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q Cross-Section Measurements
q W mass measurement
q Sin2θW

q Gauge Boson Couplings
q Higgs Discovery in Run1
q Higgs Physics Dedicated Lecture
q Top quark 
q Example of Dark Matter Search at LHC
q Example of SuSy particles search at LHC
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Reminder: proton-proton collisions

Parton-parton collision
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Reminder: PDFs
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Measurement of the Total pp Cross Section

QCD bckg

QCD bckg

QCD bckg

QCD bckg
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QCD background
q High-pT events are dominated by QCD jet production

q Strong interaction à large cross-section
q Many diagrams contribute:  qq à qq ; qg à qg ; gg à gg; etc …
q They are called “QCD background “ 

q Most interesting processes are  rare processes:
Ø  involve heavy particles
Ø  have weak cross-sections (e.g. W cross-sections)
Ø  to extract signal over QCD jet background must look at decays to photons and leptons à pay a prize in branching ratio
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Example of Total Cross Sections for LHC main processes
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Drell-Yan Processes Cross Sections
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The di-lepton mass spectrum at LHC
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SM Cross Section Measurements

See later
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Jet Cross Section and Measurement of αS
Double differential cross section

anti-kT is a clusterisation algorithm
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αS Measurement at LHC
Ratio of Differential Jet Production Cross Sections

Average PT of the two leading jets
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One W event in the muon-neutrino channel

neutrino

The muon and the neutrino
are not back to back, therefore
the W has got a PT.
(actually, besides the muon, we
have also calorimetric activity 
in the detector [recoil]).



Claudio Luci – Collider  Particle Physics – Chapter 11 16

One W event in the electron-neutrino channel

neutrino
recoil

electronVery low momentum tracks

This is not a straight
track, it is slighlty
bent (pT=34 GeV)

η

ϕ
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ATLAS W mass: measurement strategy
2011 data set: ECM=7 TeV; ℒ=4.6 fb-1

The W has a transverse momentum

Due to the neutrino the W invariant mass can not be 
reconstructed and we are forced to consider other
variables sensitive to the W mass, like:

• The lepton transverse momentum:

• The W transverse mass:

where is the neutrino missing pT

and  uT is the recoil:                      (calorimeter cells)

!pT
ℓ

mT
W ≡ 2!pTℓ

!pT
miss 1− cosΔφ( )

!uT =
!
ET ,i

i
∑

!pT
miss = − !pT

ℓ + !uT( )

Statistics is not an issue; the challenge is the control of systematics (theoretical and experimental) to aim at 10 MeV error

Sample of 13.7 M events: 5 times larger than
combined (D0 + CDF) Tevatron sample

Event selection
Event sample
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How the W get a transverse momentum

W/Z

Feynman Assumption:
  infinite momentum frame.
Partons have only longitudinal
momentum, therefore the W/Z
does not have a transverse
momentum 

BUT … we have to take into account the QCD higher order corrections, namely the emission of gluons from the initial state. 

Now the W/Z has got a 
transverse momentum

Gluon jet

W/Z

W/Z

g
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W mass: effects of pT
W, PDF and pile up

§ HO corrections modify the spectrum:§ High Order corrections modify the spectrum:

§ At Leading Order the W is emitted along
the beam pipe:

!pT
W =0

!pT
W ≠0

Sensitive to pTW and PDFs Sensitive to pile up and UE

!pT
W ≠0

!pT
W ≠0

uT resolution

Example taken from an ATLAS note (2008) arxiv:0901.0512

uT resolution

UE: underlying events

https://arxiv.org/pdf/0901.0512.pdf


q W width and W transverse momentum effects. 
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A closer look at the two distributions

𝐼𝑆𝑅 ≡ 𝑝!"

W width and W transverse momentum smear the jacobian peak of the lepton
transverse momentum. The FSR has no significant impact.

The W transverse mass is only slightly affected by W width and ISR has
no significant effect, so it seems to be a more robust estimator of the W
mass, but… wait for the detector effect.
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A closer look at the two distributions
q W width and W transverse momentum effects.
q Detector effects:

Ø lepton calibration (~10-4); recoil resolution (~5-15 GeV); acceptance (~ 15%) 

Lepton transverse momentum is slightly affected by detector effect
since the lepton momentum is well measured and the recoil does not
enter in this measurement.

On the contrary, W transverse mass depends heavily on the recoil resolution.
So, the two measurements are really complementary.



qLepton momentum scales are measured using Z->ll and events and corrected in MC 
q Scale known better than ~2 x 10-4 (except for muons at highest rapidity) 
q Translates into an uncertainty on mW of approx. 8-9 MeV 
q Reconstruction, identification and trigger efficiency studied from Z sample, small effects for muon, of similar 

size as the energy scale for electrons. 
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Lepton energy/momentum scale calibration



q The reconstruction of the hadronic recoil depends strongly 
on the total ET in the event, three corrections are needed: 

1. Pileup distribution: data/MC equalisation. 
2. Correction of residual differences in the total ET distribution (activity 

mis-modeling) 
3. Calibration obtained by the pT balance in Z event 
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Recoil reconstruction

q Uncertainty on mW ~ 11 MeV for mT fits (smaller for pTl), 
dominated by the total ET correction. 



q Good data/MC agreement in Zà ll
q Test: mZ from fits to mT and pTl

q Result consistent with mZ within
experimental uncertainties. 
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Z cross-checks



Claudio Luci – Collider  Particle Physics – Chapter 11 25

W Mass Fits
q Fit from MC templates with different mass generated in steps of 1 - 10 MeV
q28 𝝌2 fits, separeted for lepton type (𝜇,e), W charge (+/-), rapidity interval (4 for 𝜇, 3 for e) and fit variable (mT, pT

l).
qMany other fits were performed as consistency checks by varying fit range, etc …

MW = 80370 ± 19 MeV

Combined result
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Comparison with previous results and SM

From PDG 2019

The ATLAS measurement has the same precision of
the previous most precise single measurement (CDF)
and is consistent with previous results.

Good agreement with SM EWK fits (Gfitter )

http://pdg.lbl.gov/2019/reviews/rpp2018-rev-w-mass.pdf
http://project-gfitter.web.cern.ch/project-gfitter/Standard_Model/index.html
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Prospects for MW measurements
Major source of uncertainties are pTW (from QCD and PDF) and recoil (from pile-up)

exploit dedicated low pile up runs (<μ>≃2) to get pTW from data

ATLAS-CMS High_Lumi perspective arxiv:1902.10229

ATLAS: ATL-PHYS-PUB-2017-021

Low-mu datasets: ATLAS/CMS 380/200 pb-1 at 13 TeV; 260/300 pb-1 5 TeV

Different set of PDF functions

qTotal uncertainty of ~11 MeV with 200 pb-1 of data at each energy ( ~one week of data taking)
qWith HL-LHC PDF and 1 fb-1 we could reach of precision of 6 MeV
qWith Future LHeC PDF set from DIS data we could aim at a precision of  4 MeV

CAVEAT: experimental systematics are not included, but they are of statistical nature and could be reduced

https://arxiv.org/abs/1902.10229
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-021/
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Let’s open a parenthesis
FERMILAB and the Tevatron
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Fermilab and the accelerator complex

; then 800 GeV (1984) and 900 GeV (1986)

•  Run II (2001 – 2011)
- beam energy: 980 GeV
- main ring in another tunnerl
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Timeline

1995
Top discovery

Main injector (warm magnets): Run I

Tevatron (superconducting magnets)
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Tevatron

Main Ring

TevatronWilson Hall

Fermilab site

Fermilab is placed in natural areas, which are designated as a
National Environmental Research Park. It is a federal area.
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Some of Fermilab inhabitants
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How to get to Fermilab !
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Tevatron experiments: CDF and D0
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Early Tevatron results
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Tevatron Run I (1992-1996): “top” result
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Tevatron Run II
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W boson mass: toward unprecedented precision
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W boson mass: achieving unprecedented precision
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W boson mass: one final surprise?

Wait a few slides 
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Let’s close the parenthesis
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…. but ….
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CDF II measurement of the W boson mass
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CDF II measurement of the W boson mass
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Muon momentum calibration



Claudio Luci – Collider  Particle Physics – Chapter 11 47

Electron momentum calibration
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Recoil momentum calibration
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Mass measurement distributions
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New CDF W boson mass measurement 
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CDF MW: comparison with the SM
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Comparison with SM
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CDF MW: comparison with the other experiments

Se sono rose fioriranno?What shall we conclude?
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CMS entered the game

CERN seminar: you can find the full talk on my web page

o Reserve Z data as an independent cross-check as much as possible
o Muon calibration from J/Ψ, validated with Z
o In-situ constraints on theory modeling from W itself, independent 

validation with Z.
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CMS W mass measurement: event selection
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CMS W mass: muon momentum calibration
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CMS W mass: result

Some theory contributions (like PDF) can
be evaluated with the data (in a global fit)
at the expense of increasing the statistical
error (from 2.4 MeV to 6.0 MeV)
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CMS W mass: result
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Sin2θW  and the Forward-Backward Asymmetry
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Measurement Strategy at LHC

ATLAS: 7.5 x 106 di-muons and 7.5 x 106 di-electrons
CMS: 8.2 x 106 di-muons and 4.9 x 106 di-electrons

PROBLEM: how do we distinguish a quark from an antiquark in the initial state?

Measurement is based on the cos(theta) dependence
of the Drell-Yan cross-section (using ee/μμ events)

dσ
dcosθ ∗ = A 1+ cos2θ ∗( )+Bcosθ ∗

At LO SM

a) The antiquark is picked up from the sea; b) at high rapidity is more likely that the Z follows the quark direction.

This measurement is best done in the high rapidity region of the detector

AFB= Forward-Backward asymmetry

2012 data set: ECM=8 TeV; ℒ ≈ 20 fb-1

… Moreover …
§ The measurement must be done

in the Z reference frame
§ Gluon emission from initial quark

leg will give a transvers momentum
to the Z



Claudio Luci – Collider  Particle Physics – Chapter 11 62

PDF effects on the AFB Measurement
q AFB is sensitive to PDF for two reasons:

Ø different couplings of u- and d-type quarks
Ø yll direction depends on the relative content of valence and sea quarks 

Using quark direction Using di-lepton direction AFB for different rapidity bin

u

d-type

average d

u-type

average

Sea quarks do
not contribute central bin

CMS

v f =T3
f −2Qf sin2θW

af =T3
f

PDF uncertainty is the major source of systematic error and require particular care in the sin2θW extraction

MC study on AFB
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CMS: AFB methodology (Eur. Phys. J. C 78: 701 )

q Measure AFB asymmetry in Collin-Soper frame in reconstructed mll, yll bins

qSin2θeff extracted from template fit to AFB in data using theoretical predictions
(Powheg v2 event generator using NNPDF3.0 PDFs) 

Collins and Soper reference
PhysRevD.16.2219

70	 ≤ 	M
ℓℓ
	 ≤ 	110	GeV 0.0	 ≤ 	 y 	 ≤ 	2.4	

• P are the directions of the two protons
in the Z rest frame. They are used to
define the z axis.

• l is the direction of the lepton and theta is
the angle with respect to the z axis

• Phi is the angle of the plane containing
the two leptons with respect to the xz plane

Using quantities measured in the Lab:

https://link.springer.com/article/10.1140/epjc/s10052-018-6148-7
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.2219
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ATLAS: Ai methodology (ATLAS-CONF-2018-037 )

AFB=
3
8A4

The differential cross section pp à Z à ℓℓ can be parametrized at EW LO and all order QCD as:

• 9 harmonic polynomials Pi(cosθCS,ΦCS) describe the lepton angular distribution in the Z rest frame (final state)
• 8 Ai(mℓℓ, pTℓℓ, yℓℓ) coefficients and total unpolarised cross section σU+L (mℓℓ, pTℓℓ, yℓℓ) describe the Z dynamics (initial state)
• Parity-violating A4 term is sensitive to sin2θeff

• Ai obtained from templates binned in (mℓℓ, yℓℓ)
(method here: J. High Energ. Phys. (2016) 2016: 159 )

Fold detector
acceptance

Fit Ai to the data
From A4 we get sin2θeff

A4

Sin2θeff

(box diagrams give little contribuion
near the Z pole)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-037/
https://link.springer.com/article/10.1007%2FJHEP08%282016%29159
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Sin2θeff : comparison among results

• ATLAS error is similar to the Tevatron one
• ATLAS and CMS errors are comparable in the central region

The measurement is
still dominated
by the ‘’old’’ LEP and 
SLD done at the Z-pole

CMS:

ATLAS:
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Z invisible width

𝜈

𝜈gluon

Looking for monojet
in the detector
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Motivations for the Measurement
qThe non-Abelian gauge nature of the Standard Model predicts, in addition to the trilinear

WWZ and WW𝛾 couplings (TGV), also Quartic Gauge Boson Couplings (QGC)

qTGC and QGC probe different aspects of the weak interactions. 
qTGC test the non-Abelian gauge structure of the Model; they have been tested at LEP: 

qQGC are accessible to LHC. They can be regarded as a window on the electroweak symmetry breaking mechanism and they represent a 
connection to the scalar sector of the theory.

qAnomalous couplings are handled by the Effective Field Theory approach:

dim-6 dim-8

LEFT = LSM 	+ 	
ci
Λ2Oii∑ 	+ 	

f j
Λ4j∑ Oj 		+!
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Production Cross-Sections

electroweak production
and multi-boson final states

We move now
in

this region, where

the cross sections

are very low
(~ fb)

Drell-Yan
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VBS: Feynman diagrams

VVjj QCD

Final state: 2 Vector Bosons + 2 jets

VVjj EWK VBS

VVjj EWK NON VBS Event topology

Several final states depending on the nature of the Vector Bosons

α S
2αEW

4
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VBS: same sign WW

A rare process, but very clean
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Phenomenology Highlights for VBS W±W±jj
q Two hadronics jets in forward and backward regions with high energy (tagging jets)
q Hadronics activity suppressed between the two jets (rapidity gap) due to absence of colour flow between interacting partons
q Boson pair more central than in non-EWK processed

The VBS process involving two same-sign W bosons has the largest signal-to-background ratio of all the VBS processes at LHC.

Di-jet rapidity difference: arxiv:1803.07943 Di-jet invariant mass: arxiv:1803.07943

The analysis can be cut flow based

EWK

QCDinterference

total

https://arxiv.org/abs/1803.07943
https://arxiv.org/abs/1803.07943
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CMS: VBS Same Sign WW (Phys Rev Lett. 120.081801)

2016 data: 35.9 fb-1 at 13 TeV

§ 2 same sign leptons (e or μ) with:
pT > 25/20 GeV and η < 2.5/2.4

§ Mjj > 500 GeV; |Δηjj > 2.5|

§ Significance: 5.5 σ (obs); 5.7 σ (exp.) à first observation of EWK W± W±jj
§ σfid(W± W±jj) = 3.83 ± 0.66 (stat) ± 0.35 (syst) fb (statistically dominated)
§ σLO = 4.25 ± 0.27 (scale + PDF) fb

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.081801
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CMS VBS WW: aQGC & limits on H±±

Anomalous gauge couplings Effective Field Theory

dim-6 dim-8

LEFT = LSM 	+ 	
ci
Λ2Oii∑ 	+ 	

f j
Λ4j∑ Oj 		+!

Limits on σ x BR for VBF production of H±±

handled by à

Focus on dim-8 operators for aQGC

They are all compatible with 0 (SM)

You can choose a 
particular model and
set limits on its parameters
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ATLAS: VBS Same Sign WW (arxiv:1906.03203 )

2016 data: 36.1 fb-1 at 13 TeV

§ 2 same sign leptons (e or μ) with:
pT > 27 GeV and η < 2.5

§ Mjj > 500 GeV; |Δηjj > 2.0

Sherpa v2.2: non-optimal setting of colour flow for the parton shower
à excess of central emissions

Comparison with MC predictions

Significance: 6.5 σ (obs); 4.4 σ (exp. from Sherpa) and 6.5 σ (exp. from Powheg+Pythia8)

https://arxiv.org/abs/1906.03203
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Representative tree level Feynman diagrams

Process never observed at previous colliders
Process sensitive to

TGC and QGC
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Summary on multi boson cross sections

SM is still solid … as usual

RUN 2
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The Higgs Boson

The first Higgs seen in the ATLAS Experiment
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H à ZZ* à μ+μ- μ+μ-
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SM Higgs Boson Production

ggF ~86%

VBF ~7%

VH ~5%

bbH/ttH ~1.5%

σtot(13 TeV) = ~2σtot(8 TeV)

Gluon Fusion

Vector Boson Fusion

Higgs-strahlung

ttbar associated production
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Higgs Boson decay modes

Most used decay modes are built
using isolated leptons (e,μ), photons
and missing energy

g
HWW

= gm
W

Higgs couplings (tree level)

They are proportional to the mass

g
HZZ

= g
m
Z

2cos θ
W

g
Hee

= g
m
e

2m
W
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Higgs properties: total width versus MH
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Higgs discovery: H à ZZ*à 4 leptons

CMS
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Higgs discovery: H àγγ 

CMS
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Higgs Boson Mass Measurement
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SM Higgs Boson

=124.3 GeV (fit)H m
Background Z, ZZ*

tBackground Z+jets, t
Syst.Unc.

ATLAS

H à γγH à ZZ* à 4l (e,μ)

Combined mass: mH=125.36±0.37 (stat)±0.18 (syst) GeV

Ø Precise measurement of mH from channels with the best mass resolution:
H→γγ and  H→ZZ*→4l (e,μ)  (but B.R.≈0.25% only)

Ø Dominant uncertainties:
photon energy scale (H→γγ),  statistics (H→4l) 
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Combined Higgs Boson Mass (Run1)

mH=125.09±0.24 GeV
!!
Δm
m

=0.2%
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Higgs Boson Spin Measurement
Ø Test SM (0+) against various models

§ Spin-2 Higgs
§ Spin-0 odd (BSM Higgs)
§ (Spin-1 ruled out by observation of Hà γγ decays)

Ø In all tested cases non-SM models rejected at >99% CL

(Multivariate analysis (MVA) based on angular variables)
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Comparison with SM expectations
Measure the ratio between observed rate and SM Higgs boson expectation

Results are SM like (all μs ~ 1) (μ on production modes have been
combined assuming SM BR for the decay)

!
µi =

σ i

σ i( )
SM

!

µ f =
BRf

BRf( )
SM

Production

Decay
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Higgs Boson Couplings (Run1)

Coupling strengths scale with mass just as predicted by the SM

These are not the latest 
measured couplings



q We will have a dedicated  lecture on this subject
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Higgs Latest Results
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The ”needs” for top quark

The existence of the Top Quark
is predicted by the SM and it is 
required to explain a number
of observations.

Top quark has been discovered 
at the Tevatron in 1995
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The Tevatron

RUN-2 Collider Upgrade

Main Ring and Collider in the same tunnel

RUN-1 Collider: 1.8 TeV
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Top (pair) production at the hadron colliders

At LHC the gluon fusion is the dominant channel



q top quark, being heavier than W, decays mostly 
 into a W and a b quark:
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Top quark decay

q Due to the very high mass, the top quark 
lifetime is very short: 𝝉𝒕𝒐𝒑 ≈ 𝟓 % 𝟏𝟎%𝟐𝟓 𝒔

q It is shorter than the typical hadronisation 
timescale: 𝝉𝒉𝒂𝒅𝒓 ≈ 𝟏𝟎%𝟐𝟑 𝒔 .

q Therefore top quark decays before hadronising 
(no topponium bound state); it offers a unique 
opportunity to study the properties of a “bare” 
quark which are transferred to its decays 
products, e.g. its information.  

q The final states dipends on the different W decays, but a 
b quark is always present:
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Top quark reconstruction

(2 b-jets)

Example: semi-leptonic topology
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Example of top-top signature
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Top Quark Discovery: February 24th 1995

Top reconstructed mass

CDF: the big cone is an electron from
a W decay.

D0: two muons (in blue, one inside 
a jet), 4 jets and the neutrino (pink)
identified as missing pT
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Top quark physics
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Top pair production cross section at LHC
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Single top production cross section
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Top quark mass measurement
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Top quark mass summary

Mjjj: top mass
Mjj: W mass
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Digression on the mass measurement
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Digression on the mass measurement
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Top quark mass … and the Universe
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Electroweak fits
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Evidence for Dark Matter

Comprises majority of mass in Galaxies
Missing mass on Galaxy Cluster scale Zwicky (1937)

Large halos around Galaxies
Rotation Curves Rubin+(1980)

Almost collisionless
Bullet Cluster Clowe+(2006)

Non-Baryonic Big-Bang Nucleosynthesis,
CMB Acoustic Oscillations
WMAP(2010),Planck(2015)
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Detecting Dark Matter
Assumption: non-gravitational interaction with ordinary matter

Contact interaction (EFT)
“works”  if the scale Λ >> Q2

(like Fermi theory).
otherwise we need a Simplified
Model with (at least) a Mediator
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Detecting Dark Matter at LHC

§ Require MET
§ Select for X
§ Veto other objects
§ Additional cuts to suppress background
§ Data-driven techniques to estimate 

background à invert vetoes

Results are interpreted in the Simplified Model 
framework to allow comparison with Direct Detection

Ø Mediator particle connects the SM quarks to DM particles:
§ Axial Vector, Pseudoscalar, etc…

Ø Model depends on four parameters:
§ DM mass, Mediator mass, SM-mediator coupling, 

DM-mediator coupling  

Non-interacting DM particles
à Missing transverse energy (MET)

X (jet, photon, etc..)

General analysis strategy

(similar to the single photon analysis at LEP)
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DM at ATLAS, one example: monojet

q Main backgrounds are EW processes
with intrinsic ETmiss , accompanied by jets:
Ø Z(νν)+jets: irreducible background
Ø W(lν)+jets: with unrecostructed or 

misidentified lepton

q Both estimated from data using leptonic Z 
or W control regions

q Other backgrounds:
Ø Non-collision background (data)
Ø Multijet background (data)
Ø Zàee, top, diboson (MC)

Backgrounds

Dominant uncertainties:
Statistical (3-10%), top (~3%), boson+jet modeling (2-4%)
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DM at ATLAS, one example: monojet
Results
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q SuSy is a generalization of the SM: symmetry between fermions and bosons
Ø Introduces sfermions and gauginos
à doubles particles content with respect to SM

Ø Extended Higgs sector: h, H, A, H+, H-

qPRO:
Ø Alleviates hierarchy problem (mh << mP)
Ø has a good Dark Matter candidate (neutralino)
Ø Allows for gauge coupling unification

q CONS:
ØOver 100 free parameters (although with some ad hoc assumptions we can reduce 

the number of parameters) 
Ø wide range of possible experimental signatures
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A brief introduction to SuperSymmetry

It was expected ‘’something’’ at the TeV scale
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Search for SuSy particles

q Lightest susy particle ( ) escapes detection à Missing Transverse Momentum and Missing Energy

q Different analysis strategies according to many different final states

A few diagrams with susy particles in the final state, with the decay chain

(R-parity
conservation)
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Example: gaugino and neutralino mass limits

No signal has been found (yet)!

From other susy searches many exclusions limits on the parameters phase space

Particles masses higher and higher; cross-sections lower and lower

now there is less and less room to “manouver”.

!!
mx10

!t

!t
!t

!t

exclusion plot
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ATLAS SuSy particles: Run2 results

You don’t have to
study this table 
by hearth of course
          J



End of chapter 11
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End


