Collider Particle Physics - Chapter 1 -

Accelerators

last update : 070117

Chapter Summary

- Electrostatic accelerators
- ☐ LINAC
- ☐ Circular accelerators
- ☐ Bending and focusing in circular accelerators
- ☐ Particle dynamics in the transvers plane
- ☐ Beam injection and extraction
- ☐ Acceleration and phase stability
- ☐ Luminosity in a collider

Accelerators in the world

where accelerators are used

Industry

- Material studies and processing
- Food sterilization
- Ion implantation

Security

- Airports & boarders
- Nuclear security
- Imaging

World wide about >30'000 particle accelerators are in operation with a large variety of applications.

Health

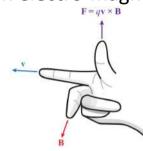
- Diagnostic and imaging
- X-rays
- Cancer therapy
- Radioisotope production

Energy

- Destroying radioactive waste
- Energy production
- Nuclear fusion
- Thorium fuel amplifier

Research (<1%)

- Particle Physics
- Storage rings & Colliders
- Material science
- Light sources
- R&D


PhD in Physics of the Accelerators at the Sapienza University: more information here

How can we accelerate particles?

How can we increase the energy of a particle?

A *charged* particles that travels through an electro-magnetic field feels the **Lorentz force**:

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E})$$

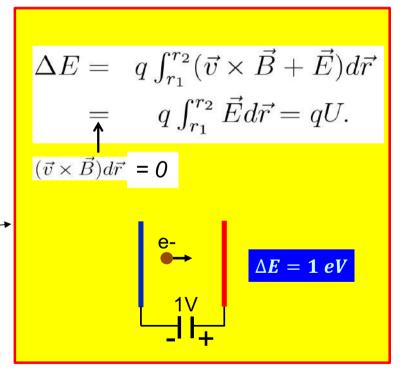
Magnetic field B:

Force acts perpendicular to path.

- → Can change direction of particle
- → cannot accelerate

Electric field E:

Force acts parallel to path.


- → Can accelerate
- → not optimal for deflection

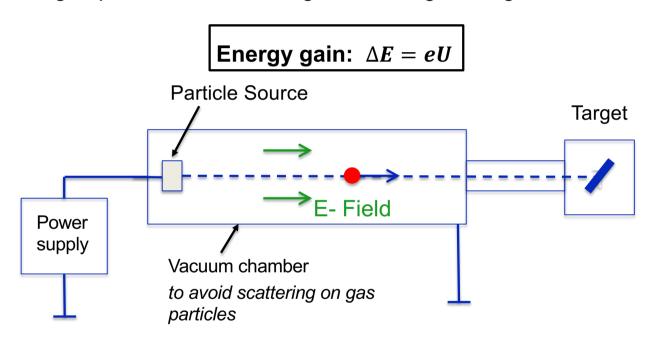
Numeric Example:

$$v = c, B = 1T$$

 $E = vB = 3x10^8 \text{ m/s x } 1T$

$$E = 300 \text{ MV/m}$$

Technical limit for el. field: $E \propto 1MV/m$

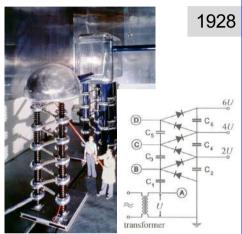


Which types of accelerators exists? And how do they work?

Basic accelerator

Electro-static accelerator (most basic accelerator)

→ Charged particle travels through a fixed high voltage *U*


Final particle energy is limited by a maximum reachable voltage.

Max. voltage limited by corona formation and discharge to ~10MV.

ionization of the air surrounding a conductor

Electrostatic accelerators: ~ 1930

Cockcroft-Walton cascade generator

Concept:

rectifier circuit, built of capacitors and diodes (Greinacker circuit)

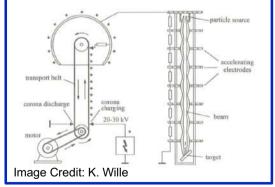
Limitation:

Electrical discharge in air (Paschen Law)

Max. Voltage ~ 1 MV

Van de Graaff accelerator

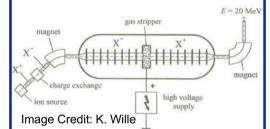
1930



Concept:

mechanical transport of charges via rotating belt

Electrode in high pressure gas to suppress discharge (SF₆)


Max. Voltage ~ 1- 10 MV

Tandem Van de 1936 Graaff accelerator

at MPI Heidelberg

Concept:

Generate negative ions, strip off electrons in the center, use voltage a 2nd time with now positive ions


Max. Voltage ~ 25 MV

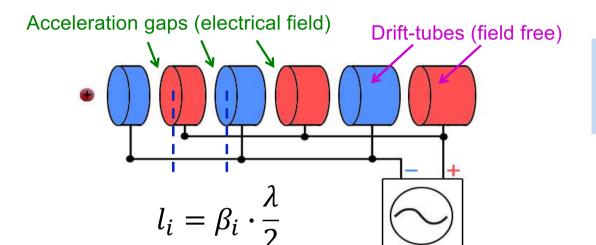
Electrostatic Accelerator Limitation

Electrostatic

Radio Frequency

Limitation:

Generation of max. (direct) voltage before sparking.


Acceleration over one stage or gap.

Solution:

Use alternating (RF) voltages and pass the particles through many acceleration gaps of the same voltage.

1925 idea by Ising1928 first working RF accelerator byWideroe

LINear ACcelerator (LINAC): functionalities

Energy gain after *n* gaps:

$$E = n q V_{RF} \sin \phi_s$$

n No. of acceleration gaps

q Charge of the particle

 V_{RF} Peak voltage of RF System

 ϕ_s synchronous phase w.r.t. RF field

Question

Once build, can we use the LINAC to accelerate any particle we like?

- High-frequency RF field (turn-over frequency MHz): $\lambda = c/f_{RF}$
- Particle should only feel the field when the field direction is synchronized.
- Drift-tubes screen the field as long as the field has the reversed polarity.
 - The more energy the particle gains, the faster it becomes (non-relativistic regime)
 - → Drifts have to increase in length.
- → Particles have to be clustered into packages (bunches).

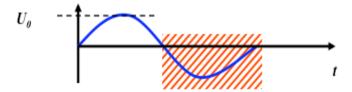
Question: why are in bunches?

Excercise: LINAC

Question

Once build, can we use the LINAC to accelerate any particle we like?

Drift tubes provide shielding of the particles during the negative half wave of the RF.


Time span of the negative half wave: $\tau_{RF}/2$

Length of the Drift Tube: $l_i = v_i * \frac{v_{ij}}{2}$

Kinetic Energy of the Particles $E_i = \frac{1}{2}m$

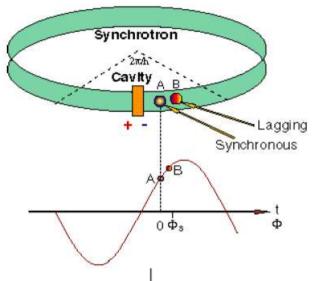
This question could be rephrased to:

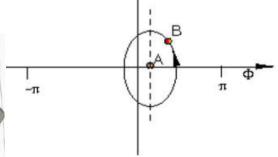
How does the drift tube length l_i depend on the particle type?

$$v_i = \sqrt{2E_i/m} \qquad E_i = iqV_{RF}\sin\phi_S$$

$$l_i = \frac{1}{f_{RF}} \sqrt{\frac{i \, q \, V_{RF} \, \sin \phi_s}{2m}}$$

valid for non-relativistic particles ...


So the answer is **no**. The drift tube length depends on the charge-to-mass-ratio (q/m) of the particle and the RF system. For a given RF system bandwidth only a certain range of q/m leads to a synchronized acceleration. One knob to play could be the charge state for ions, which may allow to get closer to the design q/m.


Exercise: phase focusing

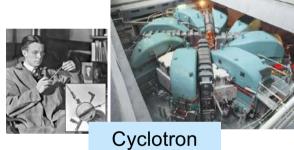
- ☐ Developed independently by McMillan and Veksler (1945)
- ☐ The RF cavity is set such as the particle at the centre of the bunch (synchronous particle) receives the needed energy
- \Box Voltage in the cavity: $V = V_0 \sin(2\pi\omega_{RF}t) = V_0 \sin(\varphi(t))$
- $f \square$ For no acceleration, synchronous particle phase: $m{arphi}_{
 m s}$ = 0
- **□** For acceleration, synchronous particle phase: $0 < \varphi_s < \pi$ in order to achieve: $\Delta E = V_0 \sin(\varphi(t))$
- Particles arriving late: $\varphi > \varphi_s$, \Rightarrow Energy increase *larger* than the synchronous particle
- Particles arriving early: $\varphi < \varphi_s$, \Rightarrow Energy increase *smaller* than the synchronous particle
- → Particles are grouped bunches!

Pay attention: this region of phase stability is valid only for not relativistic particles. We will see later what happens for relativistic particles.

Example is with the synchrotron, but for the LINAC is the same.

LINAC limitation

LINAC


Consists of a chain of many accelerating gaps placed on a straight line.

Particles pass the accelerator only ONCE.

The final energy is limited by length.

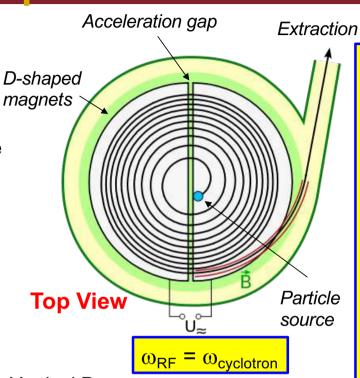
Circular

PSI cyclotron, currently doing first class physics

Use magnets that bend particles on a circular orbit.

Particles circulate over MANY turns and can gain more energy at each passage through the acceleration gap.

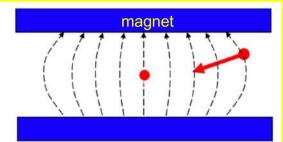
Cyclotron – "spiral version of a LINAC"


1929 proposed E.O. Lawrence 1931 built by Livingston

- Particle Source in the middle
- Acceleration gap connected to RF source between the two D-shaped magnets.
- Constant vertical magnetic field to guide the particles in the horizontal plane. The radius of particle trajectory becomes larger and larger with larger energy.
- Particles extracted with a deflector magnet or an electrode.

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \longrightarrow F_L = q \ v \ B \longrightarrow \text{No E}$$

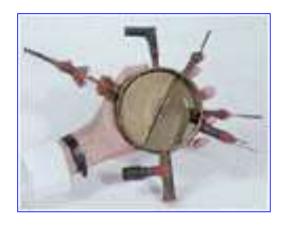
$$F_c = m \frac{v^2}{r} \longrightarrow \text{centrifugal force}$$


$$F_L = F_c \longrightarrow \omega = \frac{v}{r} = \frac{qB}{m} \longrightarrow \text{revolution}$$
period

 f_{RF} = const. B = const.

Weak focusing

Side View


B field is decreasing moving outward from the center.

A component of the Lorentz force prevents the particles to hit the magnet walls

Same principle of weak focusing is working in the dipole magnets

Cyclotron: an example

First cyclotron built at Berkeley by E.O. Lawrence

- α particles in radioactive decays: 1÷5 MeV
- 1939: cyclotron 1.5 m diameter: 19 MeV.
- Maximum cyclotron energy: 25 MeV
- next steps: synchrocyclotron and then synchrotron

Berkeley campus, 1942

184-inch cyclotron, 4000 tons: 1 single dipole with 467 cm diameter Designed to reach 100 MeV, it was converted in 1946 in a synchrocyclotron

Cyclotron limitation

Constant revolution frequency for constant mass:

$$\omega = \frac{v}{r} = \frac{Bq}{m} = \frac{Bq}{m(E)}$$

$$f_{RF}$$
 = const.
 B = const.

But, for relativistic particles the mass is not constant!

Well ... it is the relation between p and v, or p and E that is different

The classical cyclotron only valid for particles up to few % of speed of light.

→ Not useful for electrons ... already relativistic at ~500 keV.

Modifications:

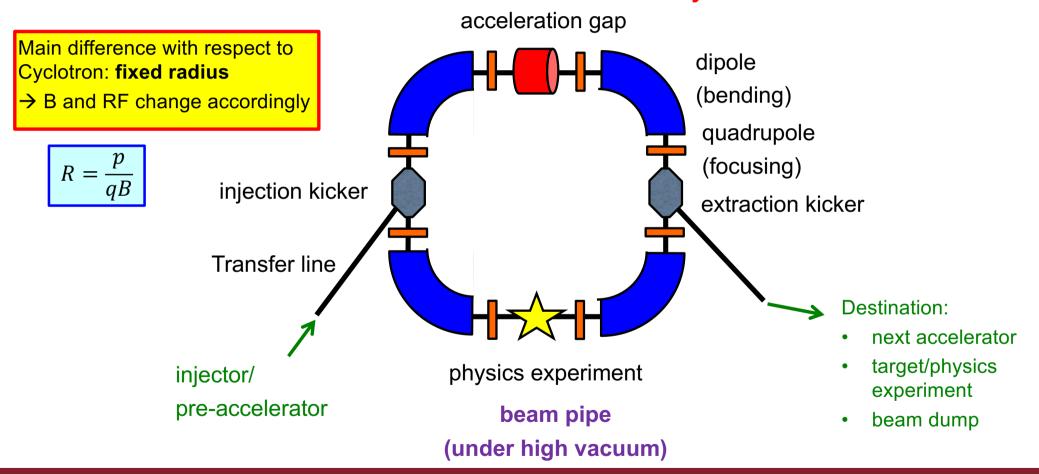
Synchro-cyclotron

$$f_{RF}(E)$$

 $B(E) \text{ or } B = \text{const.}$

Isochronous cyclotron

$$f_{RF}$$
 = const.
 $B(r)$


Common accelerator for medium energy protons and ions up to ~60MeV/n, used for nuclear physics, radio isotope production, hadron therapy.

Modern"cyclotrons"can reach > 500 MeV (PSI, TRIUMF, RIKEN)

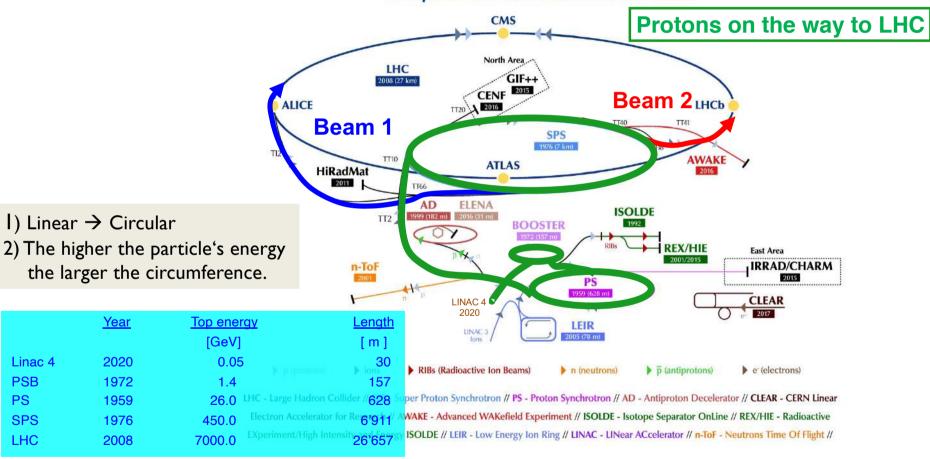
The synchrotron

Basic Synchrotron

Synchrotrons are THE accelerators to reach highest particle energies and are able to store the beam over many hours.

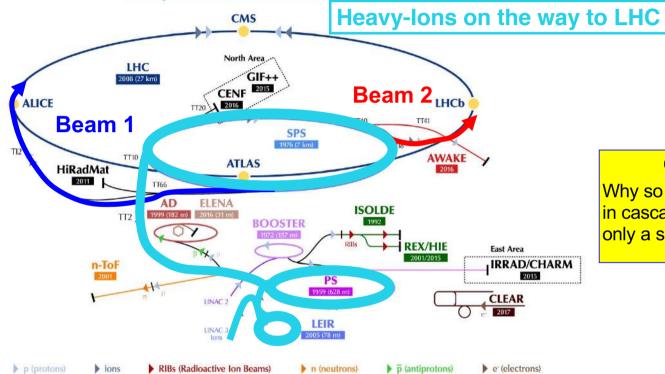
Most famous example

The largest machine in the world The Large Hadron Collider (LHC)


27 km circumference100m underground

Accelerates protons and heavy-ions to E = 6.8 TeV (2022).

Collides 2 counter-rotating beams in 4 physics experiments.


Getting particles into the LHC

The CERN accelerator complex Complexe des accélérateurs du CERN

Getting particles into the LHC

The CERN accelerator complex Complexe des accélérateurs du CERN

Question

Why so many accelerators in cascade and not using only a single synchrotron?

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight //

Let's open a parenthesis on synchrotron history

(it is not part of the exam program)

Fatti non foste a viver come bruti ma per seguir virtute e canoscenza

What we knew in ... 1935

☐ Atoms are composed by three particles: electron, proton and neutron

☐ neutrino hypothesis (1930 by Pauli, discovered later in 1956)

☐ there are four fundamental forces:

> Strong force: it acts only on nucleons (hadrons), range ~ 10⁻¹⁵ m

> e.m. force: it acts on all charged particles, infinit range

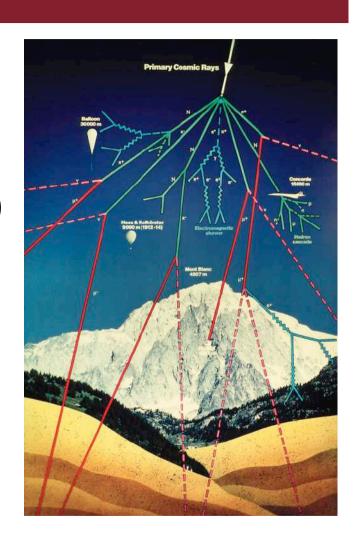
> Weak force: it acts on all particles, range ~ 10⁻¹⁵ m

➤ Gravitational force: it acts on all particles, infinit range

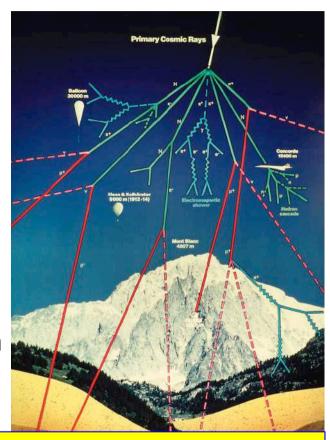
	(DECREASING ORDER)	(FIELD QUANTUM)	OCCURS IN :
STRONG NUCLEAR FORCE	- 1	GLUONS (NO MASS)	ATOMIC NUCLEU
ELECTRO -MAGNETIC FORCE	~ 10 -3	PHOTONS (NO MASS)	ATOMIC SHELL ELECTROTECHNIC
WEAK NUCLEAR FORCE	- 10 ⁻⁵	BOSONS Z*, W+, W- (HEAVY)	RADIOACTIVE BE DESINTEGRATION
GRAVITATION	~ 10 - ³⁶	GRAVITONS (?)	HEAVENLY BODIE
		2.4	

□ Positron discovery (anti-electron) in 1932, predicted by Dirac in 1928

☐ Mesotron discovery, predicted by Yukawa as mediator of the strong force


We understood everything (almost!)

Cosmic rays


- □ Discovered by V.Hess in 1912. They are composed by proton (86%), alpha (12%) and other nuclei.
- ☐ Positron discovery (1932)
- ☐ Mesotron discovery (1937), later identified (1947) by Conversi, Pancini and Piccioni as the "muon", an heavier replica of the electron, unstable.

Cosmic rays

- □ Discovered by V.Hess in 1912. They are composed by proton (86%), alpha (12%) and other nuclei.
- ☐ Positron discovery (1932)
- ☐ Mesotron discovery (1937), later identified (1947) by Conversi, Pancini and Piccioni as the "muon", an heavier replica of the electron, unstable.
- □Pion discovered in 1947 followed by the discovery of "strange" particles, someone heavier than proton

Cosmic rays studies were difficult: experiments up in the mountains or in baloons; flux and energy not under control. People wanted to reproduce the primary interaction in the Lab by accelerating protons (or electrons) and make them colliding with fixed targets.

And man created cosmic rays

- ☐ 1952: BNL (Brookhaven National Laboratory, Long Island), COSMOTRON
 - > 3 GeV protons; 2000 Tons of iron. 20 m diameter.
 - \succ it confirms associated production of strange particles: $\pi + p \rightarrow \Lambda + K$

And man created cosmic rays

- ☐ 1952: BNL (Brookhaven National Laboratory, Long Island), COSMOTRON
 - > 3 GeV protons; 2000 Tons of iron. 20 m diameter.
 - \triangleright it confirms associated production of strange particles: $\pi + p \rightarrow \Lambda + K$
- ☐ 1954: LBL (Lawrence-Berkeley Laboratory, California), <u>BEVATRON</u>
 - ➤ 6 GeV protons; 10000 Tons of iron.
 - \triangleright E. Segré discovers the antiproton (Nobel prize in 1959). $p + p \rightarrow p + p + p + p$
- ☐ 1957: Dubna; <u>SYNCROPHASATRON</u>. 10 GeV protons , <u>36000</u> Tons of iron!

In order to go at higher energy it was needed a smart idea to reduce the amount of iron needed to build the magnets.

Christofilos and Courant, Livingston and Snyder discovered/invented/found/designed the strong focusing in 1952.

[In the same year (1952) D.Glaser invents the bubble chamber]

The birth of CERN

☐ After the war, Europe was in ruins. The physicists had been missing. Scientific knowledge and technical skills had moved to the USA. Sur le terrain du futur institut nucléaire ☐ In December 1949, Louis de Broglie recommended an international research laboratory at a UN cultural conference. ☐ In 1950 UNESCO approved a resolution by I.Rabi and in 1952, 11 European countries participated in CERN (European Council for Nuclear Research). P. Auger and E. Amaldi were the spiritual fathers of CERN. ☐ It was chosen as the site of the laboratory Meyrin, a town e nucléaire se sont rendus hier à Meyrin pour reconnaître le near Geneva, close to the French border. La Suisse du 30 octobre 1953 □On 29 September 1954 the European Organization for Nuclear Research (CERN) was born ☐ August 8, 1951: the National Institute of Nuclear Physics (INFN) was established with decree number 599 of the CNR president Gustavo Colonnetti.

The first CERN accelerator: the 600 MeV syncrocyclotron

$$\omega = \frac{v}{r} = \frac{Bq}{m} = \frac{Bq}{m(E)}$$

Synchro-cyclotron

 $f_{RE}(E)$ B(E) or B =const.

Machine parameters

Proton kinetic energy (MeV) Internal proton beam (uA)

Extracted proton beam (µA)

Extraction efficiency (%) Energy spread (FWHM) (MeV)

Acceleration time (ms)

Average energy gain per turn

(keV) Number of revolutions

Repetition rate (Hz)

Protons per pulse

RF frequency swing

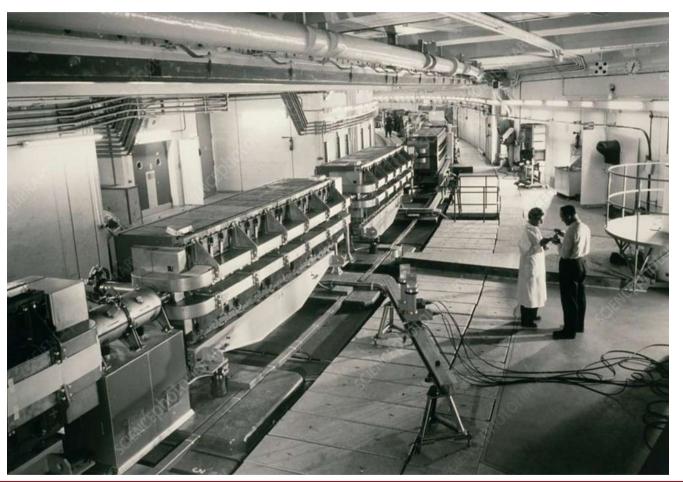
•	cyclotron	Iron Yoke
3	(E) = const.	Magnet
	SC1	Vacuum pump F
	600 1.5 (~ 6 x 10 ¹² protons per secon	
	0.07	
	(~ 4.4 x 10 ¹¹ protons per	
	seconds)	
	5	
	5	
	8.5	
	3	to
	2 × 10 ⁵	
	55	

- 1954: construction started
- 1957: first beam delivered
- 1958: start experimental program
- 1974: new SC2 commissioned
- 1990: end of operation
- 2012: it became a visit point

1958: first important discovery

$$\pi^+ \rightarrow e^+ + \nu$$

B.R. $(1.22 \pm 0.30) \cdot 10^{-4}$ in agreement with the V-A theory

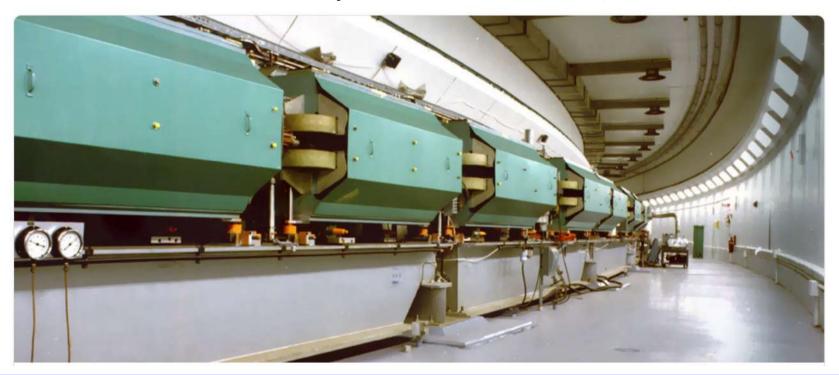

today: $(1.230 \pm 0.004) \cdot 10^{-4}$

1.2 x 10¹¹

30.6 - 16.6 MHz

CERN comes in the game... and strong focusing too!

☐ 1959: CERN. Protosynchrotron PS, 24 GeV, 3200 Tons, 200 m diameter.



This was the first accelerator to use the strong focusing principle

Actually, bending (dipole) and focusing (quadrupole) are embedded in the same magnet.

CERN comes in the game... and strong focusing too!

- ☐ 1959: CERN. Protosynchrotron PS, 24 GeV, 3200 Tons, 200 m diameter.
- ☐ 1960: BNL. Alternate Gradient Synchrotron AGS, 33 GeV, 4000 Tons, 257 m diameter.

The construction of the two machines was a challenge for both laboratories, so the two teams were exchanging information to successfully complete the two accelerators using this novel technology.

CERN comes in the game... and strong focusing too!

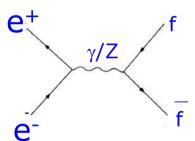
1959: CERN. Protosynchrotron PS, 24 GeV, 3200 Tons, 200 m diameter.
 1960: BNL. Alternate Gradient Synchrotron AGS, 33 GeV, 4000 Tons, 257 m diameter.
 Three nobel prize experiments at AGS:

 1962: L. Lederman, M.Schwartz and J. Steinberger: discovery of neutrino mu.
 1964: J. Cronin and V. Fitch: discovery of the CP violation in the K₀ system.
 1974: S. Ting: discovery of the J particle and quark charm (discovered also by B. Richter at SLAC)
 1963: N. Samios: discovery of the Ω⁻at the AGS with a 80-inch (~200 cm) bubble chamber, validating the eightfold way model of M.Gell-Mann and Y.Ne'eman
 The first important discovery at PS was the weak neutral current in 1973 at the bubble chamber Gargamelle by a team led by A. Lagarrigue that proved the existence of the Z

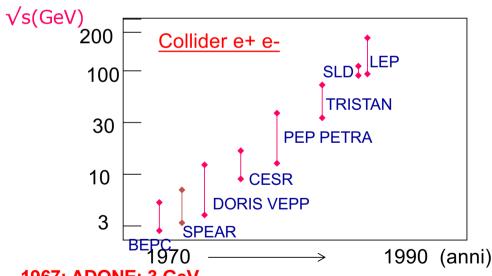
Question: why the PS took so long to have a major discovery?

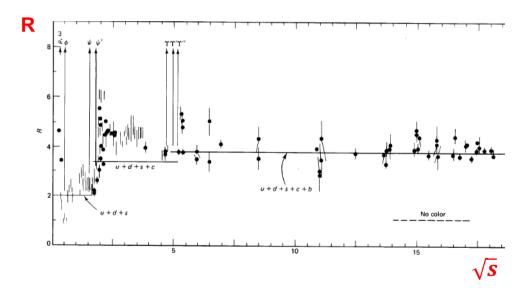
boson foreseen by the Standard Model.

ADA: the first e⁺e⁻ collider


In 1961, in the Frascati National Laboratories, a small group of young physicists and engineers led by Bruno Touschek conceived and built AdA, the first particle-antiparticle accelerator. In the same ring, electrons and positrons circulated in opposite directions with equal speed, annihilating and transforming all the initial energy into new particles.

ADA - 1961 - LNF

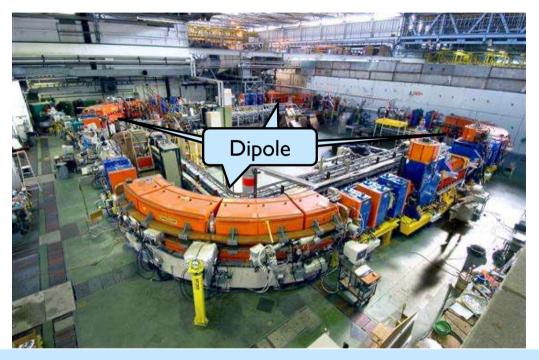

 $\sqrt{s} = 500 \text{ MeV}$

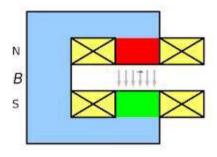


ADA: the first e⁺e⁻ collider

In 1961, in the Frascati National Laboratories, a small group of young physicists and engineers led by Bruno Touschek conceived and built AdA, the first particle-antiparticle accelerator. In the same ring, electrons and positrons circulated in opposite directions with equal speed, annihilating and transforming all the initial energy into new particles.

AdA, despite having had a short scientific life, remains a milestone in the history of science. As a prototype of the many accumulation rings that followed, it showed to the Particle Physics community the concrete feasibility of electron-positron colliders.


1967: ADONE: 3 GeV



Synchrotron: bending and focusing

Bending

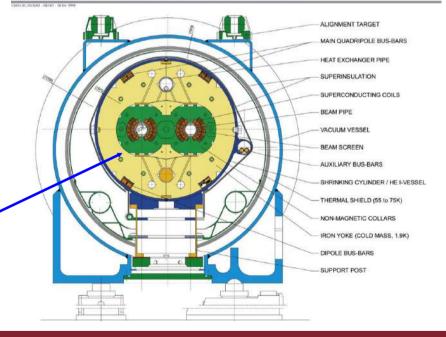
Vertical magnetic field to bend in horizontal plane.

LEIR has 4 dipoles, each with 90° bending angle, to keep particles on a circular orbit

LEIR (Low Energy Ion Ring)

- 78m circumference
- first circular accelerator for CERN's heavy-ions on the way to LHC
- 2.5 sec to accelerate ion bunches from 4.2 MeV/n to 72 MeV/n

Bending at LHC



The superconducting coils are cooled to 1.9 K (the cosmic background radiation is at 2.7 K). LHC is the coldest point in the Universe (on a large scale).

LHC has 1232 superconducting dipole magnets, each 15 m long and able to deflect the beam by 0.29°.

8.33 Tesla (max 2 T in iron) 11.7 kA (superconducting coil)

LHC DIPOLE: STANDARD CROSS-SECTION

Deflection of a charged particle

Charged particles are deflected in a magnetic field

θ Bending angle θ θ Bending radius

The ideal circular orbit

Lorentz Force $F_L = q \ v \ B$

Centrifugal
$$F_{centr} = \frac{\gamma m_0 v^2}{\rho}$$

$$F_L = F_{centr}$$

$$\frac{p}{q} = B \rho$$

 $B \rho = Beam rigidity$

$$q = \text{charge}$$

$$p = \gamma m_0 v$$
 momentum

$$\rho$$
 = bending radius

Required Magnetic Field Strength

Full circle

$$\alpha = \int \frac{dl}{\rho} = \int \frac{Bdl}{B\rho} = 2\pi$$

$$\frac{\int B \, dl \approx N \, l \, B}{\frac{p}{e} = B \, \rho}$$

$$B = 2\pi p / (qNl)$$

N: number of magnets
I: length of a magnet

Example SPS:

Particle:

$$p = 450 \text{ GeV/c}$$

$$q = +1e (proton)$$

• Dipole magnets:

$$I = 6.2m$$

$$\rho = 735 \text{m}$$

$$N = 744$$

$$B \approx \frac{2\pi \times 450 \text{ GeV}}{744 \times 6.2 \text{ m} \times 3 \times 10^8 \frac{\text{m}}{\text{s}} \times \text{ e}} = 2.0 \text{ T}$$

normal conducting magnet

Example LHC:

· Particle:

$$p = 7000 \text{ GeV/c}$$

$$q = +1e (proton)$$

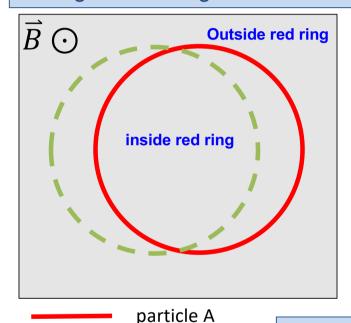
• Dipole magnets:

$$I = 15m$$

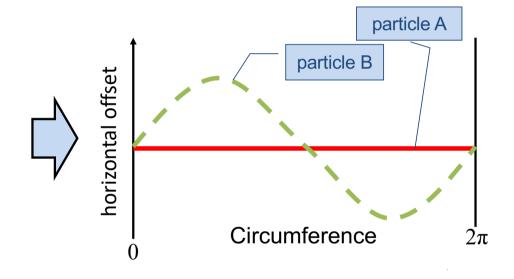
$$\rho = 2803 \text{m}$$

$$N = 1232$$

$$B \approx \frac{2\pi \times 7000 \text{ GeV}}{1232 \times 15 \text{ m} \times 3 \times 10^8 \frac{m}{s} \times e} = 8.3 \text{ T}$$

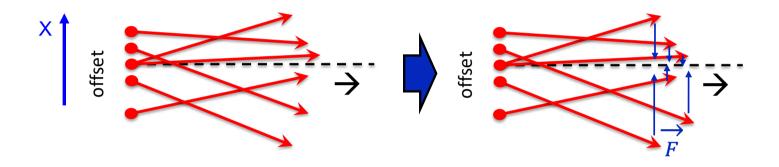

superconducting magnet

Particles oscillation


Example: two charged particles, with the same momentum, in a homogeneous magnetic field

"horizontal" movement (distance between the two orbits)

Particle B, while it is turning, go outside and inside the trajectory of the particle A


particle B

In a homogeneous magnetic field, particles with varying initial conditions fulfil oscillations around the design orbit → **Betatron-Oscillation**

design orbit = trajectory of ideal particle → defined by dipole magnets

A bunch contains many particles with different initial conditions.

Many different positions, angles and energy offsets

We need a focusing force that keeps the particles close to the design orbit.

Focusing force should rise as a function of the distance to the design orbit.

Requirement:

Lorentz force linearly increasing as a function of distance from design orbit.

→ Linearly increasing magnetic field.

$$F(x) = q \cdot v \cdot B(x)$$

Taylor series as a function of distance from magnet center

$$B_y(x) = B_{y0} + \frac{\partial B_y}{\partial x} x + \frac{1}{2} \frac{\partial^2 B_y}{\partial x^2} x^2 + \frac{1}{3!} \frac{\partial^3 B_y}{\partial x^3} x^3$$
 dipole quadrupole sextupole octupole

Jura z CMS x LHC LHCb

Normalize to p/q:

$$\frac{p}{q} = B \rho$$

$$\frac{B_y(x)}{p/q} = \frac{1}{\rho} + kx + \frac{1}{2}mx^2 + \frac{1}{3!}nx^3 + \dots$$

quadrupole

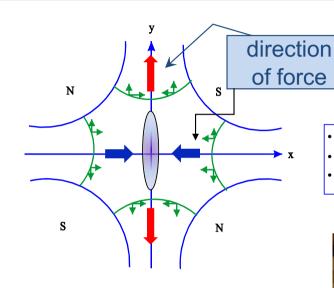
N.B. if you need a force along x, B component has to be along y since particle velocity is along z

Focusing of particles with quadrupoles: strong focusing

$$F(x) = q \cdot v \cdot B(x)$$

with the vertical (y) and horizontal (x) quadrupole fields

$$B_y = g \cdot x$$
$$B_x = g \cdot y$$


where g is the gradient

$$g = \frac{2\mu_0 nI}{r^2} \left[\frac{T}{m} \right]$$

Normalized gradient = focusing strength

$$k = \frac{g}{p/q} [m^{-2}]$$

I coil current n number of windings r distance magnet center to pole μ_0 permeability of free space

Do you see the problem with this?

Quadrupoles focus in one plane, but defocus in the other!

- B from N to S
- Beam is exiting the page
- $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$

quadrupole magnet

Focusing analogous to geometrical optics

Focusing of particles with quadrupoles is similar to focusing of light with lenses.

A series of alternating focusing and defocusing lenses will focus:

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

Consider:

$$f_1 = f$$

$$f_2 = -f$$

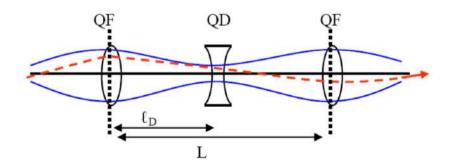
Then:

$$F = \frac{f^2}{d} > 0$$

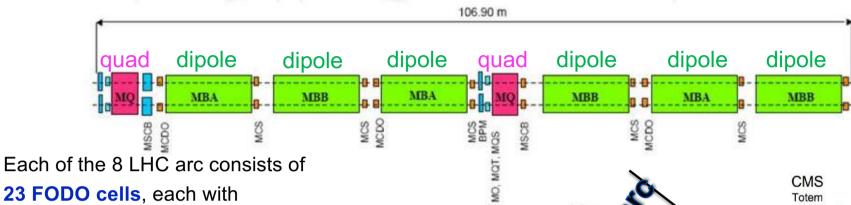
In a synchrotron quadrupoles are lenses with the focal length:

$$f = \frac{1}{k \cdot l_Q}$$

Typical alternating


F = focusing

o = nothing (dipole, RF, ...)


D = defocusing

0

lattice of quadrupoles in an accelerator

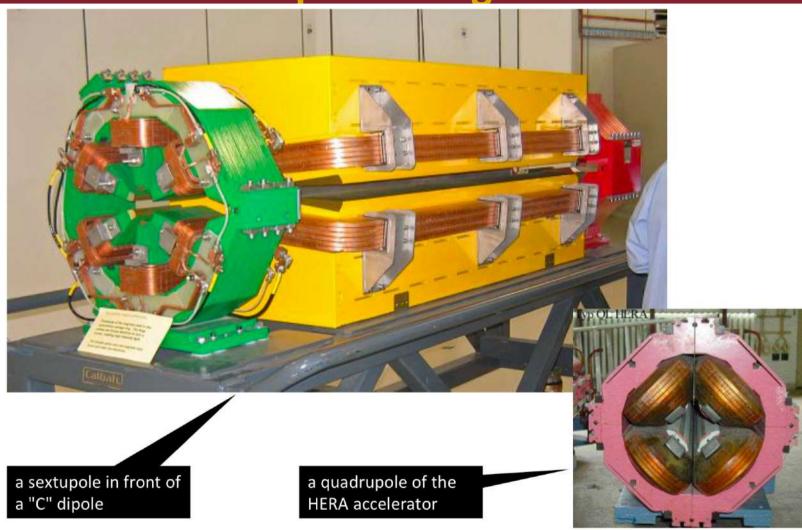
The LHC FODO cells

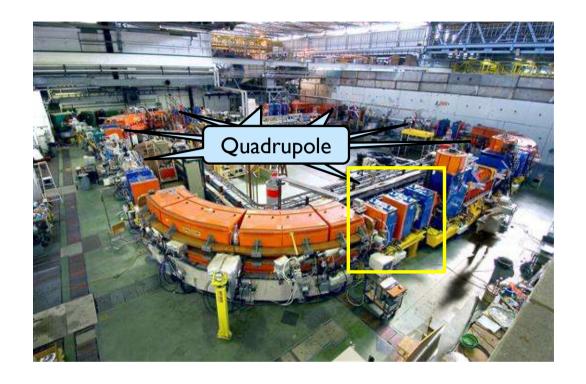


23 FODO cells, each with

- 2 Quadrupoles
- 6 Dipoles
- Additional instrumentation and corrector magnets are installed in between for beam control.

LHC quadrupole


Totem


Pt5

Pt6

Dump

Example of magnets

LEIR – first circular accelerator for CERN's heavy-ions on the way to LHC

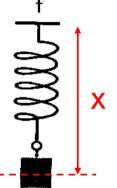
How does a particle move in an accelerator

(No need to remember all equations. This is only meant to give you the big picture and the "naming")

Particle motion

Focusing force that keeps the particles close to the design orbit, which rises as a function of the distance.

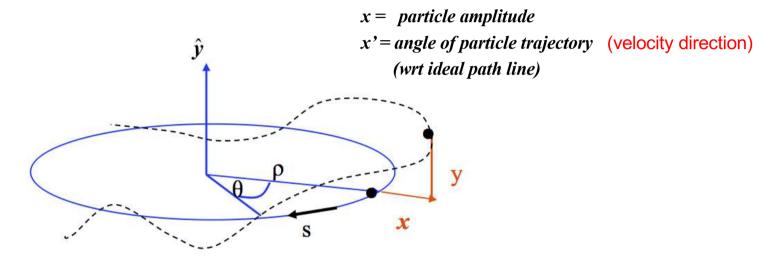
$$F(x) = q \cdot v \cdot B(x)$$


Classical free harmonic oscillator

→ experiences restoring force proportional to the displacement x when displaced from equilibrium position

Second law of motion:

$$ec{F}=mec{a}$$


$$mrac{\mathrm{d}^2x}{\mathrm{d}t^2}=m\ddot{x}=-kx$$

Solution of equation of motion is $x(t) = A\cos(\omega t + arphi)$ sinusoidal oscillation:

Coordinate system

Use different coordinate system: Frenet-Serret rotating frame

- The ideal particle defines "design" trajectory: *x*=0, *y*=0

 → travels through the center of all magnets.
- *x, y* << ρ

Look at the particle motion along the path length s.

Toward the equation of motion

$$F_x = m \cdot \ddot{x}$$

Describes motion as a function of time.

But what we need is something like

$$F_x = Mx''$$

$$\dot{x} = \frac{dx}{dt}$$

 \rightarrow Replace free parameter time t by path length s.

$$x' = \frac{dx}{ds}$$

→ Compare to Lorentz force

$$F(x) = q \cdot v \cdot B(x)$$

Taylor expansion of normalize magnetic field:

$$\frac{B_y(x)}{p/q} = \frac{1}{\rho} + kx + \frac{1}{2}mx^2 + \frac{1}{3!}nx^3 + \dots$$
dipole quadrupole sextupole octupole

Only consider linear terms: dipole & quadrupole fields!

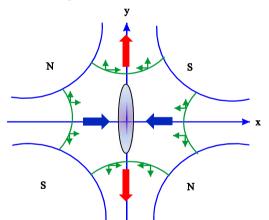
$$\frac{B_y(x)}{p/q} \approx \frac{1}{\rho} + kx$$

Equation of motion

Equation of motion

Horizontal motion:

$$x'' + Kx = 0$$
$$y'' - ky = 0$$


Vertical motion:

Where $K = \frac{1}{\rho^2} + k$

with k as the quadrupole focusing strength and ρ the bending radius.

In vertical:

- \rightarrow In general, no dipoles: $\frac{1}{\rho^2} = 0$
- \rightarrow Sign change of force direction: $k \Longleftrightarrow -k$

Assuming the motion in the horizontal and vertical plane are independent → Particle motion in x & y is uncoupled

Solving the equation of motion – focusing quadrupole

Equation of motion in horizontal plane

$$x'' + Kx = 0$$

Equation of the **harmonic oscillator** with spring constant K.

nsatz

For K > 0 (focusing) the solution can be found with this ansatz and boundary conditions:

$$x(s) = a_1 \cos(\omega s) + a_2 \sin(\omega s)$$

$$s = 0 \to \begin{cases} x(0) = x_0, \\ x'(0) = x'_0 \end{cases}$$

olution

Inserting these into the equation of motion yields:

$$x(s) = x_0 \cos(\sqrt{K}s) + x_0' \frac{1}{\sqrt{K}} \sin(\sqrt{K}s)$$

$$x'(s) = -x_0\sqrt{K}\sin(\sqrt{K}s) + x_0'\cos(\sqrt{K}s)$$

ransfer Matrix Use matrix formalism:

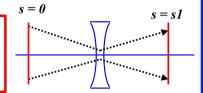
$$\left(\begin{array}{c} x \\ x' \end{array}\right) = M_{foc} \cdot \left(\begin{array}{c} x_0 \\ x'_0 \end{array}\right)$$

Focusing Quadrupole

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{K}s) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}s) \\ -\sqrt{K}\sin(\sqrt{K}s) & \cos(\sqrt{K}s) \end{pmatrix}$$

Solving the equation of motion – defocusing quadrupole

Equation of motion in horizontal plane


$$x'' + Kx = 0$$

Equation of the **harmonic oscillator** with spring constant K.

Jefocusing Quadrupole

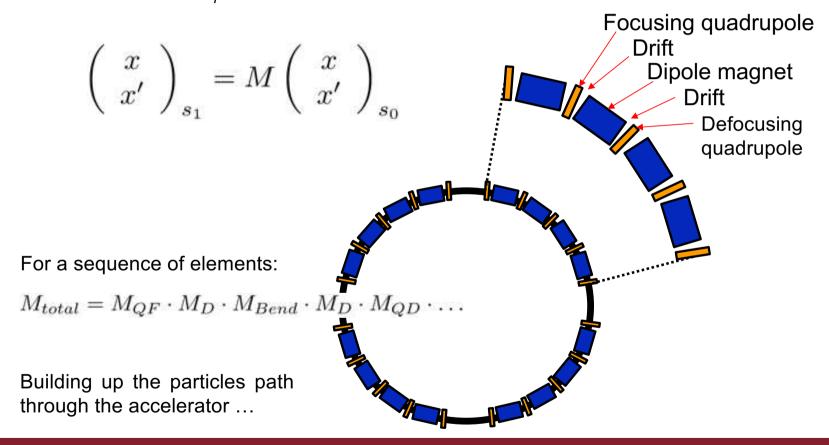
$$x(s) = a_1 \cosh(\omega s) + a_2 \sinh(\omega s)$$

$$\begin{array}{ll} \textbf{Defocusing} \\ \textbf{Quadrupole} \end{array} M_{defoc} = \left(\begin{array}{cc} \cosh(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}} \sinh(\sqrt{|K|}s) \\ \sqrt{|K|} \sinh(\sqrt{|K|}s) & \cosh(\sqrt{|K|}s) \end{array} \right)$$

Drift Space

$$x(s) = x_0' s$$

$$M_{drift} = \left(\begin{array}{cc} 1 & s \\ 0 & 1 \end{array}\right)$$

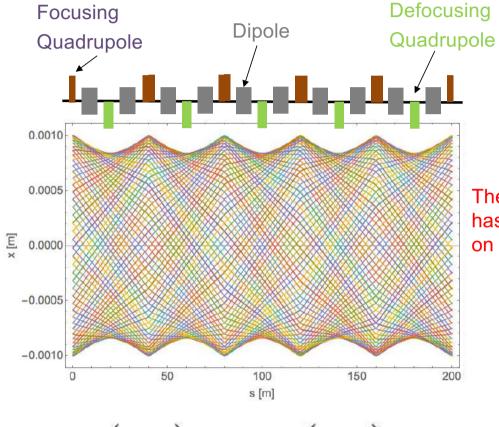


For $K = 1/\rho^2$ (dipole) use the result for a focusing dipole and insert K.

$$M_{dipole} = \begin{pmatrix} \cos(\frac{s}{\rho}) & \rho \sin(\frac{s}{\rho}) \\ -\frac{1}{\rho} \sin(\frac{s}{\rho}) & \cos(\frac{s}{\rho}) \end{pmatrix}$$

Particle tracking

Knowing the initial coordinates at $s=s_0$, we can use the transfer matrix to calculate the effect of an element to the particle's trajectory and get its new coordinates at $s=s_1$.



How does a particle trajectory look like?

Initial coordinates

$$x_0 = 0.001m (1 mm)$$

$$x_0' = 0$$

The envelope of all trajectories has a periodicity that depends on the lattice

Hill's equation

We had ...

$$x'' + Kx = 0$$

But, around the accelerator *K* is not constant and does depend on s!

$$x''(s) + K(s)x(s) = 0$$
 Hill's equation

- K(s+L) = K(s) \rightarrow periodic function, where L is the "lattice period"
- General solution of Hill's equation:

$$x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$$

It is a quasi harmonic oscillation, where amplitude and phase depend on the position s in the ring.

The Beta function

General solution of Hill's equation

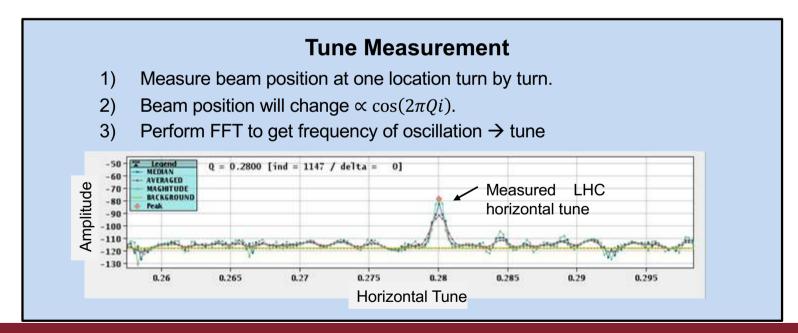
$$x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$$

Integration constants: determined by initial conditions

The **beta function** is a periodic function determined by the focusing properties of the lattice, i.e. quadrupoles

$$\beta(s+L) = \beta(s)$$

The "phase advance" of the oscillation between the point s_0 and point s in the lattice.


$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

The Tune

The number of oscillations per turn is called "tune"

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)} \quad \xrightarrow{\text{full turn}} \quad Q = \frac{1}{2\pi} \int \frac{ds}{\beta(s)}$$

The tune is an important parameter for the **stability of motion** over many turns. It has to be **chosen appropriately**, **measured and corrected**.

Courant-Snyder Parameters: $\alpha(s)$, $\beta(s)$, $\gamma(s)$

General solution of Hill's equation: $x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$

Define:
$$\alpha(s) = -\frac{1}{2}\beta'(s)$$
 $\gamma(s) = \frac{1+\alpha(s)^2}{\beta(s)}$

 $\alpha(s), \beta(s), \gamma(s)$ are called Courant-Snyder parameters or Optics parameters

Let's assume for $s(0) = s_{0}$, $\psi(0) = 0$, $\beta(0) = \beta_{0}$ and $\alpha(0) = \alpha_{0}$ Defines ϕ from initial conditions: x_{0} and x'_{0} , β_{0} and α_{0} .

Re-write transfer matrix with optics parameters:

$$M = \begin{pmatrix} \sqrt{\frac{\beta}{\beta_0}} (\cos \psi + \alpha_0 \sin \psi) & \sqrt{\beta \beta_0} \sin \psi \\ \frac{(\alpha_0 - \alpha) \cos \psi - (1 + \alpha \alpha_0) \sin \psi}{\sqrt{\beta \beta_0}} & \sqrt{\frac{\beta_0}{\beta}} (\cos \psi - \alpha \sin \psi)) \end{pmatrix}$$

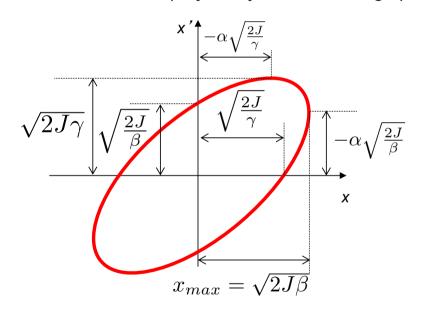
Once we know α and β , we can compute the single particle trajectories between two locations without remembering the exact lattice structure and strength of each element!

Phase Space

General solution of Hill's equation: $x(s) = \sqrt{2J_x\beta_x(s)}\cos(\psi(s) + \phi)$

 J_x is called **action** and can be written as:

$$J_x = \frac{1}{2} \left(\gamma_x x^2 + 2\alpha_x x x' + \beta_x x'^2 \right)$$


which is the equation of an **ellipse** in the **phase-space** x, x'.

The shape and orientation of ellipse are defined by the Courant-Snyder parameters.

The area of the ellipse is:

$$A = 2 \cdot \pi \cdot J_x$$

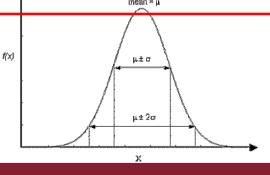
x-x' phase space (trajectory offset vs. angle)

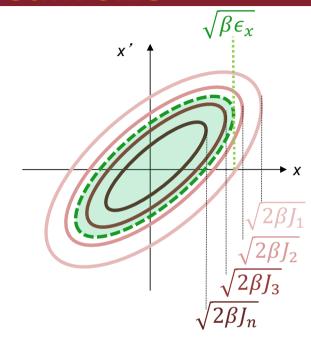
Emittance and beam size

At a given location: $x = \sqrt{2\beta_x J_x} \cos \psi_x$

The mean square value of this is:

$$\langle x^2 \rangle = 2\beta_x \langle J_x \cos^2 \psi_x \rangle = \beta_x \langle J_x \rangle = \beta_x \epsilon_x$$

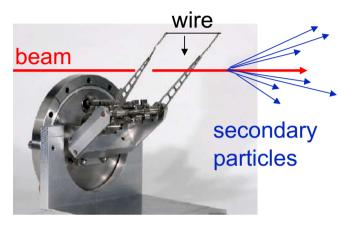

assumes action and phase uncorrelated, and uniform distribution in phase from 0 to 2π .

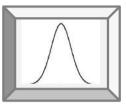

Defines *emittance* of particle distribution:

$$\langle J_x \rangle = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2} := \epsilon_x$$

 ϵ_x is an **intrinsic beam property** that is defined at it's creation.

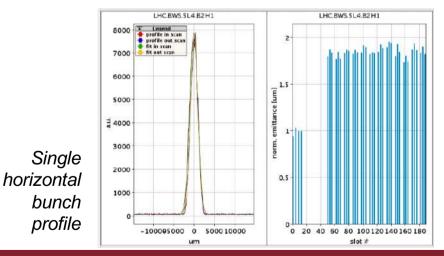
In LHC it is defined by the injector chain properties


Typically the distribution of particles in a bunch follows a Gaussian shape:


$$\rho(x) = \frac{N}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{x^2}{2\sigma_x^2}}$$

Therefore, $\sigma_x = \sqrt{\langle x^2 \rangle} = \sqrt{\epsilon_x \beta_x}$ describes the one sigma beam size.

Beam size and emittance measurement

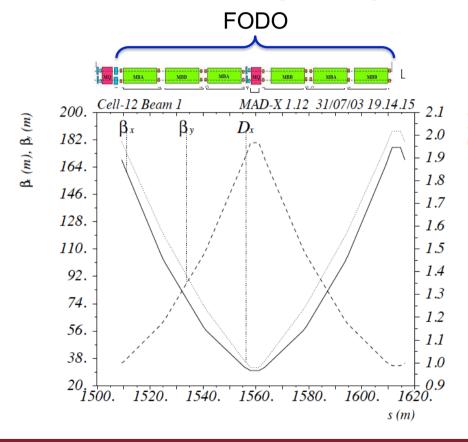

Principle of a wire-scanner beam size measurement

$$\sigma_x = \sqrt{\varepsilon \beta_x}$$

Gaussian fit to profile \rightarrow beam size σ Knowledge of β -function \rightarrow emittance ε

LHC measurement

Emittance calculated from profile measurement.


All circulating bunches.

Beam size around the accelerator

The β -function is periodic

- → It changes along the cell.
- ightarrow The beam size changes along the cell! $\sigma = \sqrt{\varepsilon \beta}$

$$\sigma = \sqrt{\varepsilon \beta}$$

Max. horizontal beam size in the focusing quadrupoles

Max. vertical beam size in the defocusing quadrupoles

The regular LHC FODO cell:

- Phase advance: 90°
- Maximum beta: 180 m

Things to remember

Phase space

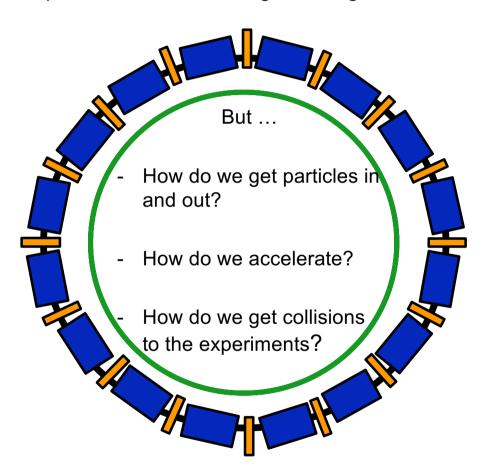
A space that represents all possible states of a system.


A particle's trajectory points or coordinates at a given element draw an *ellipse in phase space*.

The orientation and shape of that ellipse is described by the optical (Courant-Snyder) parameters. $\rightarrow \beta$ -function

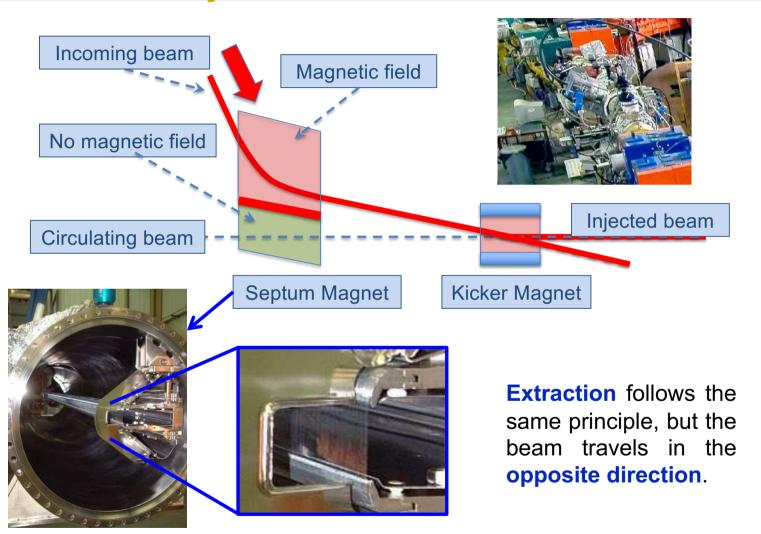
The area of that ellipse is \propto *emittance*.

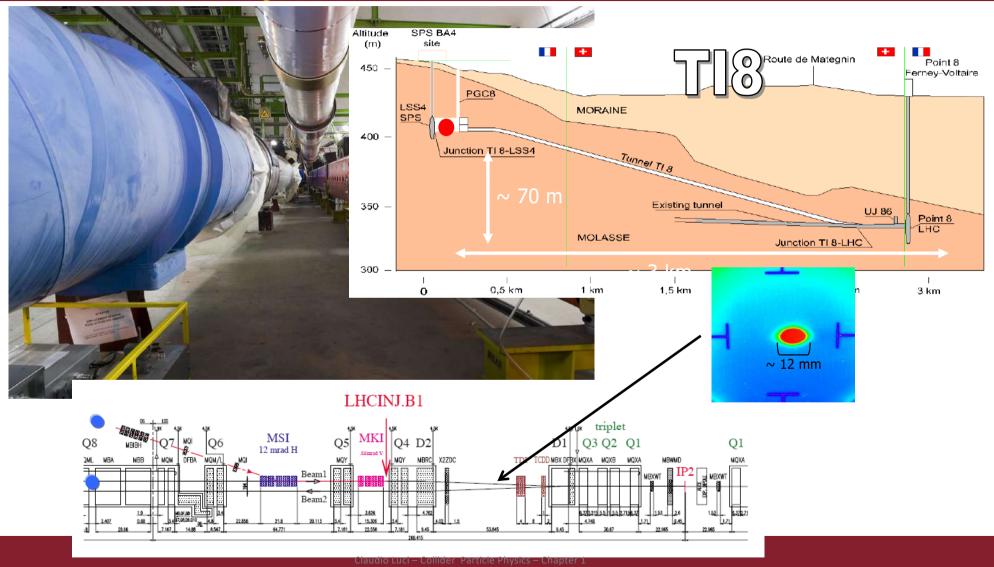
Emittance is a beam property that cannot be changed by focusing.


The **beam size** of a particle ensemble is defined by $\sigma = \sqrt{\epsilon \beta}$.

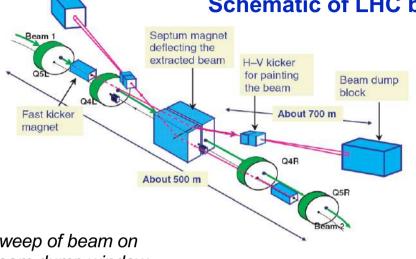

Beam Injection/extraction

What we learned so far?


We know, how particles behave along the magnetic lattice of an accelerator.


Straight Sections and Insertions

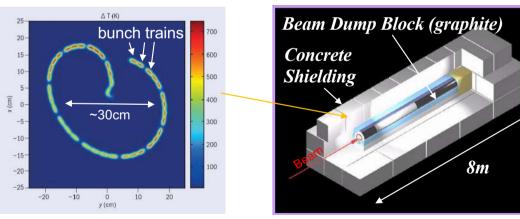
Injection and extraction



Injection of Beam 2 into LHC

Beam dump - How to safely kill the LHC beam

Schematic of LHC beam dump system



LHC beam stores ~360MJ energy.

Sweep of beam on beam dump window

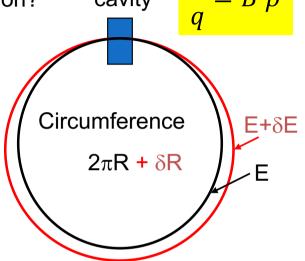
Let's compare it to the kinetic energy of a frecciarossa train whose mass is 500 ton

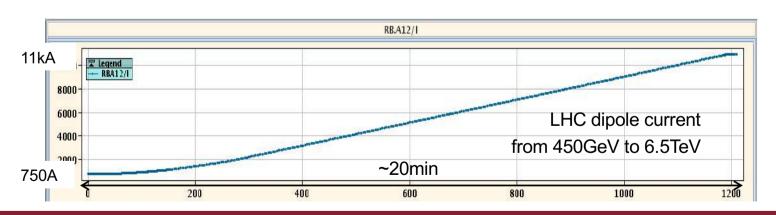
$$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 3.6 \cdot 10^8}{5 \cdot 10^5}} =$$

$$= 37.9 \frac{m}{s} \cong 140 \frac{km}{h}$$

Better be careful

acceleration


RF Acceleration and magnet field increase


What about the magnetic field during acceleration?

cavity

Beam rigidity needs to be increased proportionally to increasing energy.

- → Machine radius is constant.
- → Need to increase dipole field accordingly!

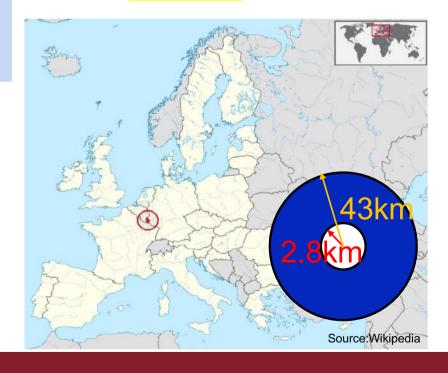
Acceleration without magnetic field increase

LHC magnetic dipole field at 450 GeV:

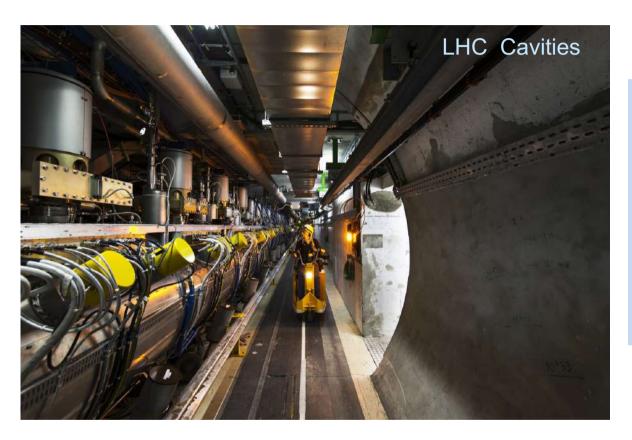
$$B = \frac{p}{q\rho} = \frac{450 \,\text{GeV}/c}{e \times 2803 \,\text{m}} = 0.535 \,\text{T}$$

Required bending radius at 7 TeV with B_{inj}=0.5T:

$$\rho = \frac{p}{qB} = \frac{7 \,\text{TeV}/c}{e \times 0.535 \,\text{T}} = 43.6 \,\text{km}$$


Equivalent to 270km circumference (pure dipole field! without any insertions or quadrupoles)

Magnet surface = 5800km²

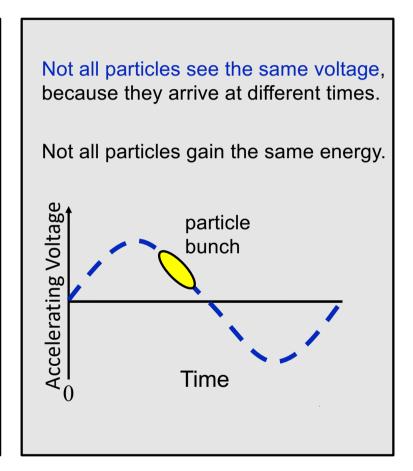

- → Area of Brunei (South-Eastern Asia)
- → Area of 2x Luxemburg

How does the bending radius changes, when accelerating without adjusting the magnetic field?

$$\frac{p}{q} = B \rho$$

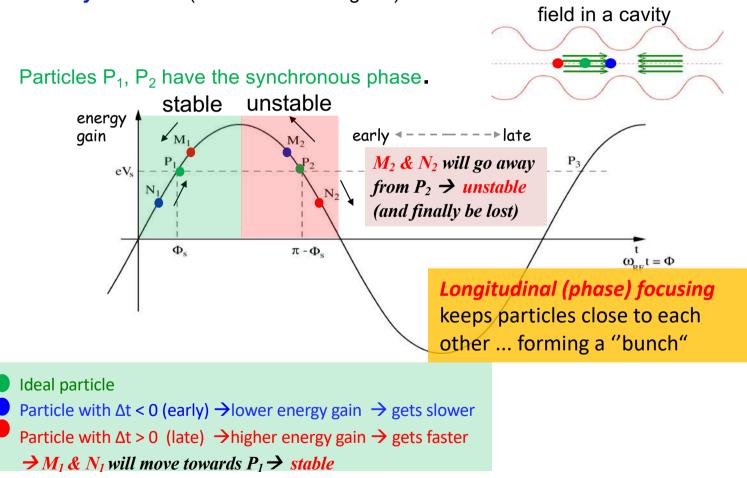
Example: LHC accelerating system

I HC has


- 8 superconducting cavities per beam
- Accelerating field 5 MV/m
- Can deliver 2 MV/cavity (peak voltage)
- Operating at 400 MHz
- Beam aperture (radius) ~30cm
- Energy gain/turn during ramp 485 keV (11245 turns/s)

Going from 450 GeV (injection energy) up to 6.8 TeV (collision energy) takes about 20 minutes.

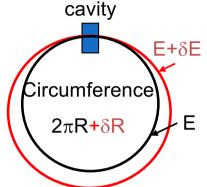
RF acceleration

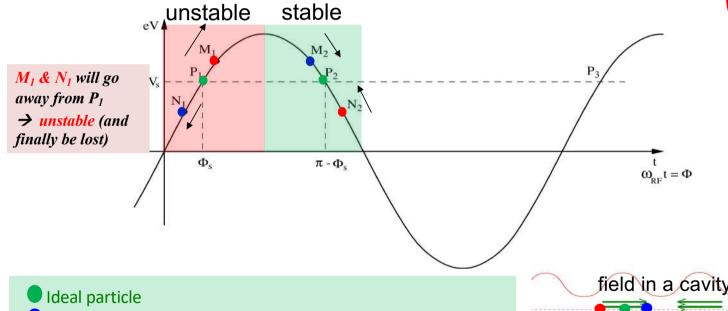

Accelerating voltage is changing with time. That has two consequences:

Need **synchronization** between beam and RF phase to gain energy. There is a synchronous RF phase for which the energy gain fits the increase of the magnetic field. Accelerating Voltage Time negative voltage → deceleration

Phase stability (non-relativistic regime)

Assume the situation where **energy increase is transferred into a velocity increase** (non-relativistic regime).



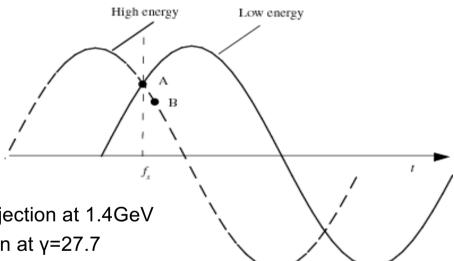

Phase stability (relativistic regime)

Now assume relativistic energies ($v \approx c$):

An *increase in momentum* transforms into a *longer orbit and thus a longer revolution time.*

$$\frac{p}{q} = B \rho$$

Particle with $\Delta t < 0 \rightarrow higher$ energy gain \rightarrow gets longer orbit


Particle with $\Delta t > 0 \rightarrow$ lower energy gain \rightarrow gets shorter orbit

 $M_2 \& N_2$ will move towards $P_2 \rightarrow stable$

Crossing transition

The previously stable synchronous phase becomes unstable when $v \Rightarrow c$ and the gain in path length overtakes the gain in velocity \rightarrow *Transition*

Transition from one slope to the other during acceleration → *Crossing Transition*. The RF system needs to make a rapid change of the RF phase, a 'phase jump'.

In the PS: γ_t is at ~6 GeV, injection at 1.4GeV

In the SPS: γ_t = 22.8, injection at γ =27.7

=> no transition crossing!

In the LHC: γ_t is at ~55 GeV, also far below injection energy

Transition crossing not needed in leptons machines, why?

Synchrotron Oscillation

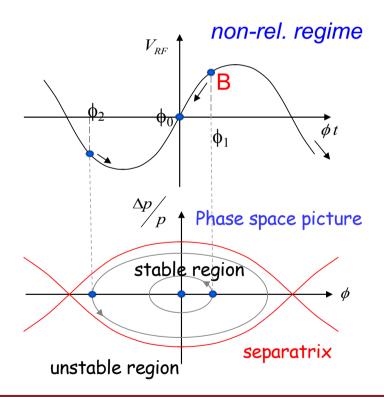
Like in the transverse plane the particles are oscillating in longitudinal space.

Particles keep oscillating around the stable synchronous particle varying phase and dp/p.

Typically one synchrotron oscillation takes many turns (much slower than betatron oscillation)

Phase-space ellipse defines *longitudinal emittance*.

Separatrix is the trajectory separating stable and unstable motion.


Stable region is also called **bucket**.

 \rightarrow Harmonic number h = number of buckets:

$$f_{RF} = h f_{rev}$$

Simple case (no accel.): B = const.

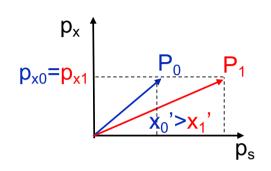
- Stable phase: $\phi_0 = 0$
- Particle B oscillates around ϕ_0 .

Emittance during Acceleration

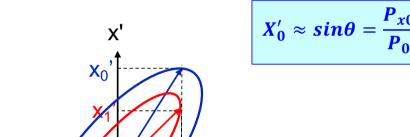
What happens to the emittance if the reference momentum P_0 changes?

Can write down transfer matrix for reference momentum change:

$$M_x = \begin{pmatrix} 1 & 0 \\ 0 & P_0/P_1 \end{pmatrix} \longrightarrow \epsilon_{x1} = \frac{P_0}{P_1} \epsilon_{x0}$$


The emittance shrinks with acceleration!

With $P=\beta\gamma mc$ where ${\it \gamma},\,{\it \beta}$ are the relativistic parameters.


The conserved quantity is

$$\beta_1 \gamma_1 \epsilon_{x1} = \beta_0 \gamma_0 \epsilon_{x0}$$

It is called *normalized emittance*.

Only longitudinal momentum changes during the acceleration

How big are the beams in the LHC?

Normalized emittance at LHC : $\varepsilon_n = 3.5 \mu m$

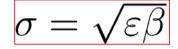
 $\rightarrow \varepsilon_n$ preserved during acceleration.

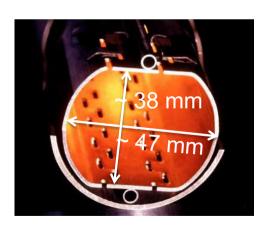
The geometric emittance:

- Injection energy of 450 GeV: ε = 7.3 nm
- Top energy of 7 TeV: ε = 0.5 nm

$$\varepsilon_{7TeV} = \varepsilon_{450GeV} \frac{\gamma_{450GeV}}{\gamma_{7TeV}}$$

The corresponding max. **beam sizes** in the arc, at the location with the maximum beta function (β_{max} = 180 m):

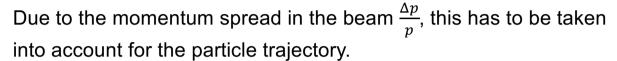

$$-\sigma_{450GeV} = 1.1 \text{ mm}$$

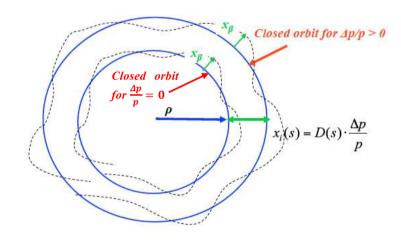

$$-\sigma_{7\text{TeV}}$$
 = 300 μ m

Aperture requirement: a > 10 σ

LHC beam pipe radius:

- Vertical plane: 19 mm ~ 17 σ @ 450 GeV
- Horizontal plane: 23 mm ~ 20 σ @ 450 GeV




Transverse-Longitudinal Coupling: Dispersion

Dipole magnets generate dispersion:

→ Particles with different momentum are bent differently.

$$x(s) = x_{\beta}(s) + D(s) \frac{\Delta p}{p}$$

Dispersion function D(s)

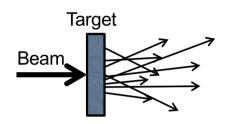
corresponds to the trajectory of a particle with momentum offset

$$\frac{\Delta p}{p} = 1.$$

This also has an effect on the beam size:

$$\sigma = \sqrt{\beta \varepsilon}$$

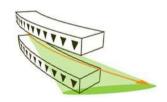
$$\rightarrow$$


$$\sigma = \sqrt{\beta \varepsilon + D^2(\frac{\Delta p}{p})^2}$$

Experiments and Luminosity

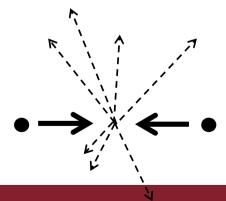
Each accelerator and experiment requires specific beam properties. Fundamentally different are:

Fixed Target:



Secondary particles

Light Sources:



Particles that are bent to a circular orbit emit energy/light.

Collider:

"Smashing" Modes and Center-of-Mass Energy

The *center-of-mass energy* defines

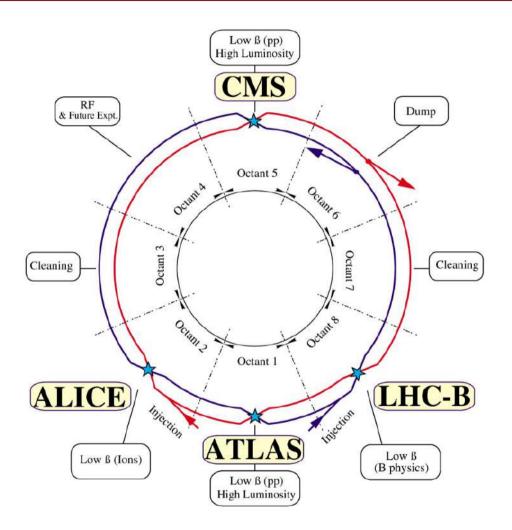
the upper limit of the newly created particle's mass.

Fixed Target

$$E \propto \sqrt{E_{beam}}$$

Most of the Energy is lost in the target, only a fraction is transformed into useful secondary particles.

Collider



$$E = E_{beam1} + E_{beam2}$$

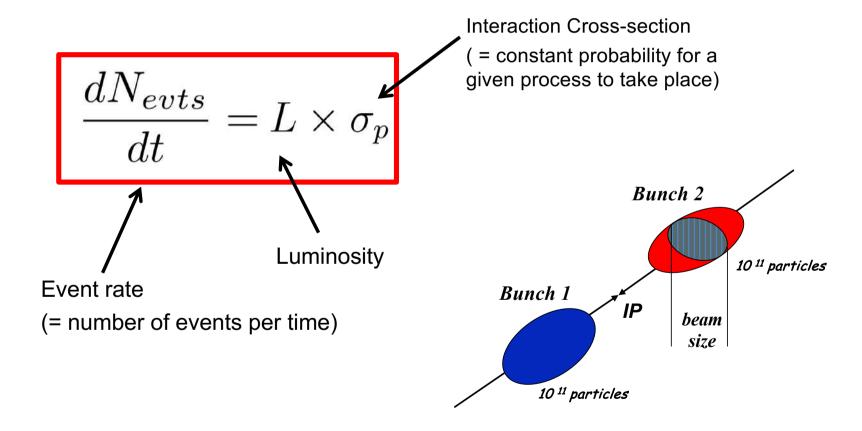
All energy is available for the production of new particles.

Price to pay in a collider: event rate

LHC and its Experiments

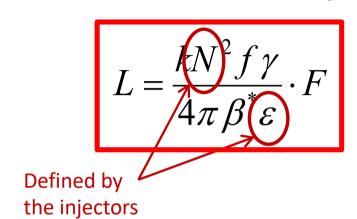
LHC has **4** interaction points (IPs) hosting particle physics experiments:

→ ATLAS, ALICE, CMS, LHCb


Therefore the two counterrotating beams collide 4 times per turn

When they collide the outer beam **cross over** to the inner circle and vise versa.

Particle Collisions

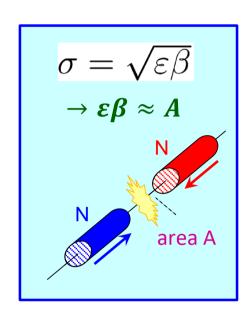

Experiments are interested in maximum number of interactions per second.

The event rate in an experiment is proportional to the collider luminosity.

"quality factor" of a Collider

The most important factor to describe the potential of a collider is the Luminosity.

N.... No. particles per bunch


k..... No. bunches

f..... revolution freq.

g..... rel. gamma

 β^* beta-function at IPs

 ε norm. trans. emit

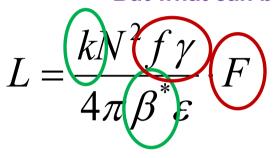
Limitation:

"Collective effects" cause beam instabilities for too high bunch intensities, too small bunch spacing,

too "bright" beams.

Overall Goal of an Collider: Maximizing Luminosity!

- → Many particles (N, k)
- \rightarrow In a small transverse cross-section (ε , β)


Performance depends on the injectors:

- \rightarrow Production of large N and small ϵ
- → Preservation of these parameters until collisions.

Optimizing Luminosity

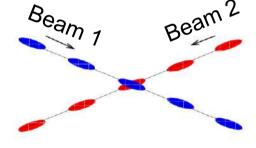
Bunch properties (N & ϵ) are defined in the injectors.

But what can be done in the Collider?

 f_{rev} , γ : defined by the design of the accelerator

N.... No. particles per bunch

k..... No. bunches

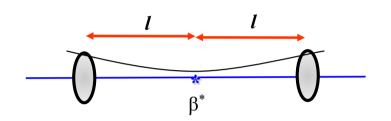

f..... revolution freq.

g..... rel. gamma

 β^* beta-function at IPs

 ε norm. trans. emit

F [0,1]: When colliding with many bunches, a crossing angle is needed to avoid unwanted collisions. However this reduces the beam overlap and therefore the luminosity. Keep as small as possible! (at LHC ~0.8) → Limited by beam-beam effects.



k: Optimize filling scheme and bunch spacing.

β*: Can be optimized by focusing!

Mini-Beta Insertions

Mini-beta insertion is a **symmetric drift space** with a **waist of the** β **-function** in the center of the insertion.

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*}$$

On each side of the symmetry point a quadrupole **doublet** or **triplet** is used to generate the waist.

They are not part of the regular lattice.

Collider experiments are located in mini-beta insertions: **smallest beam size possible** for the colliding beam to increase probability of collisions.

There is a price to pay: The smaller β^* , the larger β at the triplet.

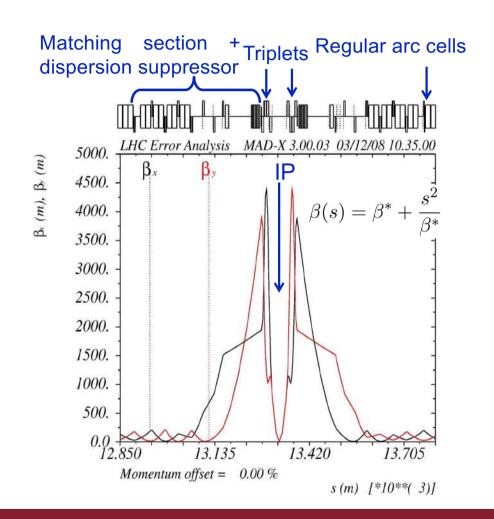
Example: Mini-Beta Insertion at LHC

Example of the LHC (design report values):

At the interaction point:

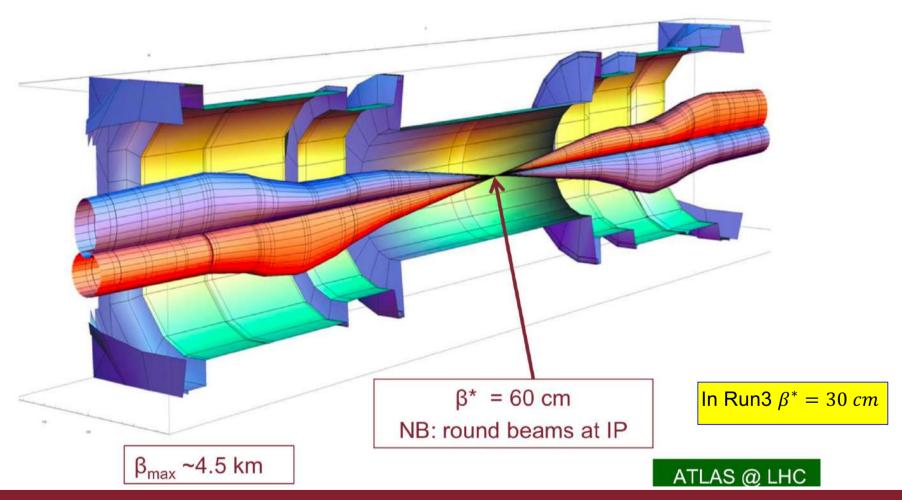
$$\beta^* = 0.55 \text{ m}$$
 $\sigma^* = 16 \mu \text{m}$

That's smaller than a hair's diameter!


At the triplet:

 β = 4500 m σ = 1.5 mm = 1500 μ m

Largest beams size in the lattice!


Limitations:

- Tighter tolerances on field errors
- Triplet aperture limits β^* together with crossing angle.

Luminosity: beta squeeze

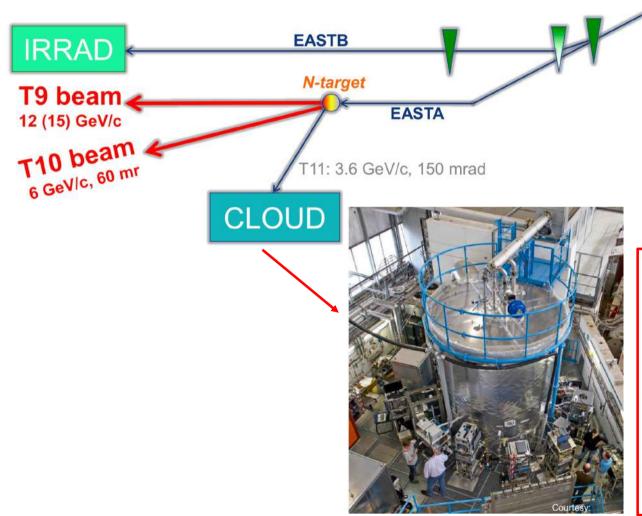
Image courtesy John Jowett

Let's open a parenthesis

(it is not part of the exam program)

Beam lines

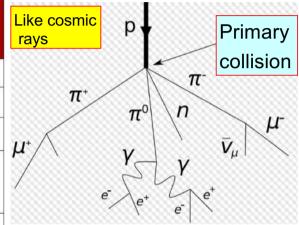
(It is not in the exam program but it will help us to better understand the problem with the antiprotons in the SppS collider)


Beam lines in the PS East area (today)

SynchroCiclotron (SC) building

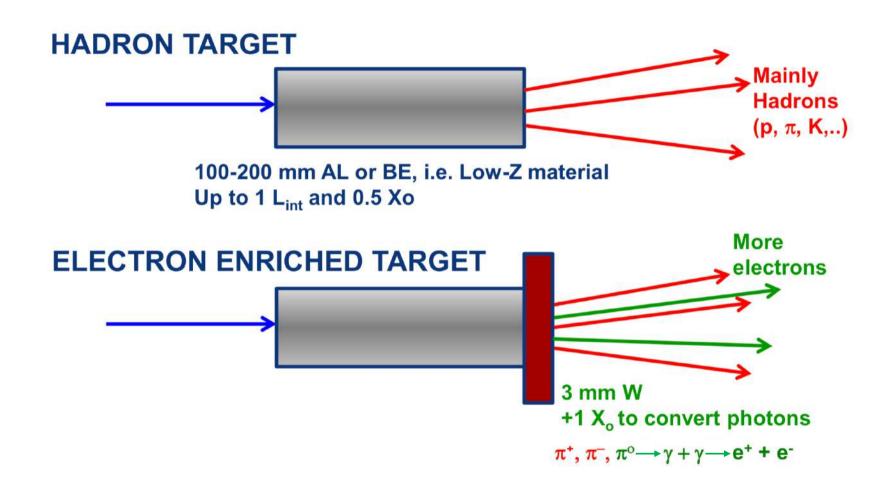
Z building (building 32)

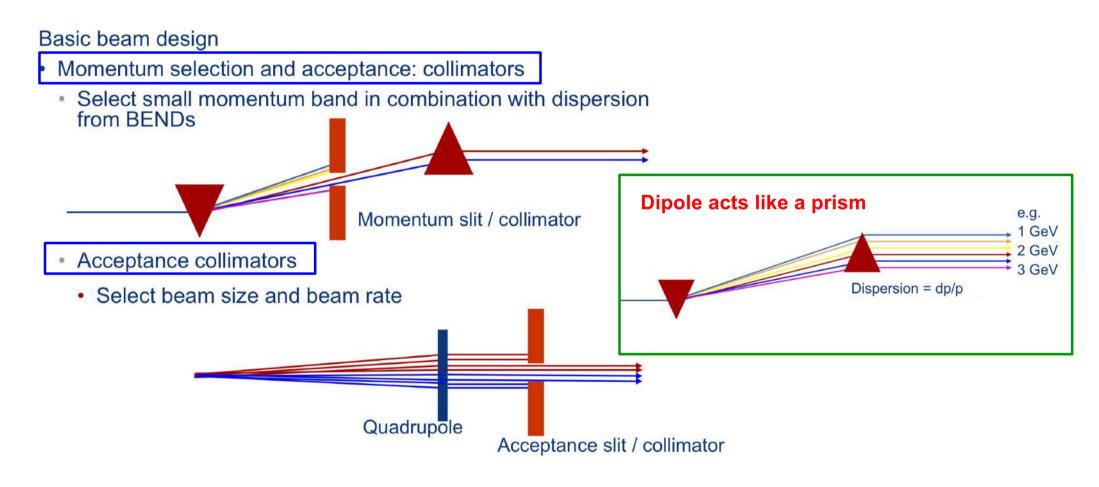
Beam lines in the PS East area (today)



- Studies the influence of cosmic rays to cloud formation
- Cloud expansion chamber set-up with extensive instrumentation (mass spectrometers, particle counters, etc.)
- Uses PS beam as first and only particle beam experiment to study atmospheric and climate science
- Spectacular results achieved (several publications in Nature and Science)

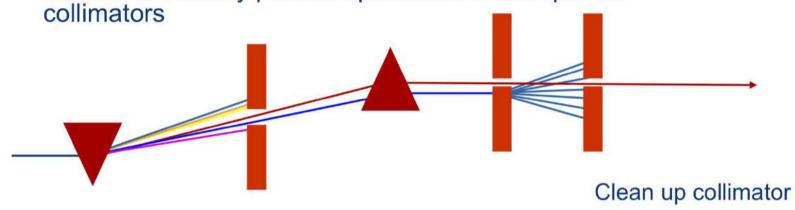
Targets and particle production


		Name		Q	Mass	Mean life (T)		ст	Mean decay distance	Decays	
					[MeV/c²]		[s]	[m]	[m/GeV/c]		
	Leptons	Electron	e	±e	0.511				stable		
	Lep	Muon	μ	±е	105.6	2.2×10 ⁻⁶		659.6	6.3×10 ³	$\mu^+ \rightarrow e^+ \overline{\nu}_e \nu_\mu \text{(100\%)}$	
Hadrons	Mesons	Pion	π	±е	139.6	2.6×10 ⁻⁸		7.8	56.4	$\pi^+ \longrightarrow \mu^+ V_{\mu}$ (100%)	
		Kaon	K	±e	493.6	1.23×10 ⁻⁸		3.7	8.38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			K°	0	497.6	K ^o s	8.9×10 ⁻¹¹	0.02	0.060	$K^{0}_{S} \longrightarrow \begin{array}{ccc} \pi^{0} & \pi^{0} & (30.7\%) \\ \pi^{+}\pi^{-} & (69.2\%) \end{array}$	
						K ^o L	5.12×10 ⁻⁸	15.34	34.4	$\begin{array}{cccc} K^0{}_L \longrightarrow & \pi^\pm e^\mp V_e & (40.5\%) \\ & \pi^\pm \mu^\mp V_\mu & (27.0\%) \\ & 3\pi^0 & (19.5\%) \\ & \pi^+ \pi^- \pi^0 & (12.5\%) \end{array}$	
	Baryons	Proton	P	±е	938		s				
		Lambda	٨	0	1115.6	2	.63×10 ⁻¹⁰	0.079	0.237*	$\Lambda^0 \rightarrow p \pi^-$ (63.9%)	
		Sigma Hyperons	Σ+	+e	1189.3	8.02×10 ⁻¹¹		0.024	0.068*	$\Sigma^+ \rightarrow p \ \pi^0$ (51.57%)	
			Σ-	-е	1197.4	1.48×10 ⁻¹⁰		0.044	0.125*	Σ- — n π- (99.84%)	


c au is computed for a 10 GeV/p momentum

^(*) for 10 GeV/c

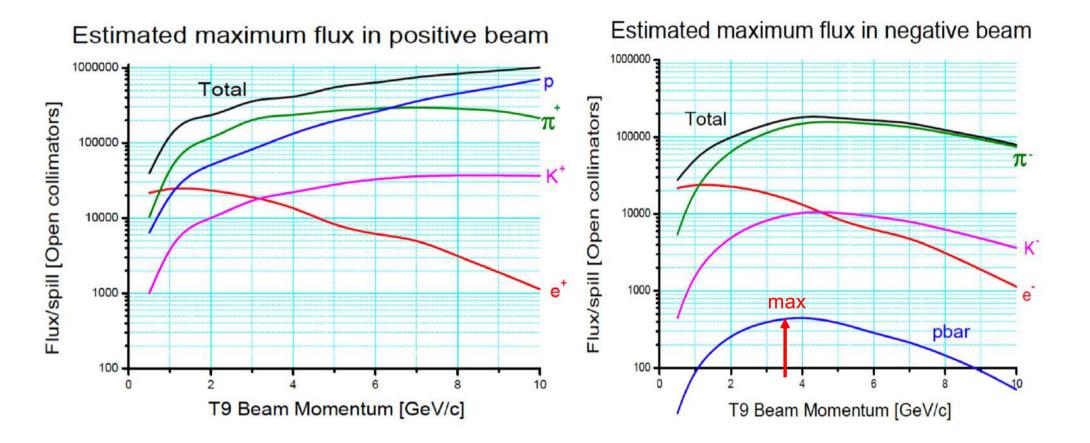
Targets and particle production

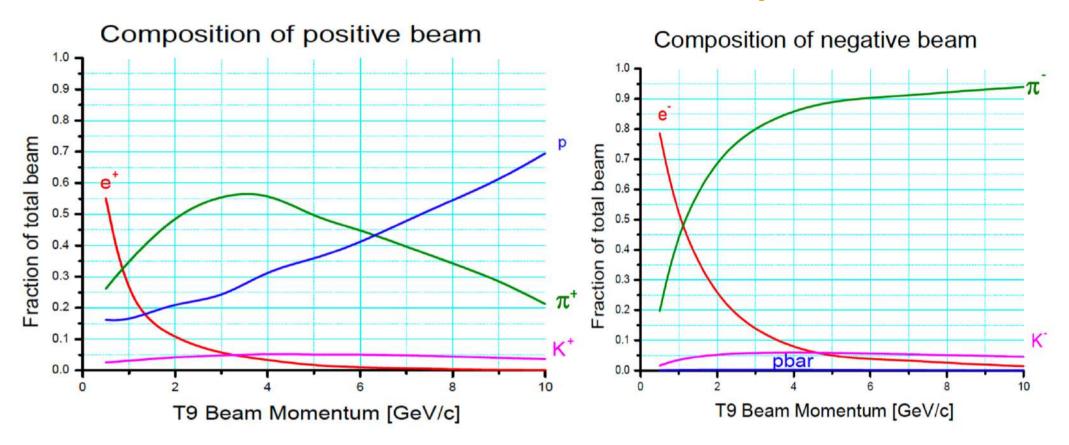


Secondary beam line - layout

Secondary beam line - layout

- Clean up collimators
 - Absorb secondary particles produced in acceptance


- TAX (Target attenuator)
 - Define initial acceptance of the beam line


Secondary beam line - layout

Basic beam design Selection of particle types Primary Secondary Absorber (few mm Pb) Target (Be) **Target** Primary beam Tertiary beam Secondary beam Tertiary beam 400 GeV/c p Mixed ($e+h+\mu$) Typically 10-80 GeV/c Pure hadrons Few 10¹² ppp Flux up to 10⁴ ppp, e.g. Typically ~100 GeV/c This is Flux $\sim 10^7$ ppp ~4 mm Pb: $1X_0$, <<1 λ_1 : 'pure' electrons the SPS ~40 cm Cu: 3 λ_1 , ~30 X_0 : hadrons Intensities ppp = particles per pulse < 10⁸ ppp x · 10¹² ppp

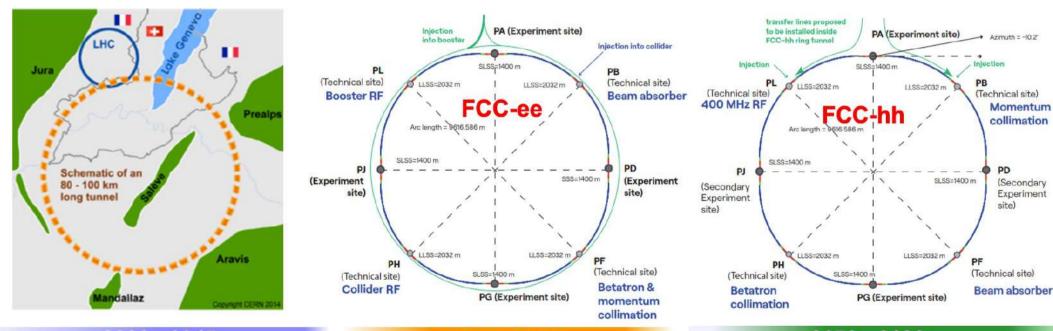
PS east area, T9 line: beam rates

PS east area, T9 line: beam composition

Very very few antiprotons

Let's open another parenthesis

(it is not part of the exam program)


What about the future?

A non exhaustive list of future projects

```
□ e<sup>+</sup>e<sup>-</sup> linear colliders (1-2-3 TeV range):
   >ILC (Internation Linear Collider ) [Japan]
   >CLIC (Cern Linear Collider) [CERN]
□ e<sup>+</sup>e<sup>-</sup> circular colliders (90 – 365 GeV range):
   >TLEP (Triple Large Electron Positron Collider) [CERN]
   >CEPC (Circular Electron Positron Collider) [China]
   FCC-ee (Future Circular Collider – ee option) [CERN]
☐ Hadron Collider (100 TeV)
   FCC-hh (Future Circular Collider – hh option) [CERN]
☐ Muon Collider (10 TeV?) (not yet technically feasible, but ... it could be the future)
   > IMCC (International Muon Collider Collaboration) [CERN]
```

FCC integrated program - scope

- stage 1: FCC-ee (Z, W, H, tt̄) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within few years of the end
 of HL-LHC exploitation

2020 - 2045

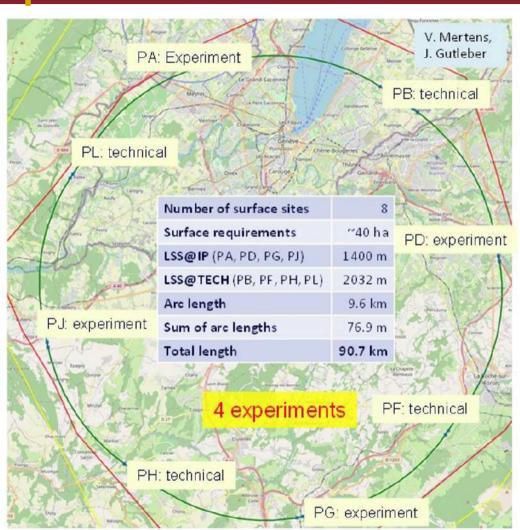
2046 - 2065

2070 - 2100

FCC timeline

Ambitious schedule taking into account:

- ☐ past experience in building colliders at CERN
- ☐ approval timeline: ESPP, Council decision
- ☐ that HL-LHC will run until 2041
- ☐ project preparatory phase with adequate resources immediately after Feasibility Study


FCC reference layout and implementation – 90.7 km

Layout chosen out of ~ 100 initial variants, based on several criterias:

- geology,
- surface constraints (land availability, urbanistic, etc.),
- environment, (protected zones),
- infrastructure (electricity, transport),
- machine performance

"Avoid-reduce-compensate" principle of EU and French regulations.

Overall lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold symmetry

FCC-ee collider

FCC-ee collider concept for maximizing luminosity

double ring collider

 many bunches, high current, like LHC and B factories, different from LEP

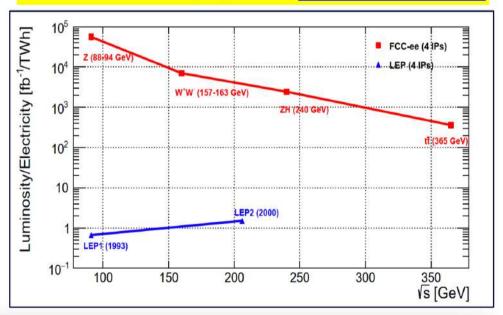
top-up injection

- · standard at modern light sources, like SLS
- used at recent e⁺e⁻ colliders, PEP-II (USA), KEKB (Japan), BEPCII (China)

crab-waist collision scheme

 successfully demonstrated at DAΦNE (Italy) and SuperKEKB (Japan)

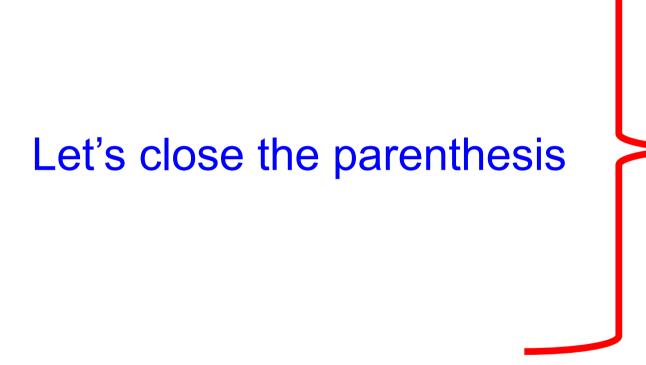
superconducting radiofrequency system


- Nb/Cu 400 MHz SC cavities pioneered at former CERN LEP
- bulk Nb 800 MHz SC cavities similar to ESS (Sweden), EuXFEL (Germany)
- · revolutionary highly efficient RF power sources
- new operation scheme for flexible energy switching & reduced complexity

Combining concepts from past and present lepton colliders results in a giant step in efficiency:

→10⁴ - 10⁵ x luminosity/energy of LEP

→ sustainable physics


(Lep-1 data sample taken in just 20 minutes)

FCC-ee main parameters and operation plan

parameter	Z	ww	H (ZH)	3	tť
Collision energy √s [GeV]	88, 91, 94	157, 163	240	340-350	365
synchrotron radiation/beam [MW]	50	50	50	50	50
beam current [mA]	1294	135	26.8	6.0	5.1
number bunches / beam	11200	1852	300	70	64
total RF voltage 400 / 800 MHz [GV]	0.08 / 0	1.0 / 0	2.1 / 0	2.1 / 7.4	2.1 / 9.2
luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	144	20	7.5	1.8	1.4
luminosity / year [ab ⁻¹]	68	9.6	3.6	0.83	0.67
run time (including lumi ramp-up) [years]	4	2	3	1	4
total integrated luminosity [ab-1]	205	19.2	10.8	0.4	2.7
total number of events	6 10 ¹² Z	2.4 10 ⁸ WW (incl. WW at higher √s)	2.2 10 ⁶ ZH 65k WW → H	2 10 ⁶ tt + 370k ZH + 92k WW → H	

FCC-ee will be an incredible machine for high precision measurements: m_W, m_t, m_H, Higgs and Z couplings, etc…

End of chapter 1