-collettore polarizzato inversamente;
- Gli elettroni iniettati dall'emettitore nella regione di base si ricombinano con le lacune, contribuendo alla corrente di base, mentre in prossimità della giunzione BC la concentrazione di elettroni è praticamente nulla.

Trascurando le correnti di drift dei portatori minoritari:


$$I_{E} \approx I_{B} ; I_{C} \approx 0$$

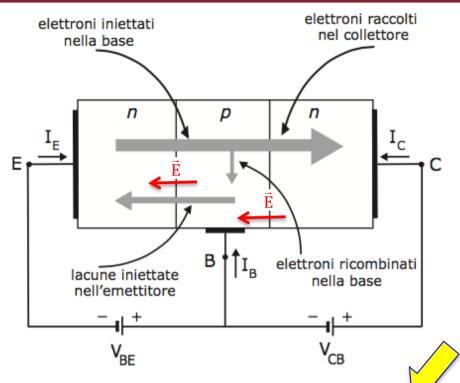
NON abbiamo un transistor

BJT: principio di funzionamento

base "stretta" e basso drogaggio rispetto all'emettitore → effetto transistor

- base stretta (frazioni di μm): aumenta la probabilità che gli elettroni provenienti dall'emettitore riescano ad arrivare in prossimità della giunzione BC prima di ricombinarsi;
- la giunzione BC è polarizzata inversamente (campo elettrico dal collettore verso la base), quindi gli elettroni presenti nella base (cariche minoritarie) sono spinti attraverso la giunzione e arrivano al collettore
- Base poco drogata → quasi tutti gli elettroni provenienti dall'emettitore raggiungono il collettore (per minimizzare l'effetto Early, il collettore ha un drogaggio più basso della base).

$$I_{C} \approx I_{E}$$
 ; $I_{B} << I_{C}$


$$I_c = \alpha_F I_E$$

$$(\alpha_F = 0.99 \div 0.995)$$

 α_F =guadagno diretto di corrente a base comune

N.B. per il momento non teniamo conto delle correnti di drift dei portatori minoritari, che dipendono fortemente dalla temperatura.

BJT: relazione tra le correnti

N.B. non sono mostrate le correnti di drift dei portatori minoritari

Convenzione sui segni delle correnti

tutte le correnti sono assunte entranti nel transistor (segno positivo).

Le correnti uscenti hanno segno negativo

$$I_{B} + I_{C} + I_{E} = 0$$
 ; $I_{C} = -\alpha_{F}I_{E}$

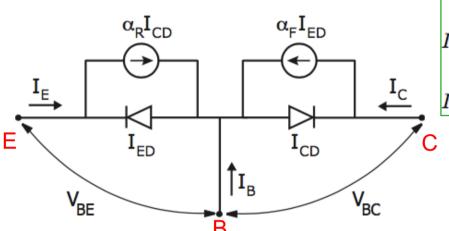
• Ricaviamo I_C in funzione di I_B:

$$I_{B} = -(I_{E} + I_{C}) = -(1 - \alpha_{F})I_{E}$$

$$\rightarrow I_{E} = -\frac{I_{B}}{1 - \alpha_{F}}$$

$$\rightarrow I_{C} = -\alpha_{F}I_{E} = \frac{\alpha_{F}}{1 - \alpha_{F}}I_{B}$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$


N.B. dato che α_F è prossimo a 1 \rightarrow β_F è un numero grande (50÷250). Varia molto da transistor a transitor

Modello di Ebers-Moll

(Non fa parte del programma d'esame)

Modello di Ebers-Moll

• Il transistor può essere schematizzato come un sistema di due diodi correlati tra loro. Una giunzione è rappresentata da un diodo con in parallelo un generatore ideale di corrente che descrive il contributo della seconda giunzione.

$$I_E = lpha_R I_{CD} - I_{ED} = lpha_R I_{SC} (e^{rac{V_{BC}}{V_T}} - 1) - I_{SE} (e^{rac{V_{BE}}{V_T}} - 1)$$
 $I_C = lpha_F I_{ED} - I_{CD} = lpha_F I_{SE} (e^{rac{V_{BC}}{V_T}} - 1) - I_{SC} (e^{rac{V_{BE}}{V_T}} - 1)$

 I_{SC} e I_{SE} sono le correnti di saturazione inversa dei due diodi. α_R e α_F sono dei parametri costruttivi che dipendono dal tipo di transistor e vanno determinati sperimentalmente

• La grandezza rilevante è la corrente di collettore. Il parametro $\alpha_F I_{ED}$ viene spesso chiamato I_S :

$$I_s \equiv lpha_F I_{SE} = rac{AqD_n n_i^2}{N_A W}$$

dove A e' l'area della giunzione pn, W lo spessore della base, D_n il coefficiente di diffusione degli elettroni, N_A la concentrazione di impurezze nella base, n_i la concentrazione intrinseca dei portatori nel silicio. Poiche' quest'ultima e' fortemente dipendente dalla temperatura, anche I_s lo e'.

Condizione di reciprocità

$$\alpha_R I_{SC} = \alpha_F I_{SE}$$

$$\alpha_{\rm F} \approx 0.9 \div 0.995$$
 mentre $\alpha_{\rm R} \approx 0.4 \div 0.8$

$$I_{SE} \approx I_{SC} \approx 10^{-12} \div 10^{-18} A$$

$$I_B = -(I_E + I_C)$$

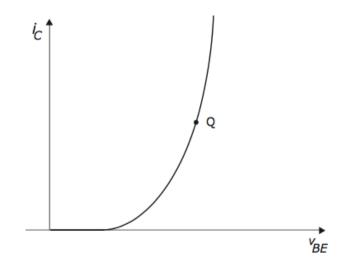
Le equazioni di Ebers-Moll permettono di descrivere il transistor in tutti i modi di polarizzazione. Noi vedremo solo quella attiva.

Modello di Ebers-Moll

Esaminiamo soltanto la polarizzazione attiva ($V_{BE} > 0$ e $V_{BC} < 0$):

$$I_E = lpha_R I_{SC}(e^{rac{V_{BC}}{V_T}}-1) - I_{SE}(e^{rac{V_{BE}}{V_T}}-1) \ I_C = lpha_F I_{SE}(e^{rac{V_{BC}}{V_T}}-1) - I_{SC}(e^{rac{V_{BC}}{V_T}}-1)$$

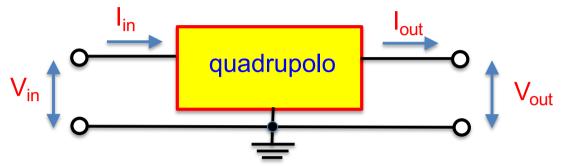
• Dato che V_{BC} è negativa, gli esponenziali con V_{BC} valgono circa zero e possono essere ignorati:


$$I_E \simeq -I_{SE}(e^{rac{V_{BE}}{V_T}}-1)$$
 $I_C \simeq lpha_F I_{SE}(e^{rac{V_{BE}}{V_T}}-1)$

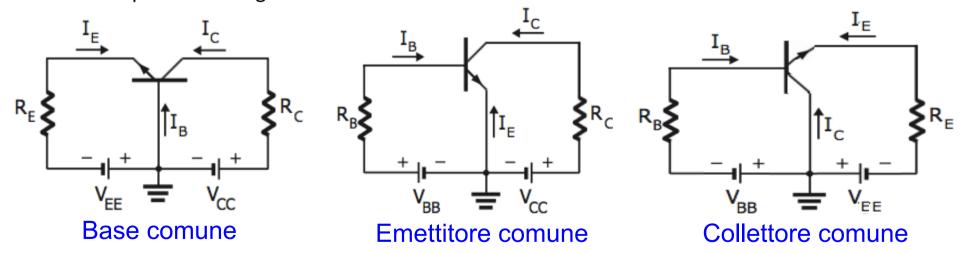
$$I_C \simeq -\alpha_F I_E$$

• Quando il transistor è nella zona attiva, possiamo trascurare il termine -1 nella formula; in seguito utilizzeremo questa relazione tra V_{BE} e I_{C:}

$$i_C = I_S e^{\frac{V_{BE}}{V_T}}$$

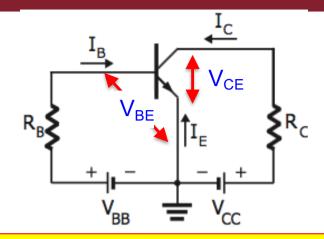


Tipi di collegamento del transistor e relative curve caratteristiche associate

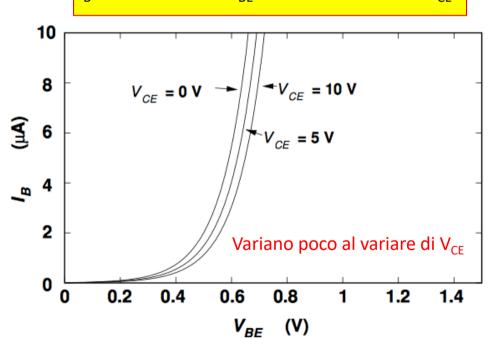


Come inserire un transistor in un circuito

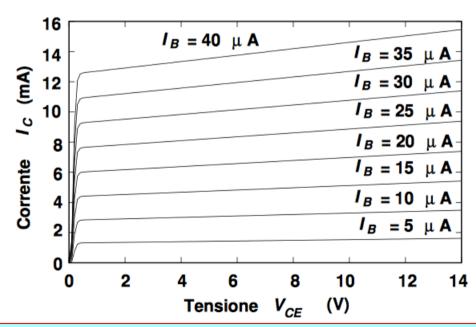
- Qualunque circuito noi vogliamo realizzare è costituito da due poli di ingresso e due poli di uscita (quadrupolo).
- Inoltre generalmente un polo di ingresso ed un polo di uscita sono connessi alla massa comune di tutto il circuito.


- Il transitor ha "solo" tre terminali, quindi necessariamente uno deve essere in comune tra ingresso e uscita.
- Vi sono tre possibili configurazioni:

La configurazione ad emettitore comune è quella più usata. Noi studieremo solo questa configurazione.

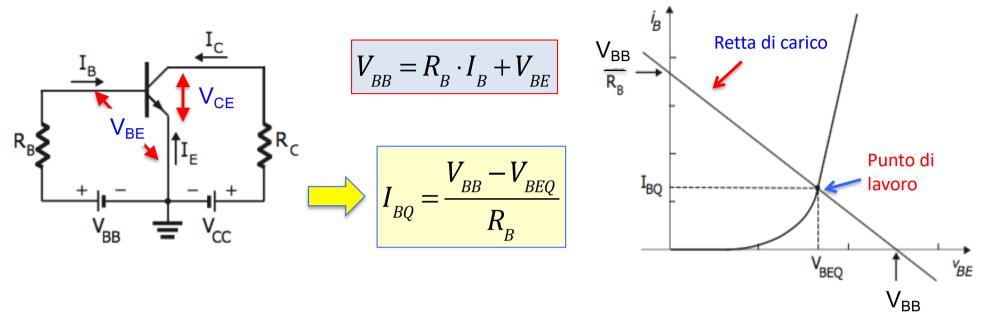

Curve caratteristiche del transistor

- Queste curve si possono ricavare sperimentalmente in laboratorio misurando le correnti e le tensioni del transistor.
- CAVEAT: variano molto da transistor a transistor, anche della stessa famiglia. Vanno quindi usate solo da un punto di vista accademico per capire il funzionamento del transistor, ma per la progettazione di un circuito occorre fare molta attenzione ed utilizzare altri metodi.
- Le curve caratteristiche a base comune sono leggermente diverse; controllare sul libro di A.Nigro


Caratteristiche di ingresso

I_B in funzione di V_{BE} tenendo costante V_{CE}

Caratteristiche di uscita


I_C in funzione di V_{CE} tenendo costante I_B

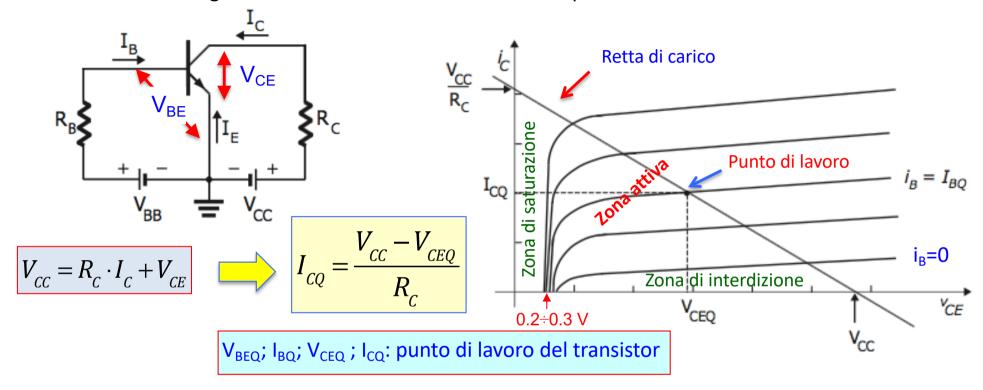
I valori numerici indicati danno l'ordine di grandezza delle correnti e tensioni di questa tipologia di transistor

Circuito di ingresso: retta di carico

• Esaminiamo la maglia d'ingresso del transistor e troviamo il punto di lavoro:

- Il punto di lavoro si potrebbe trovare per via grafica a patto di conoscere la curva caratteristica di ingresso di QUEL transistor.
- Oppure si può fare la seguente approssimazione che noi faremo sempre ogni qualvolta un transistor lavora nella zona attiva (che definiremo nella prossima slide)

$$V_{BEQ} \simeq 0.7 \text{ V}$$


$$I_{BQ} = \frac{V_{BB} - 0.7}{R_B}$$

N.B. la corrente di base dipende solo dalla rete di polarizzazione

Inconveniente: in questo circuito vi sono due generatori: V_{BB} e V_{CC} . Vedremo come eliminare V_{BB} .

Circuito di uscita: retta di carico

• Vediamo ora la maglia di uscita del transistor e troviamo il punto di lavoro:

- Scegliendo in maniera opportuna il valore delle resistenze e delle tensioni di alimentazione si può determinare il punto di lavoro del transistor.
- Se si conoscessero le curve caratteristiche del transistor, si potrebbe risolvere il sistema per via grafica, ma queste variano moltissimo da transistor a transistor, quindi occorre seguire altri metodi.
- Se si vuole costruire un amplificatore occorre essere nella zona attiva, mentre un "interruttore" funziona tra interdizione e saturazione.

La lieve pendenza delle curve nella zona attiva è data dall'effetto Early.

Effetto Early

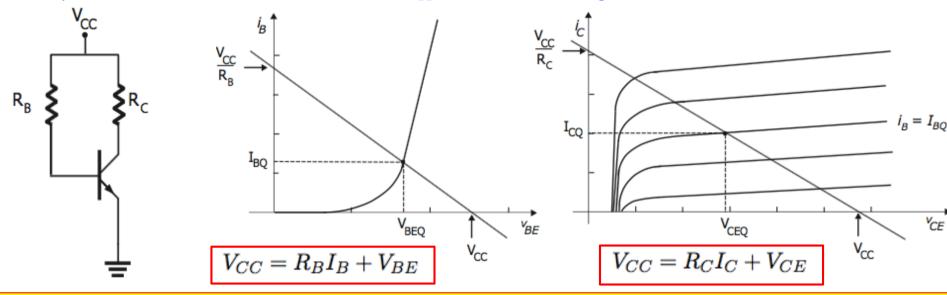
- Questo effetto, scoperto da James Early, consiste nella variazione della larghezza della regione di svuotamento della base dovuta alla variazione della tensione V_{BC} (si noti che variando la V_{CE} varia anche la V_{BC})
- Questo comporta che si ha una piccola variazione della corrente di collettore al variare della tensione V_{CE}, infatti all'aumentare della regione di svuotamento nella base diminuiscono gli elettroni che si ricombinano e che possono così raggiungere il collettore.
- Per diminuire l'effetto Early si sceglie un drogaggio del collettore più basso di quello della base, in modo che la regione di svuotamento penetri di più nel collettore rispetto alla base.
- Le curve caratteristiche non sono più parallele; se vengono prolungate convergono in un punto delle ascisse corrispondente a $V_{CE} = -V_A$ (tensione di Early)
- La corrente di collettore può essere parametrizzata come:

Il transistor non si comporta più come un generatore ideale di corrente con resistenza d'uscita infinita, bensì come un generatore reale. Questo viene schematizzato inserendo una resistenza di uscita nello schema equivalente del transistor.

$$\frac{1}{r_0} = \frac{I_C}{V_A + V_{CE}}$$
0.7V $\frac{1}{T}$

Regione

attiva


Regione di saturazione

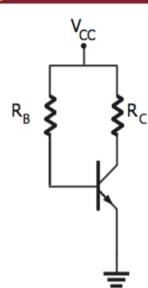
Nei nostri schemi equivalenti e/o nei nostri esercizi trascureremo spesso questa resistenza

Polarizzazione del transistor

Polarizzazione del transistor

- Polarizzare il transistor vuol dire scegliere il punto di lavoro, ovvero I_{BQ}, V_{BEQ}, I_{CQ} e V_{CEQ}.
- Come prima cosa eliminiamo l'alimentatore V_{BB}. Esaminiamo il seguente circuito:

Il transistor in questo esempio lavora nella zona attiva, a patto di scegliere in maniera opportuna V_{CC}, R_B e R_C


$$V_{BEQ} \simeq 0.7 \ V$$
 \Longrightarrow $I_{BQ} \simeq \frac{V_{CC} - 0.7}{R_B}$ \Longrightarrow $I_{CQ} \simeq \beta_F I_{BQ}$ \Longrightarrow $V_{CEQ} \simeq V_{CC} - R_C I_{CQ}$

• È bene scegliere $V_{CEQ} \simeq \frac{V_{CC}}{2}$ se si vuole la massima "dinamica" dell'amplificatore

Nell'ipotesi di conoscere β_F (di fatto significa misurarlo per l'esemplare che stiamo utilizzando), questa procedura ci consente di progettare il circuito

Problema: β_F varia molto da transistor a transistor \rightarrow occorre un altro circuito!!

Esempio numerico sulla polarizzazione

- Il nostro transistor ha β_{E} =100;
- Scegliamo $V_{CC}=10 \text{ V}$; di conseguenza scegliamo $V_{CE}=5 \text{ V}$;
- Guardando le caratteristiche (se le avessimo) oppure facendo un ipotesi ragionevole, vogliamo far lavorare il transistor nella regione attiva con una I_C=2.5 mA

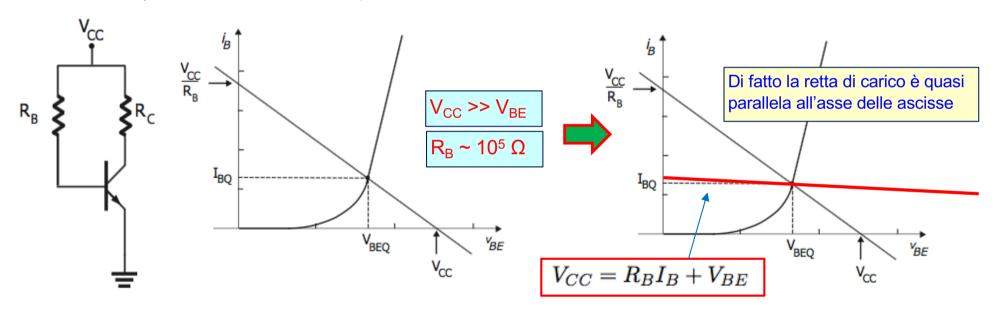
$$R_c = \frac{V_{cc} - V_{cE}}{I_c} = \frac{10 - 5}{2.5 \cdot 10^{-3}} = 2 \text{ k}\Omega$$

$$I_{B} = \frac{I_{C}}{\beta_{F}} = \frac{2.5 \cdot 10^{-3}}{100} = 25 \ \mu A$$

$$|I_{B} = \frac{I_{C}}{\beta_{E}} = \frac{2.5 \cdot 10^{-3}}{100} = 25 \ \mu \text{A} | \square \rangle | R_{B} = \frac{V_{CC} - 0.7}{I_{B}} = \frac{10 - 0.7}{25 \cdot 10^{-6}} = 372 \ \text{k}\Omega$$

- Supponiamo ora che il transistor si sia rotto e lo abbiamo cambiato con un altro identico ma che ha $\beta_{\rm F}$ =200 (oppure $\beta_{\rm F}$ è cambiato per via di un aumento della temperatura);
- I_B non cambia perché nelle nostre approssimazioni dipende solo da V_{CC} e R_B, invece la I_C:

$$I_C = \beta_F \cdot I_R = \frac{200}{100} \times 25 \cdot 10^{-6} = 5.0 \text{ mA}$$

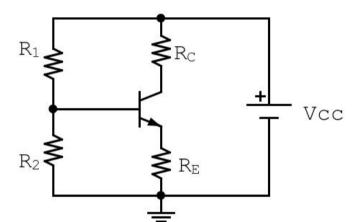

$$I_C = \beta_F \cdot I_B = 200 \times 25 \cdot 10^{-6} = 5.0 \text{ mA}$$
 $\bigvee_{CE} = V_{CC} - R_C \cdot I_C = 10 - 2 \cdot 10^3 \times 5 \cdot 10^{-3} = 0 \text{ V}$

Risultato assurdo; vuol dire che il transistor non lavora più nella zona attiva ma è in saturazione.

$$V_{CE} = V_{CC} - \beta_F \cdot \left(V_{CC} - V_{BE}\right) \cdot \frac{R_C}{R_B} \gg V_{CE_SAT} \text{ (zona attiva)} \implies \beta_F \cdot R_C < R_B$$
Situazione critica: β_F varia molto

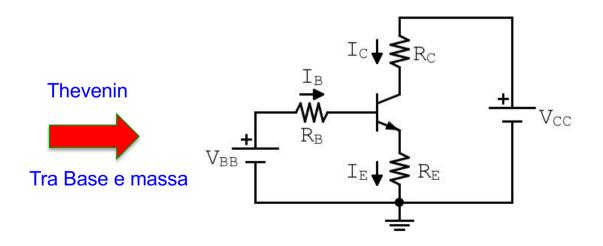
Altre considerazioni su questo circuito

- Il circuito che abbiamo visto, oltre ad essere troppo sensibile alle variazioni di β_F , ha altri inconvenienti:
 - 1. Il potenziale della base si trova sempre a 0.7 V; per qualche applicazione questo potrebbe essere un vincolo non accettabile.
 - 2. Di fatto la corrente di base è indipendente dalla V_{BE}, quindi un segnale di ingresso inviato sulla base non farebbe variare la corrente di base e non sarebbe quindi amplificato dal transistor (guardiamo il grafico della retta di carico; ad ogni modo questo punto sarà più chiaro quando tratteremo lo studio grafico dell'amplificazione di un transistor).



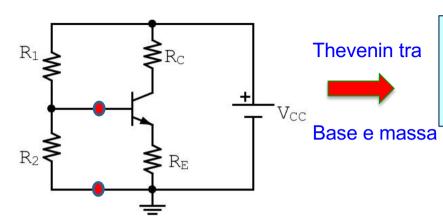
- Per ovviare a questi inconvenienti occorre modificare il circuito di polarizzazione:
 - 1. Si introduce una resistenza di ``reazione negativa'' sull'emettitore per compensare le variazioni di β_F o di altri parametri del circuito;
 - Si utilizza un partitore di polarizzazione della base (al posto della sola R_B) per mantenere "costante" il potenziale della base V_B e non la corrente di base I_B . Questo consente di avere più flessibilità nella progettazione del circuito.

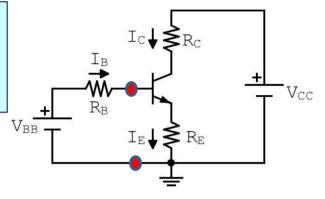
Polarizzazione: circuito completo


Prestate molta attenzione a questo argomento. È molto importante per fare bene l'esonero e per superare la prova pratica e lo chiedo **SEMPRE** all'orale.

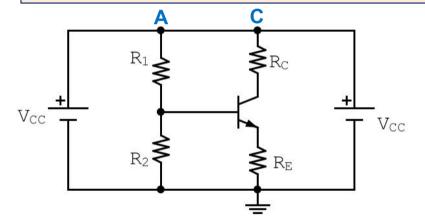
Il circuito che utilizzeremo per costruire un amplificatore ad emettitore comune è il seguente:

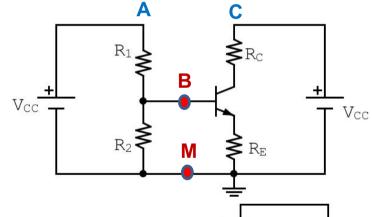
La resistenza R_E sull'emettitore appartiene sia al circuito d'uscita che al circuito d'ingresso; essa costituisce l'elemento di reazione negativa dell'uscita sull'ingresso ed ha un effetto di stabilizzazione del punto di lavoro, come vedremo tra breve.


☐ Applicando il teorema di Thevenin tra la base e massa riotteniamo il circuito con due alimentatori:


$$V_{BB} = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

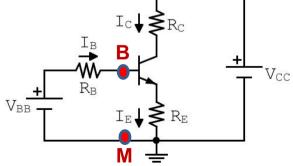
$$R_{\scriptscriptstyle B} = \frac{R_{\scriptscriptstyle 1} \cdot R_{\scriptscriptstyle 2}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}}$$


Come si applica il teorema di Thevenin

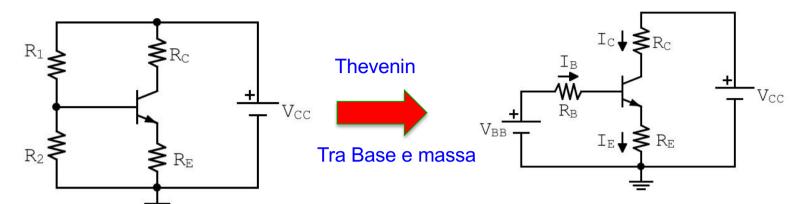

Dalle domande che ogni anno gli studenti mi fanno a lezione, ho capito che questo passaggio suscita molti problemi.

Immaginiamo di avere due alimentatori V_{CC} in parallelo.

I punti A e C hanno lo stesso potenziale, quindi nel cavo che li unisce non scorre corrente e si può anche togliere.



Scolleghiamo ora i punti B e M dal circuito e applichiamo il teorema di Thevenin al partitore costituito dalle due resistenze R₁ e R₂ e poi ricolleghiamo il circuito equivalente.


Spero che adesso sia più chiaro.

$$R_{B} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}$$

$$V_{BB} = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

Polarizzazione: reazione negativa della R_E

$$V_{BB} = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

$$R_{\scriptscriptstyle B} = \frac{R_{\scriptscriptstyle 1} \cdot R_{\scriptscriptstyle 2}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}}$$

$$\left|I_{E}\right| = \left|I_{C} + I_{B}\right| = \left|I_{B}\right| \cdot \left(1 + \beta_{F}\right)$$

$$I_{B} = \frac{I_{E}}{1 + \beta_{F}}$$

(D'ora in poi utilizzeremo sempre i moduli)

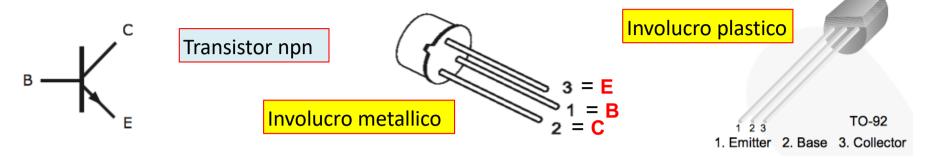
☐ Applichiamo il teorema di Kirchhoff alla maglia d'ingresso per mostrare l'effetto di controreazione di R_E

$$V_{BB} = R_B \cdot I_B + V_{BE} + R_E \cdot I_E = R_B \cdot \frac{I_E}{1 + \beta_E} + V_{BE} + R_E \cdot I_E$$

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E} + \frac{R_{B}}{1 + \beta_{E}}}$$

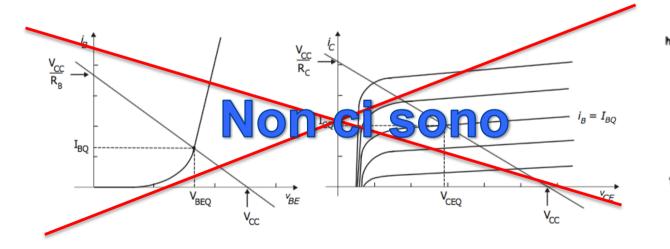
- ☐ Piccole variazioni di V_{BE} non cambiano I_E
- □ Se $R_E \gg \frac{R_B}{1+\beta_E}$ → I_E non dipende da β_F

Condizioni da soddisfare

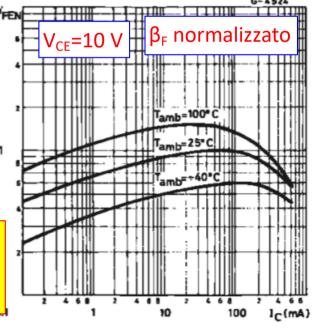

$$V_{BB} >> \Delta V_{BE}$$

$$R_{E} >> \frac{R_{B}}{1 + \beta_{F}}$$

 R_B non può essere troppo piccola \rightarrow compromesso (ad esempio): $R_B = (1+\beta_F)R_E/10$ Si potrebbe fare R_F grande, ma non va bene perché riduce l'amplificazione (che vuole R_C grande)


Progettazione di un circuito

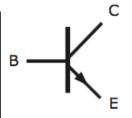
• Progettiamo un amplificatore utilizzando il transistor **2N2222A**. Dobbiamo fare in modo che il punto di lavoro sia nella zona attiva del transistor.


Datasheets in: http://www.roma1.infn.it/~nigro/corsi2016/lab/index.html

Link obsoleto

Trovate grafici come questo sulla variazione di β_F con la temperatura e tabelle che esprimono il valore minimo e massimo di alcune grandezze caratteristiche del transistor (prossima slide)

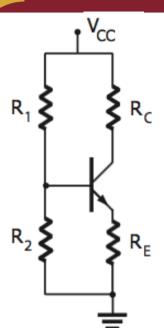
Normalized DC Current Gain.



Alcuni dati caratteristici del 2N2222A

ABSOLUTE MAXIMUM RATINGS

Se li superate rompete il transistor


Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	75	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$)	6	V
Ic	Collector Current	0.8	Α

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO} (I _S)	Collector Cut-off Current (I _E = 0)	V _{CB} = 60 V V _{CB} = 60 V T _{case} = 150 °C			10 10	nΑ μΑ
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA I _C = 500 mA I _B = 50 mA			<u>0.3</u> 1	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA I _C = 500 mA I _B = 50 mA	0.6		1.2 2	V V
h _{FE} *	DC Current Gain $h_{_{FE}}\congoldsymbol{eta}_{_F}$ $h_{_{FE}} eq h_{_{fe}}$	$\begin{split} I_{C} &= 0.1 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 1 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 10 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 150 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 500 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 150 \text{ mA} & V_{CE} &= 1 \text{ V} \\ I_{C} &= 10 \text{ mA} & V_{CE} &= 10 \text{ V} \\ I_{C} &= 10 \text{ mA} & V_{$	35 50 75 100 40 50		300	
h _{fe} *	Small Signal Current Gain	$I_C = 1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 1 \text{KHz}$ $I_C = 10 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 1 \text{KHz}$	50 75		300 375	
f _T	Transition Frequency	I _C = 20 mA V _{CE} = 20 V f = 100 MHz	300			MHz

Progettazione del circuito

- Supponiamo di avere un alimentatore da 12 V \rightarrow V_{cc} = 12 V
- Scegliamo (imponiamo, vorremmo, etc...) $V_{CE} = V_{CC}/2 = 12/2 = 6V$ (è una scelta)
- □ Scegliamo (imponiamo, vorremmo, etc...) $V_{RE} = 10\% V_{CC} = V_{CC}/10 = 12/10 = 1.2 V$
- \Box Scegliamo $I_c = 2 \text{ mA}$ (è la scelta più questionabile, ci vorrebbero sul serio le caratteristiche di uscita; sembra comunque una scelta ragionevole. Si può verificare a posteriori, oppure sperimentalmente una volta montato il circuito)

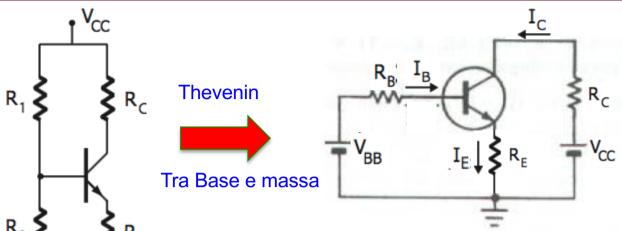
$$V_{R_C} = V_{CC} - V_{CE} - V_{R_E} = 12 - 6 - 1.2 = 4.8 \text{ V}$$

$$R_{C} = \frac{V_{R_{C}}}{I} = \frac{4.8}{2.10^{-3}} = 1$$

$$R_{C} = \frac{V_{R_{C}}}{I_{C}} = \frac{4.8}{2 \cdot 10^{-3}} = 2.4 \text{ k}\Omega$$

$$R_{E} = \frac{V_{R_{E}}}{I_{E}} \simeq \frac{V_{R_{E}}}{I_{C}} = \frac{1.2}{2 \cdot 10^{-3}} = 600 \Omega$$

- Dobbiamo scegliere R_1 e R_2 . Ricordiamo che h_{FF} è compreso tra 50 e 300. Utilizziamo il valore minimo.
- Scegliamo (imponiamo, vorremmo, etc..) la condizione seguente:


$$R_E >> \frac{R_B}{1+\beta_F}$$
; ad esempio $R_E = 10 \cdot \frac{R_B}{1+\beta_F}$

$$R_E >> \frac{R_B}{1+\beta_E}$$
; ad esempio $R_E = 10 \cdot \frac{R_B}{1+\beta_E}$ $R_E = \frac{1+\beta_E}{10} \cdot R_E \simeq \frac{h_{FE_min}}{10} \cdot R_E = \frac{50}{10} \times 600 = 3 \ k\Omega$

 \square Per ricavare R₁ e R₂ occorre applicare Thevenin tra base e massa e ricavare V_{BB}.

Progettazione del circuito

$$V_{BB} = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

$$R_B = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_{\scriptscriptstyle B} = \frac{R_{\scriptscriptstyle 1} \cdot R_{\scriptscriptstyle 2}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}}$$

$$R_{\rm B} = 3 k\Omega$$

☐ Ricaviamo il valore di V_{BB} dalla maglia d'ingresso:

$$V_{BB} = R_B \cdot I_B + V_{BE} + R_E \cdot I_E = \frac{h_{FE}}{10} R_E \cdot \frac{I_C}{h_{FE}} + V_{BE} + V_{R_E} = \frac{V_{R_E}}{10} + V_{BE} + V_{R_E} = \frac{1.2}{10} + 0.7 + 1.2 = 2.02 V$$

$$R_{1} = \frac{V_{CC}}{V_{RR}} \cdot R_{B} = \frac{12}{2.02} \times 3 = 17.8 \text{ k}\Omega$$

$$R_{2} = \frac{R_{1} \cdot R_{B}}{R_{1} - R_{B}} = \frac{17.8 \times 3}{17.8 - 3} = 3.6 \text{ k}\Omega$$

$$R_2 = \frac{R_1 \cdot R_B}{R_1 - R_R} = \frac{17.8 \times 3}{17.8 - 3} = 3.6 \text{ k}\Omega$$

$$I_B = \frac{I_C}{h_{FE}} = \frac{2 \cdot 10^{-3}}{50} = 40 \ \mu A$$

- Ricapitolando: $V_{CC} = 12 \text{ V}$; $R_C = 2.4 \text{ k}\Omega$; $R_E = 600$; $R_1 = 17.8 \text{ k}\Omega$; $R_2 = 3.6 \text{ k}\Omega$
- Il punto di lavoro è: $V_{BE} = 0.7 \text{ V}$; $I_{B} = 40 \text{ mA}$; $V_{CE} = 6 \text{ V}$; $I_{C} = 2 \text{ mA}$

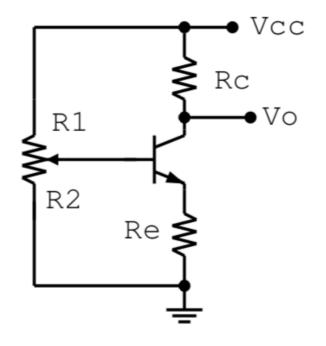
N.B. Fissando V_{BB} e R_E si determina la I_C e scegliendo R_C si determina V_{CE} (avendo fissato V_{CC})

$$V_E \simeq V_{BB} - V_{BE}$$

$$I_{C} \simeq \frac{V_{E}}{R_{E}}$$

$$V_{CE} = V_{CC} - V_E - R_C \cdot I_C$$

Esercizio

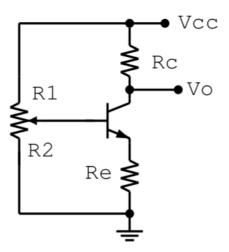

Esercizio esonero 2017

Esercizio 6. (8 punti)

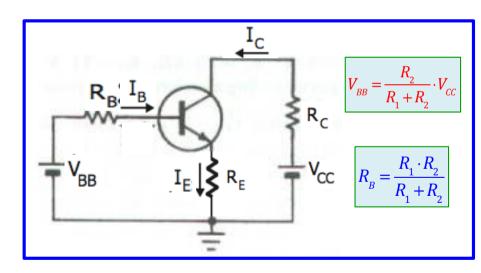
Nel circuito di polarizzazione del transistor in figura il partitore di base è costituito da un potenziometro da 50 $k\Omega$, in modo tale che la somma $(R_1 + R_2) = 50 k\Omega$. In questo modo si può variare il punto di lavoro del transistor spostando il cursore del potenziomentro. Si stabiliscano i valori di R_1 , R_2 , R_C e R_E che permettono di ottenere un valore di $V_{CE} = 6 V e A_V = -5$.

Si usino i seguenti valori: $V_{CC} = 12 \ V, \ I_C = 1 \ mA$ e $V_{BE} = 0.7 \ V.$

$$R_1 =$$
_____; $R_2 =$ _____
 $R_C =$ ____; $R_E =$ _____


Come vedremo, l'amplificazione di tensione di questo circuito vale: $A_V = -\frac{R_C}{R_E}$ $R_C = 5 \times R_E$

$$lacksquare$$
 Maglia d'uscita: $V_{CC} = I_C R_C + V_{CE} + I_E R_E$


$$R_C = 5 \ k\Omega.$$

Esercizio esonero 2017

Si usino i seguenti valori: $V_{CC} = 12 V$, $I_{C} = 1 mA$ e $V_{BE} = 0.7 \ V.$

- □ Abbiamo trovato: $R_E = 1 \text{ k}\Omega \text{ e } R_C = 5 \text{ k}\Omega$
- Il potenziale dell'emettitore vale: $V_F = R_F \cdot I_C = 1 \cdot 10^3 \times 1 \cdot 10^{-3} = 1 \text{ V}$
- Quindi il potenziale della base vale: $V_B = V_{BE} + V_E = 0.7 + 1.0 = 1.7 \text{ V}$
- Ora abbiamo tutti gli elementi per calcolare R₁ e R₂. Se applichiamo Thevenin al nodo della base si ha:

- maglia della base: $V_{BB} = R_B \cdot I_B + V_{BE} + R_E \cdot I_E$
- Se trascuriamo la caduta su R_B si ha: $V_{BB} \simeq V_B$

(questo equivale a trascurare la corrente di base rispetto a quella che scorre nel partitore)

$$R_2 = (R_1 + R_2) \cdot \frac{V_{BB}}{V_{CC}} = 50 \cdot 10^3 \times \frac{1.7}{12} = 7.1 \ k\Omega$$

$$R_1 = 50 - 7.1 = 42.9 \ k\Omega$$

Valutiamo le correnti di base e del partitore:

$$I_B \le \frac{I_C}{H_{FE_{min}}} = \frac{1 \cdot 10^{-3}}{50} = 20 \ \mu A$$

$$I_{B} \le \frac{I_{C}}{H_{FE_{min}}} = \frac{1 \cdot 10^{-3}}{50} = 20 \ \mu A$$

$$I_{P} = \frac{V_{CC}}{R_{1} + R_{2}} = \frac{12}{50 \cdot 10^{3}} = 240 \ mA$$

$$R_{B} = \frac{7.1 \times 42.9}{50} = 6.1 \ k\Omega$$

$$R_{B} = \frac{7.1 \times 42.9}{50} = 6.1 \ k\Omega$$

$$R_B = \frac{7.1 \times 42.9}{50} = 6.1 \, k\Omega$$

$$R_B \cdot I_B \le 6.1 \cdot 10^3 \times 20 \cdot 10^{-6} = 0.122 \text{ V}$$

Fine del capitolo 3