Collider Particle Physics - Chapter 1 -

Accelerators

last update : 070117

Chapter Summary

- **Electrostatic accelerators**
- LINAC
- □ Circular accelerators
- □ MEG experiment
- Bending and focusing in circular accelerators
- □ Particle dynamics in the transvers plane
- Beam injection and extraction
- □ Acceleration and phase stability
- Luminosity in a collider

Accelerators in the world

where accelerators are used

Industry

- Material studies and processing
- Food sterilization
- Ion implantation

Security

- Airports & boarders
- Nuclear security
- Imaging

World wide about >30'000 particle accelerators are in operation with a large variety of applications.

<u>Health</u>

- Diagnostic and imaging
- X-rays
- Cancer therapy
- Radioisotope production

Destroying radioactive waste

Energy

- Energy production
- Nuclear fusion
- Thorium fuel amplifier

Research (<1%)

- Particle Physics
- Storage rings & Colliders
- Material science
- Light sources
- R&D

How can we accelerate particles?

How can we increase the energy of a particle?

A *charged* particles that travels through an electro-magnetic field feels the Lorentz force: $F = a_{V \times B}$

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E})$$

Magnetic field B:

Force acts perpendicular to path.

- \rightarrow Can change direction of particle
- \rightarrow cannot accelerate

Electric field E:

Force acts parallel to path.

- \rightarrow Can accelerate
- \rightarrow not optimal for deflection

Numeric Example: v = c, B = 1T

$$E = vB = 3x10^8 \text{ m/s x 1T}$$

E = 300 MV/m

Technical limit for el. field: $E \propto 1 MV/m$

Which types of accelerators exists? And how do they work?

Basic accelerator

Electro-static accelerator (most basic accelerator)

 \rightarrow Charged particle travels through a fixed high voltage U

Final particle energy is limited by a maximum reachable voltage.

Max. voltage limited by corona formation and discharge to ~10MV.

Electrostatic accelerators: ~ 1930

 Cockcroft-Walton
 Van

 Ccascadetgenerator
 njector

 1930

Concept: rectifier circuit, built of capacitors and diodes (Greinacker circuit)

Limitation: Electrical discharge in air (Paschen Law)

Max. Voltage ~ 1 MV

Van de Graaff accelerator

Concept:

mechanical transport of charges via rotating belt

Electrode in high pressure gas to suppress discharge (SF_6)

```
Max. Voltage ~ 1- 10 MV
```


Tandem Van de 1936 Graaff accelerator

at MPI Heidelberg

Concept:

Generate negative ions, strip off electrons in the center, use voltage a 2nd time with now positive ions

Max. Voltage ~ 25 MV

Claudio Luci - Historically largely used as 1st stage accelerators for proton and ion beams.

Electrostatic Accelerator Limitation

Radio Frequency

Electrostatic

Limitation:

Generation of max. (direct) voltage before sparking.

Acceleration over one stage or gap.

Solution:

Use alternating (RF) voltages and pass the particles through many acceleration gaps of the same voltage.

1925 idea by Ising1928 first working RF accelerator by Wideroe

LINear ACcelerator (LINAC): functionalities

$$E = n q V_{RF} \sin \phi_s$$

n No. of acceleration gaps q Charge of the particle V_{RF} Peak voltage of RF System ϕ_s synchronous phase w.r.t. RF field

Question

Once build, can we use the LINAC to accelerate any particle we like?

- High-frequency RF field (turn-over frequency MHz): $\lambda = c/f_{RF}$
- Particle should only feel the field when the field direction is synchronized.
- Drift-tubes screen the field as long as the field has the reversed polarity.
 - The more energy the particle gains, the faster it becomes (nonrelativistic regime)
 - \rightarrow Drifts have to increase in length.
- → Particles have to be clustered into packages (bunches).

Excercise: LINAC

Question

Once build, can we use the LINAC to accelerate any particle we like?

Drift tubes provide shielding of the particles during the negative half wave of the RF.

Time span of the negative half wave: $\tau_{RF}/2$

Length of the Drift Tube:

Kinetic Energy of the Particles

This question could be rephrased to: How does the drift tube length l_i depend on the particle type?

valid for non-relativistic particles ...

So the answer is **no**. The drift tube length depends on the charge-to-mass-ratio (q/m) of the particle and the RF system. For a given RF system bandwidth only a certain range of q/m leads to a synchronized acceleration. One knob to play could be the charge state for ions, which may allow to get closer to the design q/m.

LINAC limitation

Consists of a chain of many accelerating gaps placed on a straight line.

Particles pass the accelerator only ONCE.

The final energy is limited by length.

Cyclotron – "spiral version of a LINAC"

1929 proposed E.O. Lawrence 1931 built by Livingston

- Particle Source in the middle
- Acceleration gap connected to RF source between the two D-shaped magnets.
- Constant vertical magnetic field to guide the particles in the horizontal plane. The radius of particle trajectory becomes larger and larger with larger energy.
- Particles extracted with a deflector magnet or any electron in few formulas

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \longrightarrow F_L = q \ v \ B \longrightarrow \text{Vertica}_{\text{No E}}$$

$$F_c = m \frac{v^2}{r} \longrightarrow \text{centrifugal force}$$

$$F_L = F_c \longrightarrow \omega = \frac{v}{r} = \frac{qB}{m} \longrightarrow \text{revolution}_{\text{period}}$$

B field is decreasing moving outward from the center.

A component of the Lorentz force prevents the particles to hit the magnet walls

Same principle of weak focusing is working in the dipole magnets

Cyclotron limitation

Constant revolution frequency for constant mass:

$$\omega = \frac{v}{r} = \frac{Bq}{m} = \frac{Bq}{m(E)}$$

B = const. *Well* ... it is the relation between p and v, or p and E that is different

 f_{RF} = const.

But, for relativistic particles the mass is not constant!

The classical cyclotron only valid for particles up to few % of speed of light.

→ Not useful for electrons ... already relativistic at ~500 keV.

Modifications:

Common accelerator for medium energy protons and ions up to ~60MeV/n, used for nuclear physics, radio isotope production, hadron therapy.

Modern"cyclotrons"can reach > 500 MeV (PSI, TRIUMF, RIKEN)

Let's open a parenthesis

(it is not part of the exam program)

Fatti non foste a viver come bruti ma per seguir virtute e canoscenza

Paul Scheerer Institut (PSI) cyclotron [near Zurich]

1974

- Diameter ~15m
- Injection energy 72 MeV
- Accelerates protons
 to E = 590 MeV (i.e. 0.8c) in
 186 revolutions

It produce a proton beam of 2.4 mA, a world record.

$$N_p = \frac{2.4 \cdot 10^{-3}}{1.6 \cdot 10^{-19}} \approx$$

 $1.5 \cdot 10^{16} \text{ prot/s}$

They are used to produce high intensity muon beam, ~ 10⁸ muon/s.

First stage accelerator feeding a smaller cyclotron before the large PSI ring cyclotron is a Cockraft-Walton accelerator.

8 sector magnets 4 acceleration cavities

MEG experiment at PSI

- In the SM, even with massive neutrinos, the B.R. is pratically zero
- □ However, if we have new particles in the loop, the B.R. is enhanced.

MEG experiment at PSI

MEG experiment at PSI

They are excluding part of the new physics band

Let's close the parenthesis

Basic Synchrotron

Most famous example

The largest machine in the world The Large Hadron Collider (LHC)

27 km circumference100m underground

Accelerates protons and heavy-ions to E = 6.8 TeV (2022).

Collides 2 counter-rotating beams in 4 physics experiments.

Getting particles into the LHC

Getting particles into the LHC

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear Accelerator // n-ToF - Neutrons Time Of Flight //

Synchrotron: bending and focusing

Bending

Vertical magnetic field to bend in horizontal plane.

LEIR (Low Energy Ion Ring)

- 78m circumference
- first circular accelerator for CERN's heavy-ions on the way to LHC
- 2.5 sec to accelerate ion bunches from 4.2 MeV/n to 72 MeV/n

LEIR has 4 dipoles, each with 90° bending angle, to keep particles on a circular orbit

Bending at LHC

The superconducting coils are cooled to 1.9 K (the cosmic background radiation is at 2.7 K). LHC is the coldest point in the Universe (on a large scale).

LHC has 1232 superconducting dipole magnets, each 15 m long and able to deflect the beam by 0.29°.

8.33 Tesla (max 2 T in iron) 11.7 kA (superconducting coil)

LHC DIPOLE : STANDARD CROSS-SECTION

Deflection of a charged particle

Required Magnetic Field Strength

Beam focusing

A bunch contains many particles with different initial conditions.

Many different positions, angles and energy offsets

We need a focusing force that keeps the particles close to the design orbit.

Focusing force should rise as a function of the distance to the design orbit.

Beam focusing

Requirement:

Lorentz force linearly increasing as a function of distance from design orbit.

 \rightarrow Linearly increasing magnetic field.

$$F(x) = q \cdot v \cdot B(x)$$

Beam focusing

Focusing of particles with quadrupoles: strong focusing

$$F(x) = q \cdot v \cdot B(x)$$

with the vertical (y) and horizontal (x) quadrupole fields

$$B_y = g \cdot x$$
$$B_x = g \cdot y$$

where g is the gradient

$$g = \frac{2\mu_0 nI}{r^2} \left[\frac{T}{m}\right]$$

Normalized gradient = focusing strength

$$k = \frac{g}{p/q} [m^{-2}]$$

I coil current

n number of windings

r distance magnet center to pole

 μ_0 permeability of free space

Do you see the problem with this?

Quadrupoles focus in one plane, but defocus in the other!

quadrupole magnet

Focusing analogous to geometrical optics

Focusing of particles with quadrupoles is similar to focusing of light with lenses.

A series of alternating focusing and defocusing lenses will focus:

In a synchrotron quadrupoles are lenses with the focal length:

 $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$

$$f = \frac{1}{k \cdot l_Q}$$

Consider:

$$f_1 = f$$

 $f_2 = -f$
Then:
 $F = \frac{f^2}{d} > 0$

Typical alternating

lattice of quadrupoles in an accelerator

The LHC FODO cells

Example of magnets

Beam focusing

LEIR – first circular accelerator for CERN's heavy-ions on the way to LHC

Claudio Luci – Collider Particle Physics – Chapter 1

How does a particle move in an accelerator

(No need to remember all equations. This is only meant to give you the big picture and the "namings")

Claudio Luci – Collider Particle Physics – Chapter 1

Particle motion

Coordinate system

Use different coordinate system: Frenet-Serret rotating frame

- The ideal particle defines "design" trajectory: x=0, y=0 \rightarrow travels through the center of all magnets.
- *x, y* << ρ

Look at the particle motion along the path length s.

Toward the equation of motion

 $F_x = m \cdot \ddot{x}$ Describes motion as a function of time.

But what we need is something like
$$F_x = Mx''$$
 $\dot{x} = \frac{dx}{dt}$
 \Rightarrow Replace free parameter time *t* by path length *s*. $x' = \frac{dx}{ds}$

 \rightarrow Compare to Lorentz force $\quad F(x) = q \cdot v \cdot B(x)$

Taylor expansion of normalize magnetic field:

$$\frac{B_y(x)}{p/q} = \frac{1}{\rho} + kx + \frac{1}{2}mx^2 + \frac{1}{3!}mx^3 + \dots$$

Only consider linear terms: dipole & quadrupole fields!

$$\frac{B_y(x)}{p/q} \approx \frac{1}{\rho} + kx$$

Equation of motion

Equation of motion

Assuming the motion in the horizontal and vertical plane are independent → Particle motion in x & y is uncoupled

Solving the equation of motion – focusing quadrupole

Equation of motion in horizontal plane x'' + Kx = 0

Equation of the **harmonic oscillator** with spring constant K.

Claudio Luci – Collider Particle Physics – Chapter 1

Solving the equation of motion – defocusing quadrupole

Equation of motion in horizontal plane x'' + Kx = 0

Equation of the **harmonic oscillator** with spring constant K.

Particle tracking

Knowing the initial coordinates at $s=s_0$, we can use the transfer matrix to calculate the effect of an element to the particle's trajectory and get its new coordinates at $s=s_1$.

How does a particle trajectory look like?

Initial coordinates $x_0 = 0.001m (1 mm)$ $x_0' = 0$

The envelope of all trajectories has a periodicity that depends on the lattice

Claudio Luci – Collider Particle Physics – Chapter 1

Hill's equation

We had ...

$$x'' + Kx = 0$$

But, around the accelerator K is not constant and does depend on s!

x''(s) + K(s)x(s) = 0 Hill's equation

- $K(s+L) = K(s) \rightarrow$ periodic function, where L is the "lattice period"
- General solution of Hill's equation:

$$x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$$

It is a quasi harmonic oscillation, where amplitude and phase depend on the position s in the ring.

The Beta function

General solution of Hill's equation

$$x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$$

Integration constants: determined by initial conditions

The **beta function** is a periodic function determined by the focusing properties of the lattice, i.e. quadrupoles

$$\beta(s+L) = \beta(s)$$

The **"phase advance"** of the oscillation between the point s_0 and point s in the lattice.

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

The Tune

The number of oscillations per turn is called "tune"

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)} \quad \stackrel{\text{full turn}}{\longrightarrow} \quad Q = \frac{1}{2\pi} \int \frac{ds}{\beta(s)}$$

The tune is an important parameter for the **stability of motion** over many turns. It has to be **chosen appropriately, measured and corrected**.

Courant-Snyder Parameters: $\alpha(s)$, $\beta(s)$, $\gamma(s)$

General solution of Hill's equation $x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$

Define:
$$\alpha(s) = -\frac{1}{2}\beta'(s)$$
 $\gamma(s) = \frac{1+\alpha(s)^2}{\beta(s)}$

 $\alpha(s), \beta(s), \gamma(s)$ are called **Courant-Snyder parameters or Optics parameters**

Let's assume for $s(0) = s_{0}$, $\psi(0) = 0$, $\beta(0) = \beta_0$ and $\alpha(0) = \alpha_0$ Defines ϕ from initial conditions: x_0 and x'_0 , β_0 and α_0 .

Re-write transfer matrix with optics parameters:

$$M = \begin{pmatrix} \sqrt{\frac{\beta}{\beta_0}} (\cos \psi + \alpha_0 \sin \psi) & \sqrt{\beta\beta_0} \sin \psi \\ \frac{(\alpha_0 - \alpha) \cos \psi - (1 + \alpha\alpha_0) \sin \psi}{\sqrt{\beta\beta_0}} & \sqrt{\frac{\beta_0}{\beta}} (\cos \psi - \alpha \sin \psi) \end{pmatrix}$$

Once we know α and β , we can compute the single particle trajectories between two locations without remembering the exact lattice structure and strength of each element!

Phase Space

General solution of Hill's equation: $x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$

 J_x is called **action** and can be written as:

$$J_x = \frac{1}{2} \left(\gamma_x x^2 + 2\alpha_x x x' + \beta_x x'^2 \right)$$

which is the equation of an **ellipse** in the **phase-space** *x*, *x*'.

The shape and orientation of ellipse are defined by the Courant-Snyder parameters.

The area of the ellipse is:

$$A = 2 \cdot \pi \cdot J_x$$

x-x' phase space (trajectory offset vs. angle)

Emittance and beam size

At a given location: $x = \sqrt{2\beta_x J_x} \cos \psi_x$

The mean square value of this is:

$$\langle x^2 \rangle = 2\beta_x \langle J_x \cos^2 \psi_x \rangle = \beta_x \langle J_x \rangle = \beta_x \epsilon_x$$

assumes action and phase uncorrelated, and uniform distribution in phase from 0 to 2π .

Defines emittance of particle distribution:

$$\langle J_x \rangle = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2} := \epsilon_x$$

Typically the distribution of particles in a bunch follows a Gaussian shape:

$$\rho(x) = \frac{N}{\sqrt{2\pi\sigma_x}} \cdot e^{-\frac{x^2}{2\sigma_x^2}}$$

Therefore, $\sigma_x = \sqrt{\langle x^2 \rangle} = \sqrt{\epsilon_x \beta_x}$ describes the one sigma beam size.

Beam size and emittance measurement

Principle of a wire-scanner beam size measurement

LHC measurement

Emittance calculated from profile measurement. All circulating bunches.

Beam size around the accelerator

The β -function is periodic

 \rightarrow It changes along the cell.

 \rightarrow The beam size changes along the cell! $~\sigma=\sqrt{\varepsilon}\beta$

Max. horizontal beam size in the focusing quadrupoles

Max. vertical beam size in the defocusing quadrupoles

The regular LHC FODO cell:

- Phase advance: 90°
- Maximum beta: 180 m

Things to remember

Phase space

A space that represents all possible states of a system.

A particle's trajectory points or coordinates at a given element draw an *ellipse in phase space*.

The orientation and shape of that ellipse is described by the optical (Courant-Snyder) parameters. $\rightarrow \beta$ -function

The area of that ellipse is \propto *emittance*.

Emittance is a beam property that cannot be changed by focusing.

The **beam size** of a particle ensemble is defined by $\sigma = \sqrt{\epsilon\beta}$.

Beam Injection/extraction

Claudio Luci – Collider Particle Physics – Chapter 1

What we learned so far?

We know, how particles behave along the magnetic lattice of an accelerator.

Straight Sections and Insertions

Injection and extraction

Injection of Beam 2 into LHC

11.07.2019

Beam dump – How to safely kill the LHC beam

acceleration

Claudio Luci – Collider Particle Physics – Chapter 1

RF Acceleration and magnet field increase

Acceleration without magnetic field increase

LHC magnetic dipole field at 450 GeV:

$$B = \frac{p}{q\rho} = \frac{450 \,\mathrm{GeV}/c}{e \times 2803 \,\mathrm{m}} = 0.535 \,\mathrm{T}$$

Required bending radius at 7 TeV with B_{inj} =0.5T:

$$\rho = \frac{p}{qB} = \frac{7\,\mathrm{TeV}/c}{e\times0.535\,\mathrm{T}} = 43.6\,\mathrm{km}$$

Equivalent to 270km circumference (pure dipole field! without any insertions or quadrupoles)

Magnet surface = 5800km² →Area of Brunei (South-Eastern Asia) → Area of 2x Luxemburg How does the bending radius changes, when accelerating without adjusting the magnetic field?

$$\frac{p}{q} = B \rho$$

Example: LHC accelerating system

LHC has

- 8 superconducting cavities per beam
- Accelerating field 5 MV/m
- Can deliver 2 MV/cavity (peak voltage)
- Operating at 400 MHz
- Beam aperture (radius) ~30cm
- Energy gain/turn during ramp 485 keV (11245 turns/s)

Going from 450 GeV (injection energy) up to 6.8 TeV (collision energy) takes about 20 minutes.

RF acceleration

Accelerating voltage is changing with time. That has two consequences:

Phase stability (non-relativistic regime)

Assume the situation where energy increase is transferred into a

Claudio Luci – Collider Particle Physics – Chapter 1

Phase stability (relativistic regime)

Crossing transition

The previously stable synchronous phase becomes unstable when $v \Rightarrow c$ and the gain in path length overtakes the gain in velocity \rightarrow *Transition*

Transition from one slope to the other during acceleration \rightarrow *Crossing Transition.* The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

In the LHC: γ_t is at ~55 GeV, also far below injection energy

Transition crossing not needed in leptons machines, why?

Synchrotron Oscillation

Like in the transverse plane the particles are oscillating in longitudinal space.

Particles keep oscillating around the stable synchronous particle varying phase and dp/p.

Typically one synchrotron oscillation takes many turns (much slower than betatron oscillation)

Phase-space ellipse defines *longitudinal emittance*.

Separatrix is the trajectory separating stable and unstable motion.

Stable region is also called **bucket**.

 \rightarrow Harmonic number *h* = number of buckets:

$$f_{RF} = h f_{rev}$$

Simple case (no accel.): B = const.

- Stable phase: $\phi_0 = 0$
- Particle B oscillates around ϕ_0 .

Emittance during Acceleration

What happens to the emittance if the reference momentum P_0 changes?

Can write down transfer matrix for reference momentum change:

$$M_x = \begin{pmatrix} 1 & 0 \\ 0 & P_0/P_1 \end{pmatrix} \longrightarrow \epsilon_{x1} = \frac{P_0}{P_1} \epsilon_x e_x$$

The emittance shrinks with acceleration!

With $P = \beta \gamma mc$ where γ , β are the relativistic parameters.

The conserved quantity is

$$\beta_1 \gamma_1 \epsilon_{x1} = \beta_0 \gamma_0 \epsilon_{x0}$$

It is called *normalized emittance*.

72
How big are the beams in the LHC?

Normalized emittance at LHC : $\varepsilon_n = 3.5 \ \mu m$

 $\rightarrow \epsilon_n$ preserved during acceleration.

The geometric emittance:

- Injection energy of 450 GeV: ε = 7.3 nm
- Top energy of 7 TeV: ε = 0.5 nm

$$\varepsilon_{7TeV} = \varepsilon_{450GeV} \frac{\gamma_{450GeV}}{\gamma_{7TeV}}$$

$$\sigma = \sqrt{\varepsilon\beta}$$

The corresponding max. **beam sizes** in the arc, at the location with the maximum beta function (β_{max} = 180 m):

- σ_{450GeV} = 1.1 mm
- $-\sigma_{7TeV}$ = 300 μm

Aperture requirement: a > 10 σ

LHC beam pipe radius:

- Vertical plane: 19 mm ~ 17 σ @ 450 GeV
- Horizontal plane: 23 mm ~ 20 σ @ 450 GeV

Transverse-Longitudinal Coupling: Dispersion

Dipole magnets generate dispersion:

 \rightarrow Particles with different momentum are bent differently.

Due to the momentum spread in the beam $\frac{\Delta p}{p}$, this has to be taken into account for the particle trajectory.

$$x(s) = x_{\beta}(s) + D(s)\frac{\Delta p}{p}$$

Dispersion function D(s)corresponds to the trajectory of a particle with momentum offset

$$\frac{\Delta p}{p} = 1.$$

This also has an effect on the beam size:

$$\sigma = \sqrt{\beta \varepsilon} \qquad \longrightarrow \qquad \sigma = \sqrt{\beta \varepsilon + D^2 (\frac{\Delta p}{p})^2}$$

Experiments and Luminosity

Claudio Luci – Collider Particle Physics – Chapter 1

Each accelerator and experiment requires specific beam properties. Fundamentally different are:

"Smashing" Modes and Center-of-Mass Energy

The *center-of-mass energy* defines

the upper limit of the newly created particle's mass.

Fixed Target

 $E \propto \sqrt{E_{beam}}$

$$E = E_{beam1} + E_{beam2}$$

Most of the Energy is lost in the target, only a fraction is transformed into useful secondary particles.

All energy is available for the production of new particles.

Price to pay in a collider: event rate

LHC and its Experiments

LHC has **4 interaction points** (IPs) hosting particle physics experiments:

 \rightarrow ATLAS, ALICE, CMS, LHCb

Therefore the two counterrotating **beams collide** 4 times per turn

When they collide the outer beam **cross over** to the inner circle and vise versa.

Particle Collisions

Experiments are interested in maximum number of interactions per second. The event rate in an experiment is proportional to the collider luminosity.

"quality factor" of a Collider

The most important factor to describe the potential of a collider is the Luminosity.

the injectors

N..... No. particles per bunch k..... No. bunches f...... revolution freq. g..... rel. gamma β^* beta-function at IPs ε norm. trans. emit

Limitation:

"Collective effects" cause beam instabilities for too high bunch intensities, too small bunch spacing,

too "bright" beams.

Overall Goal of an Collider: Maximizing Luminosity!

- \rightarrow Many particles (N, k)
- \rightarrow In a small transverse cross-section (ϵ , β)

Performance depends on the injectors:

- \rightarrow Production of large N and small ϵ
- \rightarrow Preservation of these parameters until collisions.

Optimizing Luminosity

Bunch properties (N & ϵ) are defined in the injectors.

But what can be done in the Collider?

 f_{rev} , γ : defined by the design of the accelerator

- N..... No. particles per bunch
- k..... No. bunches
- f..... revolution freq.
- g..... rel. gamma
- β^* beta-function at IPs
- ε norm. trans. emit

- k: Optimize filling scheme and bunch spacing.
- β^* : Can be optimized by focusing!

Mini-Beta Insertions

Mini-beta insertion is a *symmetric drift space* with a *waist of the* β *-function* in the center of the insertion.

On each side of the symmetry point a quadrupole **doublet** or **triplet** is used to generate the waist.

They are not part of the regular lattice.

Collider experiments are located in mini-beta insertions: **smallest beam size possible** for the colliding beam to increase probability of collisions.

There is a price to pay: The smaller β^* , the larger β at the triplet.

Example: Mini-Beta Insertion at LHC

Example of the LHC (design report values):

At the interaction point:

 $\beta^* = 0.55 \text{ m}$ $\sigma^* = 16 \mu \text{m}$ That's smaller than a hair's diameter!

At the triplet:

β = 4500 m

 σ = 1.5 mm = 1500 μ m

Largest beams size in the lattice!

Limitations:

- Tighter tolerances on field errors
- Triplet aperture limits β^* together with crossing angle.

Claudio Luci – Collider Particle Physics – Chapter 1

Luminosity: beta squeeze

Image courtesy John Jowett

Let's open a parenthesis

(it is not part of the exam program)

Beam lines

(It is not in the exam program but it will help us to better understand the problem with the antiprotons in the SppS collider)

Beam lines in the PS East area (today)

Targets and particle production

		Name		Q	Mass	Mean life (T) [s]		ст	Mean decay distance	Decays	
					[MeV/c²]			[m]	[m/GeV/c]		
Leptons		Electron	(e)	±e	0.511				stable		
		Muon	μ	±e	105.6	2.2×10-6		659.6	6.3×10 ³	$\mu^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} \overline{\nu}_e \nu_\mu$	(100%)
Hadrons	Mesons	Pion	π	±e	139.6	2.6×10 ⁻⁸		7.8	56.4	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$	(100%)
		Kaon	к	±e	493.6	1.23×10 ⁻⁸		3.7	8.38	$\begin{array}{ccc} K^{*} \longrightarrow & \mu^{*} \nu_{\mu} \\ \pi^{0} e^{*} \nu_{e} \\ \pi^{0} \mu^{*} \nu_{\mu} \\ \pi^{*} \pi^{0} () \end{array}$	(63%) (5%) (3%) (28.9%)
			<mark>к</mark> ° 0		497.6	K ⁰ s	8.9×10 ⁻¹¹	0.02	0.060		(30.7%) (69.2%)
				0		K ^o L	5.12×10 ⁻⁸	15.34	34.4	$\begin{array}{ccc} K^{0}{}_{L} \longrightarrow & \pi^{\pm} e^{\mp} \nu_{e} \\ & \pi^{\pm} \mu^{\mp} \nu_{\mu} \\ & 3 \pi^{0} \\ & \pi^{+} \pi^{-} \pi^{0} \end{array}$	(40.5%) (27.0%) (19.5%) (12.5%)
	Baryons	Proton	P	±e	938				stable	1	
		Lambda	٨	0	1115.6	2	.63×10 ⁻¹⁰	0.079	0.237*	Λ ⁰ → р π ⁻	(63.9%)
		Sigma Hyperons	Σ+	+e	1189.3	8	.02×10 ⁻¹¹	0.024	0.068*	$\Sigma^{+} \rightarrow p \pi^{0}$	(51.57%)
			Σ-	-e	1197.4	1197.4 1.48×10 ⁻¹⁰		0.044	0.125*	$\Sigma^{-} \rightarrow n \pi^{-}$	(99.84%)

(*) for 10 GeV/c

$c\tau$ is computed for a 10 GeV/p momentum

Targets and particle production

Secondary beam line - layout

Secondary beam line - layout

- Clean up collimators
 - Absorb secondary particles produced in acceptance collimators

Clean up collimator

- TAX (Target attenuator)
 - Define initial acceptance of the beam line

Secondary beam line - layout Basic beam design Selection of particle types Absorber Secondary Primary (few mm Pb) Target (Be) Target Primary beam Secondary beam **Tertiary beam** Tertiary beam 400 GeV/c p Mixed ($e+h+\mu$) Typically 10-80 GeV/c Pure hadrons Few 10¹² ppp Typically ~100 GeV/c Flux up to 10⁴ ppp, e.g. This is Flux ~ 107 ppp *****~4 mm Pb: $1X_0$, <<1 λ_1 : 'pure' electrons the SPS ~40 cm Cu: 3 $\lambda_{\rm I}$, ~30 X_o: hadrons Intensities • ppp = particles per pulse < 10⁸ ppp x · 10¹² ppp < 10⁴ ppp

PS east area, T9 line: beam rates

Estimated maximum flux in negative beam

PS east area, T9 line: beam composition

Very very few antiprotons

Let's close the parenthesis

End of chapter 1

Claudio Luci – Collider Particle Physics – Chapter 2