Collider Particle Physics

- Chapter 1 -

Accelerators

Claudio Luci
SAPIENZA
UNIVERSITÀ DI ROMA

Chapter Summary

\square Electrostatic accelerators
\square LINAC
\square Circular accelerators
\square MEG experiment
\square Bending and focusing in circular accelerators
\square Particle dynamics in the transvers plane
\square Beam injection and extraction
\square Acceleration and phase stability
\square Luminosity in a collider

Accelerators in the world

where accelerators are used

Industry

- Material studies and processing
- Food sterilization
- Ion implantation

Security

- Airports \& boarders
- Nuclear security
- Imaging

World wide about >30’000 particle

 accelerators are in operation with a large variety of applications.
Health

- Diagnostic and imaging
- X-rays
- Cancer therapy
- Radioisotope production

Energy

- Destroying radioactive waste
- Energy production
- Nuclear fusion
- Thorium fuel amplifier

Research (<1\%)

- Particle Physics
- Storage rings \& Colliders
- Material science
- Light sources
- R\&D

How can we accelerate particles?

How can we increase the energy of a particle?

A charged particles that travels through an electro-magnetic field feels the Lorentz force:

$$
\vec{F}=q(\vec{U} \times \vec{B}+\vec{H})
$$

Magnetic field B:
Force acts perpendicular to path.
\rightarrow Can change direction of particle
\rightarrow cannot accelerate

Numeric Example:

$$
v=c, B=1 \mathrm{~T}
$$

$$
\begin{aligned}
& \Delta E=q \int_{r_{1}}^{r_{2}}(\vec{v} \times \vec{B}+\vec{E}) d \vec{r} \\
& \begin{array}{l}
\overline{\bar{\uparrow}} \quad q \int_{r_{1}}^{r_{2}} \vec{E} d \vec{r}=q U . \\
(\vec{v} \times \vec{B}) d \vec{r}=0
\end{array}
\end{aligned}
$$

Electric field E:

Force acts parallel to path.
\rightarrow Can accelerate
\rightarrow not optimal for deflection
$v=c, B=1 \mathrm{~T}$

$E=v B=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \times 1 \mathrm{~T}$ | $E=300 \mathrm{MV} / \mathrm{m}$ |
| :---: |
| Technical limit for el. field: |
| $\mathrm{E} \propto 1 \mathrm{MV} / \mathrm{m}$ |

Which types of accelerators exists?

And

how do they work?

Basic accelerator

Electro-static accelerator (most basic accelerator)
\rightarrow Charged particle travels through a fixed high voltage U

Final particle energy is limited by a maximum reachable voltage.
Max. voltage limited by corona formation and discharge to $\sim 10 \mathrm{MV}$.

Electrostatic accelerators: ~ 1930

Van de Graaff accelerator
 Concept:

mechanical transport of charges via rotating belt

Electrode in high pressure gas to suppress discharge $\left(\mathrm{SF}_{6}\right)$

Max. Voltage ~ 1-10 MV

Concept:

Generate negative ions, strip off electrons in the center, use voltage a 2nd time with now positive ions

Max. Voltage ~ 25 MV

Historically largely used as $1^{\text {st }}$ stage accelerators for proton and ion beams.

Electrostatic Accelerator Limitation

Limitation:

Generation of max. (direct) voltage before sparking.

Acceleration over one stage or gap.

Solution:

Use alternating (RF) voltages and pass the particles through many acceleration gaps of the same voltage.

1925 idea by Ising
1928 first working RF accelerator by
Wideroe

LINear ACcelerator (LINAC): functionalities

Energy gain after n gaps:
$E=n q V_{R F} \sin \phi_{s}$
\boldsymbol{n} No. of acceleration gaps
\boldsymbol{q} Charge of the particle
$\boldsymbol{V}_{\boldsymbol{R F}}$ Peak voltage of RF System
$\boldsymbol{\phi}_{s}$ synchronous phase w.r.t. RF field

- High-frequency RF field (turn-over frequency MHz): $\lambda=c / f_{R F}$

Question

Once build, can we use the LINAC to accelerate any particle we like?

- Particle should only feel the field when the field direction is synchronized.
- Drift-tubes screen the field as long as the field has the reversed polarity.
- The more energy the particle gains, the faster it becomes (nonrelativistic regime)
\rightarrow Drifts have to increase in length.
\rightarrow Particles have to be clustered into packages (bunches).

Excercise: LINAC

Question

Once build, can we use the LINAC to accelerate any particle we like?

Drift tubes provide shielding of the particles during the negative half wave of the R.

This question could be rephrased to:

How does the drift tube length l_{i} depend on the particle type?

LINAC limitation

Consists of a chain of many accelerating gaps placed on a straight line.

Particles pass the accelerator only ONCE.

The final energy is limited by length.

Use magnets that bend particles on a circular orbit.

Particles circulate over MANY turns and can gain more energy at each passage through the acceleration gap.

Cyclotron - "spiral version of a LINAC"

1929 proposed E.O. Lawrence 1931 built by Livingston

- Particle Source in the middle

- Acceleration gap connected to RF source between the two D-shaped magnets.
- Constant vertical magnetic field to guide the particles in the horizontal plane. The radius of particle trajectory becomes larger and larger with larger energy.
- Particles extracted with a deflector magnet or an electrode.

$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \longrightarrow F_{L}=q v B \longrightarrow$ No E $^{\text {Vertical B }}$
$F_{c}=m \frac{v^{2}}{r} \longrightarrow$ centrifugal force
$F_{L}=F_{c} \longrightarrow \omega=\frac{v}{r}=\frac{q B}{m} \longrightarrow \begin{aligned} & \text { revolution } \\ & \text { period }\end{aligned}$

Weak focusing

Side View

B field is decreasing moving outward from the center.

A component of the Lorentz force prevents the particles to hit the magnet walls

Same principle of weak focusing is working in the dipole magnets

Cyclotron limitation

Constant revolution frequency for constant mass:

$$
\omega=\frac{v}{r}=\frac{B q}{m}=\frac{B q}{m(E)}
$$

$$
\begin{array}{r}
f_{R F}=\text { const. } \\
B=\text { const. }
\end{array}
$$

But, for relativistic particles the mass is not constant!
The classical cyclotron only valid for particles up to few \% of speed of light.
\rightarrow Not useful for electrons ... already relativistic at $\sim 500 \mathrm{keV}$.
Modifications:

Synchro-cyclotron

$$
\begin{gathered}
f_{R F}(E) \\
B(E) \text { or } B=\text { const. }
\end{gathered}
$$

Isochronous cyclotron

$$
\begin{gathered}
f_{R F}=\text { const. } \\
B(r)
\end{gathered}
$$

Common accelerator for medium energy protons and ions up to $\sim 60 \mathrm{MeV} / \mathrm{n}$, used for nuclear physics, radio isotope production, hadron therapy.

Modern"cyclotrons"can reach > 500 MeV (PSI, TRIUMF, RIKEN)

Let's open a parenthesis

(it is not part of the exam program)

Fatti non foste a viver come bruti ma per seguir virtute e canoscenza

Paul Scheerer Institut (PSI) cyclotron [near Zurich]

- Diameter $\sim 15 \mathrm{~m} 1974$
- Injection energy 72 MeV
- Accelerates protons to $\mathrm{E}=590 \mathrm{MeV}$ (i.e. 0.8 c) in 186 revolutions

First stage accelerator feeding a smaller cyclotron before the large PSI ring cyclotron is a Cockraft-Walton accelerator.

4 acceleration cavities

It produce a proton beam of 2.4 mA , a world record.

$$
N_{p}=\frac{2.4 \cdot 10^{-3}}{1.6 \cdot 10^{-19}} \approx
$$

$1.5 \cdot 10^{16}$ prot/s
They are used to produce high intensity muon beam,
$\sim 10^{8}$ muon/s.

MEG experiment at PSI

In the SM, even with massive neutrinos, the B.R. is pratically zero

However, if we have new particles in the loop, the B.R. is enhanced.

MEG experiment at PSI

Background rejection is essential for this measurement.

MEG experiment at PSI

They are excluding part of the new physics band

Let's close the parenthesis

Basic Synchrotron

Synchrotrons are THE accelerators to reach highest particle energies

 and are able to store the beam over many hours. acceleration gap
(under high vacuum)

Most famous example

The largest machine in the world The Large Hadron Collider (LHC)

27 km circumference
100 m underground

Accelerates protons and heavy-ions to $E=6.8 \mathrm{TeV}$ (2022).

Collides 2 counter-rotating beams in 4 physics experiments.

Getting particles into the LHC

The CERN accelerator complex
Complexe des accélérateurs du CERN

Getting particles into the LHC

The CERN accelerator complex
Complexe des accélérateurs du CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive
EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy lon Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight //

Synchrotron: bending and focusing

Bending

Vertical magnetic field to bend in horizontal plane.

LEIR has 4 dipoles, each with 90° bending angle, to keep particles on a circular orbit

LEIR (Low Energy Ion Ring)

- 78m circumference
- first circular accelerator for CERN's heavy-ions on the way to LHC
- 2.5 sec to accelerate ion bunches from 4.2 MeV/n to $72 \mathrm{MeV} / \mathrm{n}$

Bending at LHC

The superconducting coils are cooled to 1.9 K (the cosmic background radiation is at 2.7 K). LHC is the coldest point in the Universe (on a large scale).

LHC has 1232 superconducting dipole magnets, each 15 m long and able to deflect the beam by 0.29°.

> 8.33 Tesla (max 2 T in iron) 11.7 kA (superconducting coil)

LHC DIPOLE : STANDARD CROSS-SECTION

Deflection of a charged particle

Charged particles are
deflected in a magnetic field

The ideal circular orbit

Lorentz Force $\quad \boldsymbol{F}_{\boldsymbol{L}}=\boldsymbol{q} \boldsymbol{v} \boldsymbol{B}$
$\underset{\text { Force }}{\text { Centrifugal }} \quad \boldsymbol{F}_{\text {centr }}=\frac{\boldsymbol{\gamma} \boldsymbol{m}_{0} \boldsymbol{v}^{2}}{\rho}$

$$
\begin{array}{ll}
q=\text { charge } & B=\text { mag. Field strer } \\
p=\gamma m_{0} v & \text { momentum }
\end{array} \rho=\text { bending radius }
$$

Required Magnetic Field Strength

$$
\begin{aligned}
& \text { Full circle } \\
& \qquad \alpha=\int \frac{d l}{\rho}=\int \frac{B d l}{B \rho}=2 \pi \quad \xrightarrow{\frac{p}{e}=B \rho} \quad \begin{array}{l}
B=2 \pi p /(q N l)
\end{array} \begin{array}{l}
N: \text { number of magnets } \\
l: \text { length of a magnet }
\end{array} \\
& \hline
\end{aligned}
$$

Example SPS:

- Particle:

$$
\begin{aligned}
& \mathrm{p}=450 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{q}=+1 \mathrm{e} \text { (proton) }
\end{aligned}
$$

- Dipole magnets:

$$
\begin{aligned}
& \mathrm{I}=6.2 \mathrm{~m} \\
& \rho=735 \mathrm{~m} \\
& \mathrm{~N}=744
\end{aligned}
$$

normal conducting magnet

Example LHC:

- Particle:
$p=7000 \mathrm{GeV} / \mathrm{c}$
$\mathrm{q}=+1 \mathrm{e}$ (proton)
- Dipole magnets:

I = 15m
$\rho=2803 \mathrm{~m}$
$\mathrm{N}=1232$

$$
B \approx \frac{2 \pi \times 7000 \mathrm{GeV}}{1232 \times 15 \mathrm{~m} \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \times e}=8.3 \mathrm{~T}
$$

superconducting magnet

Particles oscillation

Example: two charged particles, with the same momentum, in a homogeneous magnetic field

"horizontal" movement (distance between the two orbits)
Particle B, while it is turning, go outside and inside the trajectory of the particle A

In a homogeneous magnetic field, particles with varying initial conditions fulfil oscillations around the design orbit \rightarrow Betatron-Oscillation
design orbit $=$ trajectory of ideal particle \rightarrow defined by dipole magnets

Beam focusing

A bunch contains many particles with different initial conditions.

Many different positions, angles and energy offsets

We need a focusing force that keeps the particles close to the design orbit.
Focusing force should rise as a function of the distance to the design orbit.

Beam focusing

Requirement:

Lorentz force linearly increasing as a function of distance from design orbit.
\rightarrow Linearly increasing magnetic field.

$$
F(x)=q \cdot v \cdot B(x)
$$

Taylor series as a function of distance from magne

$$
\begin{gathered}
B_{y}(x)=B_{y 0}+\frac{\partial B_{y}}{\partial x} x+\frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\frac{1}{3!} \frac{\partial^{3} 1}{\partial x} \\
\text { dipole quadrupole sextupole } \quad \text { octupc }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Normalize to p/q: } \quad \frac{p}{q}=B \rho \\
& \frac{B_{y}(x)}{p / q}=\frac{1}{\rho}+k x+\frac{1}{2} m x^{2}+\frac{1}{3!} n x^{3}+\ldots
\end{aligned}
$$

N.B. if you need a force along x, B component has to be along y since particle velocity is along z

Beam focusing

Focusing of particles with quadrupoles: strong focusing

$$
F(x)=q \cdot v \cdot B(x)
$$

with the vertical (y) and horizontal (x) quadrupole fields

$$
\begin{aligned}
& B_{y}=g \cdot x \\
& B_{x}=g \cdot y
\end{aligned}
$$

where g is the gradient

$$
g=\frac{2 \mu_{0} n I}{r^{2}}\left[\frac{T}{m}\right]
$$

Normalized gradient $=$ focusing strength

$$
k=\frac{g}{p / q}\left[m^{-2}\right]
$$

I coil current
n number of windings
r distance magnet center to pole
μ_{0} permeability of free space

quadrupole magnet

Focusing analogous to geometrical optics

Focusing of particles with quadrupoles is similar to focusing of light with lenses.

In a synchrotron quadrupoles are lenses with the focal length:

$$
\begin{gathered}
\text { Consider: } \\
f_{1}=f \\
f_{2}=-f
\end{gathered}
$$

Then:

$$
F=\frac{f^{2}}{d}>0
$$

$$
\begin{aligned}
& F=\text { focusing } \\
& 0=\text { nothing (dipole, RF, } \ldots \text {) } \\
& D=\text { defocusing } \\
& O
\end{aligned}
$$

lattice of quadrupoles in an accelerator

The LHC FODO cells

Each of the 8 LHC arc consists of 23 FODO cells, each with

- 2 Quadrupoles
- 6 Dipoles
- Additional instrumentation and corrector magnets are installed in between for beam control.

A focusing magnet for Beam 1 is a defocusing for Beam 2 in the same plane.

LHC quadrupole

Example of magnets

Beam focusing

LEIR - first circular accelerator for CERN's heavy-ions on the way to LHC

How does a particle move in an accelerator

(No need to remember all equations. This is only meant to give you the big picture and the "namings")

Particle motion

Focusing force that keeps the particles close to the design orbit, which rises as a function of the distance.

$$
F(x)=q \cdot v \cdot B(x)
$$

Classical free harmonic oscillator
\rightarrow experiences restoring force proportional to the displacement x when displaced from equilibrium position

Second law of motion:
$\vec{F}=m \vec{a}$

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=m \ddot{x}=-k x
$$

Solution of equation of motion is $x(t)=A \cos (\omega t+\varphi)$
sinusoidal oscillation:

Coordinate system

Use different coordinate system: Frenet-Serret rotating frame

- The ideal particle defines "design" trajectory: $x=0, y=0$ \rightarrow travels through the center of all magnets.
- $x, y \ll \rho$

Look at the particle motion along the path length s.

Toward the equation of motion

$$
F_{x}=m \cdot \ddot{x} \quad \text { Describes motion as a function of time }
$$

But what we need is something like $\quad F_{x}=M x^{\prime \prime} \quad \dot{x}=\frac{d x}{d t}$
\rightarrow Replace free parameter time \boldsymbol{t} by path length \boldsymbol{s}.
$x^{\prime}=\frac{d x}{d s}$
\rightarrow Compare to Lorentz force $\quad F(x)=q \cdot v \cdot B(x)$

Taylor expansion of normalize magnetic field:

$$
\frac{B_{y}(x)}{p / q}=\frac{1}{\rho}+k x+\frac{1}{2} h x^{2}+\frac{1}{3!} n x^{3}+\ldots \text {.igher } \begin{gathered}
\text { orders } \\
\text { dipole quadrupole sextupole } \\
\text { octupole }
\end{gathered}
$$

Only consider linear terms: dipole \& quadrupole fields!

$$
\frac{B_{y}(x)}{p / q} \approx \frac{1}{\rho}+k x
$$

Equation of motion

Equation of motion

Horizontal motion:

$$
\begin{aligned}
x^{\prime \prime}+K x & =0 \\
y^{\prime \prime}-k y & =0
\end{aligned}
$$

Where $K=\frac{1}{\rho^{2}}+k$
with k as the quadrupole focusing strength and ρ the bending radius.

In vertical:
\rightarrow In general, no dipoles: $\frac{1}{\rho^{2}}=0$
\rightarrow Sign change of force direction: $k \Longleftrightarrow-k$

Assuming the motion in the horizontal and vertical plane are independent \rightarrow Particle motion in $x \& y$ is uncoupled

Solving the equation of motion - focusing quadrupole

Equation of motion in horizontal plane

$$
x^{\prime \prime}+K x=0
$$

Equation of the harmonic

 oscillator with spring constant K.

$$
\begin{align*}
& \text { Use matrix formalism: } \quad\binom{x}{x^{\prime}}=M_{f o c} \cdot\binom{x_{0}}{x_{0}^{\prime}} \\
& \cline { 2 - 3 } \begin{array}{c}
\text { Focusing } \\
\text { Quadrupole }
\end{array} M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
\cos (\sqrt{K} s)
\end{array}\right)
\end{align*}
$$

Solving the equation of motion - defocusing quadrupole

Equation of motion in horizontal plane

$$
x^{\prime \prime}+K x=0
$$

Equation of the harmonic

 oscillator with spring constant K.

$\begin{aligned} & \mathscr{U} \\ & \underset{\sim}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	For $\mathrm{K}=0$ (drift) the ansatz is: $\quad x(s)=x_{0}^{\prime} s$			
	Drift Space	$M_{\text {drift }}=$		

For $K=1 / \rho^{2}$ (dipole) use the result for a focusing dipole and insert K.

$$
\text { Dipole } \quad M_{\text {dipole }}=\left(\begin{array}{rr}
\cos \left(\frac{s}{\rho}\right) & \rho \sin \left(\frac{s}{\rho}\right) \\
-\frac{1}{\rho} \sin \left(\frac{s}{\rho}\right) & \cos \left(\frac{s}{\rho}\right)
\end{array}\right)
$$

Particle tracking

Knowing the initial coordinates at $s=s_{0}$, we can use the transfer matrix to calculate the effect of an element to the particle's trajectory and get its new coordinates at $s=s_{1}$.

$$
\binom{x}{x^{\prime}}_{s_{1}}=M\binom{x}{x^{\prime}}_{s_{0}}
$$

For a sequence of elements:
$M_{\text {total }}=M_{Q F} \cdot M_{D} \cdot M_{\text {Bend }} \cdot M_{D}^{T} \cdot M_{Q D} \cdot \cdots$

Building up the particles path through the accelerator ...

How does a particle trajectory look like?

Initial coordinates

$$
\begin{aligned}
& \mathrm{x}_{0}=0.001 \mathrm{~m}(1 \mathrm{~mm}) \\
& \mathrm{x}_{0}{ }^{\prime}=0
\end{aligned}
$$

$$
\binom{x}{x^{\prime}}_{s_{1}}=M\binom{x}{x^{\prime}}_{s_{0}}
$$

The envelope of all trajectories has a periodicity that depends on the lattice

Hill's equation

We had ...

$$
x^{\prime \prime}+K x=0
$$

But, around the accelerator K is not constant and does depend on s !

$$
x^{\prime \prime}(s)+K(s) x(s)=0 \quad \text { Hill's equation }
$$

- $K(s+L)=K(s) \rightarrow$ periodic function, where L is the "lattice period"
- General solution of Hill's equation:

$$
x(s)=\sqrt{2 J_{x} \beta_{x}(s)} \cos (\psi(s)+\phi)
$$

It is a quasi harmonic oscillation, where amplitude and phase depend on the position s in the ring.

The Beta function

General solution of Hill's equation

$$
x(s)=\sqrt{2 J_{x}\left(\beta_{x}(s)\right.} \cos (\psi(s)+\phi)
$$

Integration constants: determined by initial conditions

The beta function is a periodic function determined by the focusing properties of the lattice, i.e. quadrupoles

$$
\beta(s+L)=\beta(s)
$$

The "phase advance" of the oscillation between the point s_{0} and point s in the lattice.

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

The Tune

The number of oscillations per turn is called "tune"

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)} \quad \stackrel{\text { full turn }}{ } \quad Q=\frac{1}{2 \pi} \int \frac{d s}{\beta(s)}
$$

The tune is an important parameter for the stability of motion over many turns. It has to be chosen appropriately, measured and corrected.

Tune Measurement

1) Measure beam position at one location turn by turn.
2) Beam position will change $\propto \cos (2 \pi Q i)$.
3) Perform FFT to get frequency of oscillation \rightarrow tune

Courant-Snyder Parameters: $\alpha(s), \beta(s), \gamma(s)$

General solution of Hill's equation $x(s)=\sqrt{2 J_{x} \beta_{x}(s)} \cos (\psi(s)+\phi)$

$$
\text { Define: } \quad \alpha(s)=-\frac{1}{2} \beta^{\prime}(s) \quad \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
$$

$\alpha(s), \beta(s), \gamma(s)$ are called Courant-Snyder parameters or Optics parameters

Let's assume for $\mathrm{s}(0)=\mathrm{s}_{0,}, \psi(0)=0, \beta(0)=\beta_{0}$ and $\alpha(0)=\alpha_{0}$
Defines ϕ from initial conditions: x_{0} and $\mathrm{x}_{0}{ }^{\prime}, \beta_{0}$ and α_{0}.
Re-write transfer matrix with optics parameters:

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta}{\beta_{0}}}\left(\cos \psi+\alpha_{0} \sin \psi\right) & \sqrt{\beta \beta_{0}} \sin \psi \\
\frac{\left(\alpha_{0}-\alpha\right) \cos \psi-\left(1+\alpha \alpha_{0}\right) \sin \psi}{\sqrt{\beta \beta_{0}}} & \left.\sqrt{\frac{\beta_{0}}{\beta}}(\cos \psi-\alpha \sin \psi)\right)
\end{array}\right)
$$

Once we know α and β, we can compute the single particle trajectories between two locations without remembering the exact lattice structure and strength of each element!

Phase Space

General solution of Hill's equation: $x(s)=\sqrt{2 J_{x} \beta_{x}(s)} \cos (\psi(s)+\phi)$
J_{x} is called action and can be written as:

$$
J_{x}=\frac{1}{2}\left(\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}+\beta_{x} x^{2}\right)
$$

which is the equation of an ellipse in the phase-space x, x '.

The shape and orientation of ellipse are defined by the Courant-Snyder parameters.

The area of the ellipse is:

$$
A=2 \cdot \pi \cdot J_{x}
$$

x-x' phase space (trajectory offset vs. angle)

Emittance and beam size

At a given location: $x=\sqrt{2 \beta_{x} J_{x}} \cos \psi_{x}$

The mean square value of this is:

$$
\left\langle x^{2}\right\rangle=2 \beta_{x}\left\langle J_{x} \cos ^{2} \psi_{x}\right\rangle=\beta_{x}\left\langle J_{x}\right\rangle=\beta_{x} \epsilon_{x}
$$

assumes action and phase uncorrelated, and uniform distribution in phase from 0 to 2π.

Defines emittance of particle distribution:

$$
\left\langle J_{x}\right\rangle=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}:=\epsilon_{x}
$$

Typically the distribution of particles in a bunch follows a Gaussian shape:

$$
\rho(x)=\frac{N}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}}
$$

Therefore, $\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\epsilon_{x} \beta_{x}}$ describes the one sigma beam size.

Beam size and emittance measurement

Principle of a wire-scanner beam size measurement

Beam size around the accelerator

The β-function is periodic
\rightarrow It changes along the cell.
\rightarrow The beam size changes along the cell! $\sigma=\sqrt{\varepsilon \beta}$

Max. horizontal beam size in the focusing quadrupoles

Max. vertical beam size in the defocusing quadrupoles

The regular LHC FODO cell:

- Phase advance: 90°
- Maximum beta: 180 m

Things to remember

Phase space

A space that represents all possible states of a system.

A particle's trajectory points or coordinates at a given element draw an ellipse in phase space.

The orientation and shape of that ellipse is described by the optical (Courant-Snyder) parameters. $\rightarrow \beta$-function

The area of that ellipse is \propto emittance.
Emittance is a beam property that cannot be changed by focusing.

The beam size of a particle ensemble is defined by $\sigma=\sqrt{\epsilon \beta}$.

Beam Injection/extraction

What we learned so far?

We know, how particles behave along the magnetic lattice of an accelerator.

Straight Sections and Insertions

Injection and extraction

Injection of Beam 2 into LHC

Beam dump - How to safely kill the LHC beam

Sweep of beam on beam dump window

Let's compare it to the kinetic energy of a frecciarossa train whose mass is $\mathbf{5 0 0}$ ton

$$
\begin{aligned}
& v=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{2 \times 3.6 \cdot 10^{8}}{5 \cdot 10^{5}}}= \\
& =37.9 \frac{\mathrm{~m}}{\mathrm{~s}} \cong \mathbf{1 4 0} \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

Better be careful

acceleration

RF Acceleration and magnet field increase

Acceleration without magnetic field increase

LHC magnetic dipole field at 450 GeV :

$$
B=\frac{p}{q \rho}=\frac{450 \mathrm{GeV} / c}{e \times 2803 \mathrm{~m}}=0.535 \mathrm{~T}
$$

Required bending radius at 7 TeV with $\mathrm{B}_{\mathrm{inj}}=0.5 \mathrm{~T}$:

$$
\rho=\frac{p}{q B}=\frac{7 \mathrm{TeV} / c}{e \times 0.535 \mathrm{~T}}=43.6 \mathrm{~km}
$$

Equivalent to 270 km circumference (pure dipole field! without any insertions or quadrupoles)

Magnet surface $=5800 \mathrm{~km}^{2}$
\rightarrow Area of Brunei (South-Eastern Asia)
\rightarrow Area of $2 x$ Luxemburg

How does the bending radius changes, when accelerating without adjusting the magnetic field?

$$
\frac{p}{q}=B \rho
$$

Example: LHC accelerating system

LHC has

- 8 superconducting cavities per beam
- Accelerating field $5 \mathrm{MV} / \mathrm{m}$
- Can deliver $2 \mathrm{MV} / \mathrm{cavity}$ (peak voltage)
- Operating at 400 MHz
- Beam aperture (radius) $\sim 30 \mathrm{~cm}$
- Energy gain/turn during ramp 485 keV (11245 turns/s)

Going from 450 GeV (injection energy) up to 6.8 TeV (collision energy) takes about 20 minutes.

RF acceleration

Accelerating voltage is changing with time. That has two consequences:

Need synchronization between beam and RF phase to gain energy.

There is a synchronous RF phase for which the energy gain fits the increase of the magnetic field.

Time
negative voltage
\rightarrow deceleration

Not all particles see the same voltage, because they arrive at different times.

Not all particles gain the same energy.

Phase stability (non-relativistic regime)

Assume the situation where energy increase is transferred into a velocity increase (non-relativistic regime).

Particles P_{1}, P_{2} have the synchronous phase.

Phase stability (relativistic regime)

Now assume relativistic energies ($v \approx c$):
An increase in momentum transforms into a longer orbit and thus a longer revolution time.
Ideal particle
Particle with $\Delta \mathrm{t}<0 \rightarrow$ higher energy gain \rightarrow gets longer orbit
Particle with $\Delta t>0 \rightarrow$ lower energy gain \rightarrow gets shorter orbit

$M_{2} \& N_{2}$ will move towards $P_{2} \rightarrow$ stable

Crossing transition

The previously stable synchronous phase becomes unstable when v=> c and the gain in path length overtakes the gain in velocity \rightarrow Transition

Transition from one slope to the other during acceleration \rightarrow Crossing Transition. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

In the PS: γ_{t} is at $\sim 6 \mathrm{GeV}$, injection at 1.4 GeV In the SPS: $\gamma_{\mathrm{t}}=22.8$, injection at $\gamma=27.7$
=> no transition crossing!

In the LHC: γ_{t} is at $\sim 55 \mathrm{GeV}$, also far below injection energy

Transition crossing not needed in leptons machines, why?

Synchrotron Oscillation

Like in the transverse plane the particles are oscillating in longitudinal space.

Particles keep oscillating around the stable synchronous particle varying phase and dp/p.

Typically one synchrotron oscillation takes many turns (much slower than betatron oscillation)

Phase-space ellipse defines longitudinal emittance.

Separatrix is the trajectory separating stable and unstable motion.

Stable region is also called bucket.
\rightarrow Harmonic number $h=$ number of buckets:

$$
f_{R F}=h f_{r e v}
$$

Simple case (no accel.): B = const.

- Stable phase: $\phi_{0}=0$
- Particle B oscillates around ϕ_{0}.

Emittance during Acceleration

What happens to the emittance if the reference momentum P_{0} changes?

Can write down transfer matrix for reference momentum change:

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & P_{0} / P_{1}
\end{array}\right) \rightarrow \epsilon_{x 1}=\frac{P_{0}}{P_{1}} \epsilon_{x 0}
$$

Only longitudinal momentum changes during the acceleration
$X_{0}^{\prime} \approx \sin \theta=\frac{P_{x 0}}{P_{0}}$

The emittance shrinks with acceleration!
With $\quad P=\beta \gamma m c \quad$ where γ, β are the relativistic parameters.

The conserved quantity is

$$
\beta_{1} \gamma_{1} \epsilon_{x 1}=\beta_{0} \gamma_{0} \epsilon_{x 0}
$$

It is called normalized emittance.

How big are the beams in the LHC?

Normalized emittance at LHC : $\varepsilon_{\mathrm{n}}=3.5 \mu \mathrm{~m}$
$\rightarrow \varepsilon_{\mathrm{n}}$ preserved during acceleration.

The geometric emittance:

$$
\varepsilon_{7 T e V}=\varepsilon_{450 G e V} \frac{\gamma_{450 \mathrm{GeV}}}{\gamma_{7 \mathrm{TeV}}}
$$

- Injection energy of
- Top energy of
$450 \mathrm{GeV}: \varepsilon=7.3 \mathrm{~nm}$
$7 \mathrm{TeV}: \quad \varepsilon=0.5 \mathrm{~nm}$

The corresponding max. beam sizes in the arc,

$$
\sigma=\sqrt{\varepsilon \beta}
$$ at the location with the maximum beta function ($\beta_{\max }=180 \mathrm{~m}$):

$-\sigma_{450 \mathrm{GeV}}=1.1 \mathrm{~mm}$
$-\sigma_{7 \mathrm{TeV}}=300 \mu \mathrm{~m}$

Aperture requirement: a > 10σ
LHC beam pipe radius:

- Vertical plane: $19 \mathrm{~mm} \sim 17 \sigma$ @ 450 GeV
- Horizontal plane: $23 \mathrm{~mm} \sim 20 \sigma$ @ 450 GeV

Transverse-Longitudinal Coupling: Dispersion

Dipole magnets generate dispersion:
\rightarrow Particles with different momentum are bent differently.
Due to the momentum spread in the beam $\frac{\Delta p}{p}$, this has to be taken
 into account for the particle trajectory.

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

Dispersion function $D(s)$

 corresponds to the trajectory of a particle with momentum offset$$
\frac{\Delta p}{p}=1 .
$$

This also has an effect on the beam size:
$\sigma=\sqrt{\beta \varepsilon} \longrightarrow \sigma=\sqrt{\beta \varepsilon+D^{2}\left(\frac{\Delta p}{p}\right)^{2}}$

Experiments and Luminosity

Each accelerator and experiment requires specific beam properties. Fundamentally different are:

Secondary particles

Particles that are bent to a circular orbit emit energy/light.

"Smashing" Modes and Center-of-Mass Energy

The center-of-mass energy defines
the upper limit of the newly created particle's mass.

$$
E \propto \sqrt{E_{\text {beam }}}
$$

Most of the Energy is lost in the target, only a fraction is transformed into useful secondary particles.

All energy is available for the production of new particles.

Price to pay in a collider: event rate

LHC and its Experiments

LHC has 4 interaction points (IPs) hosting particle physics experiments:
\rightarrow ATLAS, ALICE, CMS, LHCb

Therefore the two
counterrotating beams collide 4 times per turn

When they collide the outer beam cross over to the inner circle and vise versa.

Particle Collisions

Experiments are interested in maximum number of interactions per second. The event rate in an experiment is proportional to the collider luminosity.

"quality factor" of a Collider

The most important factor to describe the potential of a collider is the Luminosity.

Limitation:

"Collective effects" cause beam instabilities for too high bunch intensities, too small bunch spacing, too "bright" beams.

Overall Goal of an Collider: Maximizing Luminosity!
$\rightarrow \quad$ Many particles (N, k)
$\rightarrow \quad$ In a small transverse cross-section (ε, β)

Performance depends on the injectors:
$\rightarrow \quad$ Production of large N and small ε
\rightarrow Preservation of these parameters until collisions.

Optimizing Luminosity

Bunch properties ($\mathbf{N} \& \epsilon$) are defined in the injectors.

But what can be done in the Collider?

$f_{\text {rev }} \gamma$: defined by the design of the accelerator
$F[0,1]$: When colliding with many bunches, a crossing angle is needed to avoid unwanted collisions. However this reduces the beam overlap and therefore the luminosity. Keep as small as possible! (at LHC ~ 0.8) \rightarrow Limited by beam-beam effects.
N..... No. particles per bunch
k...... No. bunches
f....... revolution freq.
g...... rel. gamma
$\beta^{*} . .$. beta-function at IPs
ε...... norm. trans. emit

k: Optimize filling scheme and bunch spacing.
β^{*} : Can be optimized by focusing!

Mini-Beta Insertions

Mini-beta insertion is a symmetric drift space with a waist of the β-function in the center of the insertion.

On each side of the symmetry point a quadrupole doublet or triplet is used to generate the waist.
They are not part of the regular lattice.

$$
\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}
$$

Collider experiments are located in mini-beta insertions: smallest beam size possible for the colliding beam to increase probability of collisions.

There is a price to pay: The smaller β^{*}, the larger β at the triplet.

Example: Mini-Beta Insertion at LHC

Example of the LHC

(design report values):

At the interaction point:

$$
\begin{aligned}
& \beta^{*}=0.55 \mathrm{~m} \\
& \sigma^{*}=16 \mu \mathrm{~m}
\end{aligned}
$$

That's smaller than a hair's diameter!

At the triplet:
$\beta=4500 \mathrm{~m}$
$\sigma=1.5 \mathrm{~mm}=1500 \mu \mathrm{~m}$
Largest beams size in the lattice!

Limitations:

- Tighter tolerances on field errors
- Triplet aperture limits β^{*} together with crossing angle.

Matching section ${ }^{+}$Triplets Regular arc cells dispersion suppressor

Luminosity: beta squeeze

Image courtesy John Jowett

Let's open a parenthesis

(it is not part of the exam program)

Beam lines

(It is not in the exam program but it will help us to better understand the problem with the antiprotons in the SppS collider)

Beam lines in the PS East area (today)

Beam lines in the PS East area (today)

- Studies the influence of cosmic rays to cloud formation
- Cloud expansion chamber set-up with extensive instrumentation (mass spectrometers, particle counters, etc.)
- Uses PS beam as first and only particle beam experiment to study atmospheric and climate science
- Spectacular results achieved (several publications in Nature and Science)

Targets and particle production

(*) for $10 \mathrm{GeV} / \mathrm{c}$
$c \tau$ is computed for a $10 \mathrm{GeV} / \mathrm{p}$ momentum

Targets and particle production

HADRON TARGET

100-200 mm AL or BE, i.e. Low-Z material Up to $1 \mathrm{~L}_{\text {int }}$ and 0.5 Xo

ELECTRON ENRICHED TARGET

Secondary beam line - layout

Basic beam design

Momentum selection and acceptance: collimators

- Select small momentum band in combination with dispersion

Momentum slit / collimator

- Acceptance collimators
- Select beam size and beam rate

Dipole acts like a prism
ispersion $=d p / p$

Secondary beam line - layout

- Clean up collimators
- Absorb secondary particles produced in acceptance

- TAX (Target attenuator)
- Define initial acceptance of the beam line

Secondary beam line - layout

Basic beam design

- Selection of particle types

- Intensities

PS east area, T9 line: beam rates

Estimated maximum flux in positive beam

Estimated maximum flux in negative beam

PS east area, 19 line: beam composition

Composition of negative beam

Very very few antiprotons

Let's close the parenthesis

\square UNIVERSITÀ DI ROMA

End of chapter 1

