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q Gauge theories
q Goldstone theorem
q Higgs mechanism
q Gauge bosons mass and Weinberg angle
q fermions mass
q W coupling and weak charged current
q Z coupling and weak neutral current
q Feynman vertex in the SM
q QCD Lagrangian
q Running coupling constants
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q Global gauge invariance:
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Gauge theories
Charge Q is conservedLY ® Y × Y( ) '( ) =e ( )iQx x x

q Let’s do a transformation where Λ is a function of the space-time point x:

L = L( ) x
L

- L

Y ® Y × Y

Y ® Y × Y

( )

( )

( ) '( ) =e ( )
( ) '( ) =e ( )

iq x

iq x

x x x
x x x

q Dirac Lagrangian of a free particle: µ
µg= Y ¶ Y - YYi mL

q This Lagrangian is not invariant for a local gauge transformation:

Ø mass term: 

Ø Kinetic term:

- L LYY = Y × Y = YY×( ) ( )( ) ( )e eiq x iq xm m x x m OK

Local gauge invariance is not preserved

( )µ µ µ

µ µ

L

LL × Y ×

¶ Y ® ¶ Y = ¶ × Y

L

=

= × Y ¶¶

( )

( ) ( )

' e ( )

e ( ) + e ( ) ( )iq

iq x

iq x xiqx x x

x

µ µ¶ Y ¹ ¶ Y '



q To preserve the local invariance we introduce the covariant derivative:

q Aμ is a vector field (the photon field) which, under the gauge transformation, becomes:

q The covariant derivative is invariant under a gauge transformation:
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Covariant derivative

(minimal substitution)µ µ µº ¶ + ( )  D iqA x

µ µ µ® - ¶ L A ( ) A ( ) ( )  x x x

µ µ µ
LY ® Y = Y( )' eiq xD D D

( ) ( )

( )

µ µ µ µ µ µ

µ

µ

µ µ µ

µ

µ

L

L

L

L

LL

L

¶

Y = ¶ + Y ® ¶ + - ¶ L

L × Y

¶ L × Y

Y

¶ Y

Y

¶ + Y Y

-×

( )

(

( )

( )

( )

( ) )

)

(

 ( ) (x)  ( ) ( ) (x)=

      = (x) +

      + iq ( ) (x) =

      =  ( ) (x) = 

 iq ( ) (x) 

( ) (

(

+

)

x) 

iq x

iq x

iq x

iq x

iq x

x

iq

q

x

i

D iqA x iqA x iq x e

e

A x e

e iqA x e D

x e

iq x

x

e

q Proof:



q This is invariant for a local gauge transformation:
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QED Lagrangian
µ

µg= Y Y - YYi D mL

e.m. interaction 
( )µ

µ µ

µ µ
µ

µ
µµ

g

g g

= Y ¶ + Y - YY =

= Y ¶ Y - YY - Y Y = -  free

i iqA m

i m q J AA L

L
µ µgæ ö= Y Y

ç ÷
è ø

:  
corrente e.m.
J q

q For completeness we have to add to the Lagrangian the kinetc term for Aμ:

µn
µn= -( )

1
4

fotonefree F FL µn µ n n µé ù= ¶ - ¶ë ûF A A

q If the photon were massive, we should add to the Lagrangian a mass term like this one:

which would violate the local gauge invariance.

µ
g µ
21

2
m A A

( ) ( )µ µ µ µ
µ µ µ µ® - ¶ L - ¶ L ¹A A A A A A



q Let’s take the following doublet:
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SU(2) symmetry and Yang-Mills field
Yæ ö

Y º ç ÷Yè ø

1

2

q We can write the Lagrangian as: µ
µg= Y ¶ Y - YYi mL ( )Y º Y Y1 2  

q Let the Lagrangian be invariant for a (infinitesimal) logal gauge transformation:

   
Ψ(x) → 1 − ig

!
Λ(x) ⋅

!
I⎡⎣ ⎤⎦Ψ(x)

   
!
I = I

1
 ,  I

2
 ,  I

3
 ( )    sono gli operatori di isospinIsospin operators eé ù =ë û 1 ,  I Ii j jk kI

Y Y1 2 e   sono due spinori di DiracDirac spinors

q Let’s introduce the covariant derivative:
   
 D

µ
≡ ∂

µ
+ ig
!
I ⋅
!

W
µ
(x)  (g=coupling constant)

q The vector fields Wμ transform as:
   
 
!
W

µ
(x) →

!
W

µ
(x) − ∂

µ

!
Λ(x) + g

!
Λ(x) ×

!
W

µ
(x)

q The kinetic term is:
    
L

free
(W) = − 1

4

!
W

µν
⋅
!

W µν

  

!
W

µν
= ∂

µ

!
W

ν
− ∂

ν

!
W

µ
− g
!

W
µ
×
!

W
ν

⎡
⎣

⎤
⎦

Gauge bosons self-couplingq Also here the W must be massless



q In the SM the particles are classified as:
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Glashow-Weinberg-Salam Model
Weak Isospin 

doublet

+3
1  Q=I
2
Y

n -

-

æ ö æ ö
ç ÷ ç ÷

è øè ø
   ;   e    ;     ;  u    ;   d'

'
e

R R R
LL

u
de

q Glashow introduced the weak hypercharge:
n

-

-

1 1
               0         -1    2 2

1 1
   -        -1         -12 2

   0        0        -1         -2 

1 1 2 1
            

3

 2 2 3 3
1 1 1 1

     -       -2 2 3 3

e  

e

     

   

  

       

 

 I     I     Q     

  

'  

Y 

   

e

L

R

L

L

u

d

u

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

2 4
0         0         3 3

1 2
0         0       -        -  3 3

      

'

 

 
R

Rd

Ä  SU(2) (1)L YUSymmetry Group of the Model

q The weak isospin doublet can be rotated in the space SU(2)L and the 
Lagrangian must stay unchanged.

q Moreover the Lagrangian must be invariant under U(1)Y transformation.

q Free Lagrangian of the Model: µ µ
µ µg g= Y ¶ Y + Y ¶ Yfree L L R Ri iL

q Infinitesimal gauge 
transformations:

   

              SU(2)
L

Ψ
L
(x) → 1 − ig

!
Λ(x) ⋅

!
I⎡⎣ ⎤⎦ΨL

(x)

Ψ
R
(x) → Ψ

R
(x)

  

                   U(1)
Y

Ψ
L
(x) → 1 − i g '

2
λ(x) ⋅Y

⎡

⎣
⎢

⎤

⎦
⎥ΨL

(x)

Ψ
R
(x) → 1 − i g '

2
λ(x) ⋅Y

⎡

⎣
⎢

⎤

⎦
⎥ΨR

(x)

L
!

vettore nello spazio
          dell'isospin deb
( )  

 
:

ole
x vector in the weak

isospin space



q Covariant derivative:
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GWS Lagrangian

   
 D

µ
≡ ∂

µ
+ ig
!
I ⋅
!

W
µ
(x) + i g '

2
Y ⋅B

µ
  

q gauge bosons must transform accordingly:
   

              SU(2)
L!

W
µ
→
!

W
µ
+ ∂

µ

!
Λ(x) + g

!
Λ(x) ×

!
W

µ

B
µ
→ B

µ    

    U(1)
Y!

W
µ
→
!

W
µ

B
µ
→ B

µ
+ ∂

µ
λ(x)

q kinetic term of the vector boson:
    
L

free
(
!

W , B) = − 1
4

!
W

µν
⋅
!

W µν − 1
4

B
µν
⋅Bµν

q The complete Lagrangian is:

    
L = Ψ

L
γ µ i ∂

µ
− g
!
I ⋅
!

W
µ
(x) −

g '
2

Y ⋅B
µ

⎡

⎣
⎢

⎤

⎦
⎥ΨL

+ Ψ
R
γ µ i ∂

µ
−

g '
2

Y ⋅B
µ

⎡

⎣
⎢

⎤

⎦
⎥ΨR

+ L
free

(
!

W,B)

N.B. we don’t have mass terms for the gauge bosons because they break the local gauge symmetry

YY YY = Y Y + Y YN.N.B. non c'e' m  perche' R L L RWe don’t have because



q Scalar field Lagrangian:
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𝜆𝜑4 Lagrangian

(spin 0 particle of mass  m)
( ) ( )µ

µj j j= ¶ ¶ - 2 21 1
2 2

mL
µ

µ j j¶ ¶ + =2 0    [eq. del moto]m [Eq. of motion]

q Let’s add “something” to the  Lagrangian: ( ) ( )µ
µj j µ j lj= ¶ ¶ - -2 2 41 1 1

2 2 4
L μ and λ are constant,

with μ2 < 0 ; λ > 0

N.B.  if µ2  < 0 , then - 1
2 µ

2ϕ2  can not be the mass term

q to note: the Lagrangian has reflection symmetry (𝜑à -𝜑):

to note: The calculation of scattering amplitudes with the technique of Feynman diagrams is a
perturbative method where the fields are treated as fluctuations around a state of minimum
energy: the ground state (vacuum, φ = 0).

In the present case φ = 0 is not the ground state.



qWe consider the Lagrangian as a kinetic term                               minus a potential energy term V equal to:
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Spontaneous breaking of a discrete symmetry
( ) ( )µ

µj j= ¶ ¶
1
2

T

j µ j lj= +2 2 41 1( )
2 4

V

q The minimum of the potential correspond to: ( )j µ lj
j
¶

= + =
¶

2 2 0V
j

µj
l

=

= ± -
2

0;

   ;   v=v

We choose the minimum φ = v as the 
ground state and introduce the field 𝜒(x)

j

V

+v-v

µ >2. .  0N B

j c= +( ) ( )x v x

( ) ( )µ
µc c l c l c lc l= ¶ ¶ - - - +2 2 3 4 41 1 1

2 4 4
v v vL c l µ= = -2 22 2m v

mass term it is a constant

N.B. One could also choose 
to develop φ (x) around -v

self-interaction

Although the Lagrangian has reflection symmetry, the ground state does not have this symmetry, and 
when we choose one we break the symmetry. This is the spontaneous symmetry breaking.



q Complex scalar field:
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Spontaneous breaking of a continuous symmetry
( )j j j= +1 2

1
2

i ( ) ( ) ( )µ
µj j µ j j l j j

* * *= ¶ ¶ - -
22L

( ) ( ) ( ) ( )µ µj j µ j j l j j= ¶ + ¶ - + - +
22 2 2 2 2 2 2

1 2 1 2 1 2
1 1 1 1
2 2 2 4

L

q The Lagrangian is invariant under U(1): aj j j® =' ie

( ) ( )j j µ j j l j j= + + +
22 2 2 2 2

1 2 1 2 1 2
1 1( , )
2 4

V

q The minimum condition occurs on the circle:

j j1 2( , )V

j1 

j2  
µj j
l

+ = -
2

2 2 2
1 2    ;   v=v

q We choose the following minimum around which do the perturbative expansion: j j= =1 2 ; 0v

j c
j c

= +

=
1 1

2 2

( ) ( )
( ) ( )
x v x
x x

( )j c c= + 1 2
1( ) ( )  + i ( )
2

x v x x



q After the choice of the minimum, the Lagrangian becomes:
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Goldstone theorem

( ) ( ) ( ) ( )

( ) ( )

µ µ
µ µc c l c c c

l c c c l c c c c l

é ù é ù= ¶ ¶ - + ¶ ¶ -ê ú ê úë û ë û
é ù- + + + + +ê úë û

2 2
1 1 1 2 2

3 2 4 4 2 2 4
1 1 2 1 2 1 2

1 1
2 2

1 1  2
4 4

v

v v

L
c

c

l µ= = - >

=
1

2

2 22 2 0

0

m v

m

q The third term represents self-interactions:

c1 c2

c1

c1

c1

c1

c2

c2

c1

c1

c1

c1

c2

c2

c2

c2 c1 c2

q The second term represents a scalar field with zero mass (Goldstone boson):

q You can "move" along the minimum without "wasting" energy.

Goldstone's theorem: the spontaneous breaking of a continuous 
symmetry generates one (or more) scalar bosons with zero mass.

j j1 2( , )V

j1 

j2  



q The Higgs mechanism (for short)  corresponds to the spontaneous symmetry breaking of a Lagrangian
which is invariant under a local gauge transformation.
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Brout-Englert-Higgs mechanism

Goldstone’s theorem   +  gauge bosons

q Let us consider the Lagrangian λφ4 with the covariant derivative:

( ) ( ) ( )22 1
4

iqA iqA F Fµ µ µn
µ µ µnj j µ j j l j j* * *= ¶ - ¶ + - - -L ( )j j j= +1 2

1
2

i

q which is invariant under the gauge transformation U (1): ( )( ) '( ) =e ( )iq xx x xj j jL® ×

q If μ2 <0 the field 𝝋 must be developed around a minimum different from 𝝋 = 0, for example:

j c
j c

= +

=
1 1

2 2

( ) ( )
( ) ( )
x v x
x x

( )1 2
1( )
2

x v ij c c= + +

Actually the mechanism could be also called Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism since
there were three independent papers in 1964. In what follows we will call it Higgs mechanism for short.



q The Lagrangian becomes:
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The Higgs mechanism

L = 1
2

∂
µ
χ

1( ) ∂µ χ
1( ) − λv2χ

1
2⎡

⎣
⎢

⎤

⎦
⎥ +

1
2

∂
µ
χ

2( ) ∂µ χ
2( )⎡

⎣
⎢

⎤

⎦
⎥ +

  + 1
2
q2v2A

µ
Aν − qvA

µ
∂µ χ

2
+ 1

4
F
µν
F µν +  interaction terms

q Let's analyze the Lagrangian:

-  scalar field χ
1
 with mass m

χ1
= 2λv2

-  a massless Goldstone boson χ
2
  

-  the gauge boson A
µ
 has got a mass term m

A
= qv

q However, the term                  , which seems to allow 
the gauge boson Aμ to transform into χ2 as it 
propagates, casts doubt on this interpretation:

2A  µ
µ c¶

2  c A  µ

 spin 1  spin 0

q Before spontaneous symmetry breaking:
Ø 2 real scalar fields φ1 and φ2,
Ø 2 helicity states of Aμ (spin 1, zero mass)

→ 4 degree of freedom .

q After spontaneous symmetry breaking:
Ø 2 real scalar fields φ1 and φ2,
Ø 3 helicity states of Aμ (spin 1,  with mass)

→ 5 degree of freedom .

IT DOESN’T WORK. 

To find the way out of this problem, it must be
remembered that it is always possible to do a local
gauge transformation

Degree of freedom of the Lagrangian



q Let's change the parameterization of 𝝋(x) using the "module" and the "phase": 
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Local gauge transformation

H(x)  and  θ(x) are real fields
q

j = +é ùë û
( )1( ) ( )

2

xi
vx v H x e

q We make a gauge transformation in order to eliminate the field θ(x): 

q q

j jL

L

=

Þ + = +é ù é ùë û ë û

( )

'( ) ( )
( )

'( ) ( )

'( ) ( )

iq x

x xi iiq xv v

x e x

v H x e e v H x e q q
=
= + × L

'( ) ( )
'( ) ( ) ( )

H x H x
x x qv x

q If we choose: qL = -
1( ) ( )x x
qv  θ '(x) = 0   (unitarity gauge)

q The Goldstone boson connects the various vacuum states that are degenerate in energy. With 
the gauge transformation we have "removed" this unwanted degree of freedom and the field φ 
has become real. 

With the new parameterization the field θ should not appear explicitly in the Lagrangian.

ϕ '(x) = 1

2
v + H(x)⎡⎣ ⎤⎦  



q In the new unitarity gauge we have:
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The Higgs boson

µ µ µqj = += +é ùë û ¶
1'( ) ( )  ;   1' ( ) ( ) (
2

)x v H x
qv

x A x A x

( ) n
µ µ

n µn
µ µn

n
µl

l l l

é ù= ¶ - + +ê úë û

+ - - - +

2 2 2 2 22 2

2 3 4 4

1 1
2 2

1 1 1 

1
2

 
4 4 4

H v H q A A H

q vA A H vH

q v A A

H F F v

L

q The Lagrangian does not depend on θ as we expected: the Goldstone boson has 
disappeared. It was "eaten" by the gauge boson which gained weight and gained mass:

qThe Lagrangian now describes a scalar boson H (Higgs) and a vector gauge boson Aμ, of mass respectively:

l= 22Hm v =Am qv

q The other terms of the Lagrangian describe the interactions between fields and self-interactions:

N.B. this is the Abelian Higgs mechanism, ie valid for a commutative symmetry group.

q Let’s check the degree of freedom of the transformed Lagragian:



qWe study the spontaneous symmetry breaking for the (non-Abelian) SU(2) X U(1) group. We start 
from the following Lagrangian and study SU(2):
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Higgs mechanism and Yang-Mills fields

j j j
j

j jj
+æ ö æ ö

= =ç ÷ ç ÷+è øè ø

1 2

3 4

1
2

a

b

i
i( ) ( ) ( )µ

µj j µ j j l j j
+ + += ¶ ¶ - -

22L

q The Lagrangian is invariant under a global transformation of SU(2):

   ϕ(x) →ϕ '(x) = ei
!
Λ⋅
!
Iϕ(x)

q In order for it to be so also for a local transformation, the covariant derivative must be introduced:

   
 D

µ
≡ ∂

µ
+ ig
!
I ⋅
!

W
µ
(x)  

   
ϕ(x) →ϕ '(x) = 1 + i

!
Λ(x) ⋅

!
I⎡⎣ ⎤⎦ϕ(x)

   
 
!
W

µ
(x) →

!
W

µ
(x) − ∂

µ

!
Λ(x) + g

!
Λ(x) ×

!
W

µ
(x)

q The Lagrangian can be written as:

    
L = ∂

µ
ϕ + ig

!
I ⋅
!

W
µ
ϕ( )+ ∂

µ
ϕ + ig

!
I ⋅
!

W
µ
ϕ( ) − µ2ϕ +ϕ − λ ϕ +ϕ( )2⎛

⎝⎜
⎞
⎠⎟
− 1

4

!
W

µν
⋅
!

W µν



q Let us consider the case μ2 <0 and λ> 0. The minimum of the potential is for:
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Higgs mechanism and Yang-Mills fields

    
L = ∂

µ
ϕ + ig

!
I ⋅
!

W
µ
ϕ( )+ ∂

µ
ϕ + ig

!
I ⋅
!

W
µ
ϕ( ) − µ2ϕ +ϕ − λ ϕ +ϕ( )2⎛

⎝⎜
⎞
⎠⎟
− 1

4

!
W

µν
⋅
!

W µν

( ) ( )

2 2

2
2 2 2 2
1 2 3 4

1 

=

2 2

 
2 2

a
a b a a b b

b

v

v

j
j j j j j j j j j j j j

j

µj j
l

+ * * *

+

*æ ö
= = + = + + + =ç ÷

è ø

= -

q We choose a minimum thus breaking the symmetry of the ground state: 2
1 2 4 30  ;   vj j j j= = = =

q The vacuum ground state we have chosen is: 0

01
2 v

j
æ ö

= ç ÷
è ø

q We make the perturbative expansion around this state, choosing an appropriate gauge in order to have:

01( )
( )2

x
v H x

j
æ ö

= ç ÷+è ø

N.B. in this way three scalar fields have been eliminated from the gauge transformation leaving only one field: H(x)



q We can rewrite the Lagrangian in terms of the Higgs field H:
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Higgs mechanism and Yang-Mills fields

L = 1
2

∂
µ
H( )2 − λv2H2⎡

⎣
⎢

⎤

⎦
⎥ +
g2v2

8
W

µ
1( )2 + W

µ
2( )2 + W

µ
3( )2⎡

⎣⎢
⎤
⎦⎥

  + higher order terms + kinetic term for the 
!
W

q This Lagrangian describes a mass scalar Higgs field: ( )l µ= = - =2 22 2 ????  GeVHm v

q and three massive gauge bosons of mass: =
1
2Wm gv

q The three gauge bosons ”swallowed" the three Goldstone fields, gaining mass.  

It is necessary to extend these concepts to the entire SU(2) X U(1) symmetry



q Electroweak Lagrangian invariant under gauge transformation:
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SU(2)L x U(1)Y and Higgs field

    
L = Ψ

L
γ µ i ∂

µ
− g
!
I ⋅
!

W
µ
(x) −

g '
2

Y ⋅B
µ

⎡

⎣
⎢

⎤

⎦
⎥ΨL

+ Ψ
R
γ µ i ∂

µ
−

g '
2

Y ⋅B
µ

⎡

⎣
⎢

⎤

⎦
⎥ΨR

+ L
free

(
!

W,B)

q We introduce four real scalar fields 𝝋i into the Lagrangian:

( ) ( ) ( )µ
µj j µ j j l j j

+ + += - -
22D DL

   
 D

µ
≡ ∂

µ
+ ig
!
I ⋅
!

W
µ
(x) + i g '

2
Y ⋅B

µ
  

q We are interested in the case where μ2 <0 and λ> 0.

q We follow Weinberg and arrange the four 𝝋i fields in a weak isospin doublet with weak hypercharge Y=1 

j jj
j

j jj

+ +æ ö æ ö
= =ç ÷ ç ÷+è øè ø

1 2
0

3 4

1
2

i
i

j

j

+

0

 ha carica elettrica Q=1
e  ha Q=0

q We choose the minimum of the potential such that                       and develop 𝝋(x) around this point. 

qWith an appropriate choice of the gauge we have:

0

01
2 v

j
æ ö

= ç ÷
è ø

01( )
( )2

x
v H x

j
æ ö

= ç ÷+è ø



q The Lagrangian becomes:
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SU(2)L x U(1)Y and Higgs field
L = 1

2
∂
µ
H( )2 − λv2H2⎡

⎣
⎢

⎤

⎦
⎥ +
g2v2

8
W

µ
1W1µ +W

µ
2W2µ⎡

⎣
⎤
⎦ +
v2

8
gW

µ
3 − g 'B

µ( ) gW3µ − g 'Bµ( )
  + higher order terms + kinetic terms for the 

!
W and B

q From here we see that the Wμ
1 and Wμ

2 fields have a “conventional” mass term 
while the Wμ

3 and Bμ fields are mixed.
=

1
2Wm gv

q We need to rotate these two fields so that the mass term is diagonal in the new two fields Aμ and Zμ: 

Mass matrix. It must be diagonalized. One of the 
two eigenvalues is zero.( )

µ

µ µ µ

æ öæ ö-
ç ÷ç ÷

-è ø è ø

322
3

2

' 
8 ' '

Wg ggv W B
gg g B

  

v2

8
g2 W

µ
3( )2 − 2gg 'W

µ
3Bµ + g '2 B

µ
2⎛

⎝⎜
⎞
⎠⎟
= v2

8
⋅ gW

µ
3 − g 'B

µ( )2 + 0 ⋅ g 'W
µ
3 + gB

µ( )2

( )µ µ
µ

+
=

+

3

2 2

'

'

g W gB
A

g g

( )µ µ
µ
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q We introduce the Weinberg angle  (i.e. Weak angle) defined as:
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Mass of bosons and Weinberg angle

q q q= = =
+ +2 2 2 2
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q Remembering that: q= cosW
W

Z

m
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W
= 1

2
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Z
= 1

2
v g2 + g '2

q The spontaneous breaking of the SU(2)L X U(1)Y symmetry gave rise to the following mass spectrum: 

The charge of the minimum we have chosen is zero, therefore the 
symmetry U(1)em is not broken and the photon remains massless 

1 Higgs boson,  m
H
= 2λv2 = −2µ2

2 charged boson W±,  m
W

= 1
2
gv

1 neutral boson Z,  m
Z
=

m
W

cosθ
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1 massless neutral boson (photon)
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q From the analysis of the neutrino-electron scattering we obtain the relationship:
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Gauge Bosons Mass
2

28 2W
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=

q Given that: =
1
2Wm gv ( )

1

2
v

G
=

q The vacuum expectation value depends only on the Fermi constant:
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q As we will see, this relation holds: g sin =e Wq×
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sinθW must be determined experimentally. The first measurement was made with the 
deep inelastic scattering of neutrinos in the 1970s.

N.B. The mass of the Higgs boson is not predicted by the Standard Model because it depends on the 
unknown parameter λ which appears in the potential V(φ).
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q The fermion mass term -mee cannot be explicitly put in the Lagrangian because it breaks the 
SU(2)LXU (1)Y symmetry (it mixes lefthanded and righthanded components):
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Fermions mass
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The Higgs boson has the right quantum numbers to couple to eL and eR.

q We add to the Lagrangian the ("Yukawa") term invariant under gauge transformations: 
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q After spontaneous symmetry breaking, the Lagrangian becomes:
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Fermion mass
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= mass term Coupling of the electron with the Higgs boson
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L N.B. The coupling constant is proportional to the mass of the fermion

q To generate the masses of the "up" quarks, a conjugated Higgs doublet is introduced: 
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q Electroweak Lagrangian invariant under gauge transformation:
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Complete Electroweak Lagrangian

    
L = Ψ

L
γ µ i ∂

µ
− g
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I ⋅
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W
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(
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q We add to the Lagrangian four real scalar fields φi to give mass to the gauge bosons through the 
mechanism of spontaneous symmetry breaking:

( ) ( ) ( )µ
µj j µ j j l j j

+ + += - -
22D DL

q We add to the Lagrangian an interaction between the fermions and the φ field to give mass to the 
fermions:

  
L = −g

e
Lϕe

R
+ e

R
ϕL⎡⎣ ⎤⎦     

L = −g
d
L

q
ϕd

R
− g

u
L

q
!ϕu

R
  + herm. con.

What is this φ field? I DON'T KNOW!
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q The (charged) W couples with particles of the doublet producing both of them (channel s) 
or inducing a transition in the other particle (channel t).
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W coupling

 + ee µn µ n- -® +

 en

e  -
 µ -

 µn

 W-

(s channel)

g g 
 (oppure ) W W+ -

e  -  en

 µn  µ -

 + e eµn µ n- -® +
(t channel)

g 

g 

q N.B. In the s channel the charge of the W boson is unique because the two vertices are temporally separated, while in 
the t channel they are not (the time order product automatically takes this into account), so you can have the exchange 
of a W+ or of W-. For the purposes of the calculation, the thing is perfectly analogous.

q The W is coupled to a charged current because there is a transition between the two states of the weak isospin 
doublet, the electric charge of which differs by one.

q The matrix element can be written as: ( ) ( )2 2
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q Charge-raising weak current of electrons and quarks:
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Weak Charged Current

51J  =u( ) ( )
2e u eµ µ gn g - 51J  =u(u) ( ')

2q u dµ µ gg -

q As we can see, the charge-raising weak current has the form:

 W+
 en

e  -
J  µ
+ 51J  =u( ) ( )

2e u eµ µ
gn g+ -

q The operator ½ (1-γ5) is the projector of the left-handed chiral state for particles and of the right-handed chiral 
state for antiparticles, which coincide with the states having negative and positive helicity for particles of zero mass:
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2 2 22 L R RL vu u u u v v gg gg- +

=º
- +
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q We also remind you that :
5 5 51 1 1  

2 2 2µ µ
g g gg g- + -

=



q The charge-raising weak current can also be written as:
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Weak Charged Current

5 51 1
2 2 L LJ e eµ µ µ
g gn g n g+ + -
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       ed e gli spinori.
N B
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q We now write the charge-lowering weak current:

we have thus obtained a purely vector current which only couples to the
left-handed components of the particles.

 W-

 en

e  -

J  µ
-

5 5 51 1 1J  =e e = 
2

e
2 2 L Lµµ µ µ

g g gg n gn ng- - + -
=

q We recall the electromagnetic current:

N.B. we denote the spinors by the name of the particle without distinguishing between u and v

( ). .J  =-e e ee m
R R L Le e eµ µ µ µg g g= - +

A vector current does not mix left-handed and right-handed states



q In a compact way, the two raising and lowering weak charged currents can be written as follows:
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Weak Charged Current
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q If we now require that the weak interactions be invariant under rotations in the space of the weak isospin, it is 
necessary to introduce a third current of isospin that conserves the charge:

3 31 1 1
2 2 2L L L L L LJ e eµ µ µ µc g s c n g n g= = -

3 1   0
   

0 1
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æ ö
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q This current cannot be directly associated with the weak neutral current (exchange of the Z) because Jμ
3 couples only 

to the left-handed components, while the Z also couples to the right-handed ones.

q To try to solve the problem Glashow proposed to deal simultaneously with electromagnetic interactions (which are 
described by a neutral current) and weak interactions.



qIn 1961 Glashow suggested the introduction of a weak hypercharge current:
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Weak Neutral Current

YJ Yµµ g= Y Y

where the weak hypercharge Y is connected to the third component of the weak isospin through a relationship 
similar to that of Gell-Mann Nishijima:

3
1
2

Q I Y= + 3 1
2

em YJ J Jµ µ µ= +

q The e.m. current is a combination of the weak hypercharge current and the third component of the weak 
isospin current.

q The weak hypercharge Y is the generator of the symmetry of the U(1)Y group, therefore the unification of the weak 
interactions and the electromagnetic interactions revealed the existence of a larger symmetry group:

(2) (1)L YSU UÄ



q The quantum numbers of the first family of particles are:
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Quantum numbers
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The hypercharge current can be written as:

n
-

-

1 1
               0         -1    2 2

1 1
   -        -1         -12 2

   0        0        -1         -2 

1 1 2 1
            

3

 2 2 3 3
1 1 1 1

     -       -2 2 3 3

e  

e

     

   

  

       

 

 I     I     Q     

  

'  

Y 

   

e

L

R

L

L

u

d

u

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

2 4
0         0         3 3

1 2
0         0       -        -  3 3

      

'

 

 
R

Rd

N.B. Members of the same doublet have the same hypercharge.
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q To preserve the gauge invariance of the SU(2)L x U(1)Y symmetry of the GWS model, it is necessary to introduce 3 
vector bosons W associated with the weak isospin and a vector boson B associated with hypercharge.
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The interaction in the Standard Model

qThe interaction has the form:
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q where:
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2
Wµ1 ∓ iWµ2( )

3W  descrivono bosoni carichi massivi W ,  mentre W  e B  sono campi neutriµ µ µ± ±



q In the GWS model the SU(2)L x U(1)Y symmetry is "broken" and the neutral fields mix to give rise to a massless 
combination (the photon) and a massive combination (the Z)
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The interaction in the Standard Model
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q In terms of the Aμ and Zμ fields, the neutral current interaction becomes:
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q The first term can be identified with electromagnetic interaction:
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q The two expressions are consistent if: q q= =sin 'cosW Wg g e =
+2 2

'
'
gge

g g



q The weak mixing angle directly depends on the coupling constants of SU(2)L x U(1)Y
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Weinberg Angle

q q= =sin 'cosW Wg g e
'tan W

g
g

q =

q The GWS model does not predict the value of θW to be measured.
q Of course, for the model to be valid, all electroweak phenomena must be described from a single angle θW.
q Many of the experimental tests of the model consisted of measuring the angle θW and comparing these values.

But … BE CAREFULL

q There are two definitions of the Weinberg angle:

accoppiamenti   sin c: ' osW Wg g eq q= =  m cmasse: osW Z Wm q=

q At the “tree” level (fundamental level) the two definitions coincide, but the radiative corrections modify the 
two expressions in a different way, therefore it is necessary to specify the renormalization scheme adopted. 
(This caused a few additional minor problems in Lep's time).



q Let's go back to the interaction term of the Z:
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Z interaction: neutral current
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q We have obtained a neutral current that couples with the Z:

. . 3 2sinN C em
WJ J Jµ µ µq= -

It couples to lefthanded states only

It couples to both lefthanded and righthanded (charged) states

q The Z couples to both left-handed and right-handed states. The coupling depends on the quantum numbers of 
the particles involved.

N.B. The Z couples only to lefthanded neutrinos



q The weak current can be written in terms of the axial and vector couplings:
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CV and CA determination
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qThe vectorial and axial couplings are given by the coefficients of the terms:

µ µg g g 5    e   f f f fu u u u

then we have: q= - =2
3 32 sin             e  f f f

V W Ac I Q c I

N.B. Neutral current is not of the V-A type, so the Z couples with both left-handed and right-handed particles.

q The coupling of Z with ff can be written:



q In the couplings of right-handed particles there is no axial term because these particles interact only 
through the electromagnetic interaction which is vectorial.
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CV and CA couplings
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the righthanded neutrino has both cV and cA equal to 
zero, so it does not appear in the table.

In the CV
f coupling we have sin2θW, which is the 

quantity that is measured experimentally

q Radiative corrections modify these couplings at the percent level. At Lep the Z couplings were measured 
with an error of this order of magnitude and it was therefore possible to verify the precision of the 
radiative corrections of the Standard Model.



q The W couples only to the left-handed states due to the factor (1-γ5)/2
q The Z couples to both left-handed and right-handed states because its coupling is of the type (cV-cAγ5)/2 
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Z coupling to lefthanded and righthanded states
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q Neutral current can also be expressed in terms of coupling with left-handed and right-handed states:
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q From here we see again that the neutrino has no right-handed coupling since its charge Q is zero.
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q From the comparison of Fermi's theory with the GWS model for charged currents (see muon decay) we find the relation:
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Relationship between GF and neutral current

en -e

µn
-µ

+W 2
1

2 2
CC

w

g gJ J
M

µ
µ
+æ ö æ ö

= ç ÷ ç ÷
è ø è ø

M2 2
wq M<<=

2

22 8 w

G g
M

q In a process with neutral current where q2 << MZ
2, we can write:
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q A parameter ρ is introduced which takes into account the relative intensity of weak neutral and charged currents, 
linked to the mass of the bosons:

In the SM, at the tree level (fundamental level), ρ = 1. Radiative corrections, or the 
presence of new physics, change this relationship.
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q Therefore, usually the amplitude of neutral currents is written as follows, where the Fermi constant is used:
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q Electromagnetic interactions:

Claudio Luci – Collider  Particle Physics – Chapter 3 42

Feynman rules for the verteces in the SM
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cV and cA determine the intensity of the coupling of the Z with the fermions.



q The QCD  is analogous to QED but with the U(1)em group replaced by SU(3)C 

q The main difference between QED and QCD comes from the fact that the former is Abelian while the 
latter is not: the generators of SU(3)C do not commute and this leads to self-interactions between the 
gluons. 

q The Lagrangian for free quarks may be written as: 
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QCD and the Standard Model

The indices j and k refer to colour (j,k:1,2,3)

q We proceed as we did for QED: we require the Lagrangian to be invariant under a local gauge 
transformation, we introduce a covariant derivative with 8 gauge bosons (gluons) and we add to the
Lagrangian the kinetic term for the gluons 

q Here are the diagrams of the quark-gluon interaction and gluons self interactions:

gs = strong coupling constant



q L= left-handed fermion doublet, R=right-handed singlet; ϕ the Higgs doublet and its conjugate; 
ψ= quark colour field. 
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Complete Lagrangian of the Standard Model

Gluon fields



q We collect together some relations between the parameters of the Standard Model SU(3)C x SU(2)L x U(1)Y: 
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Standard Model couplings

q These 'constants' depend on a characteristic momentum Q (or, equivalently, a distance 1/Q) of 
the interaction. 

q The values quoted for α, α1, and α2 are for Q of the order of a few GeV while for α3 we give the 
variation over the range 1-100 GeV. 



q In classical electromagnetism  the potential energy of an electron in the field generated by the same electron 
(self-energy) is equal to: 
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Running of αQED

pe
=

2

0

1
4

eU
r

The potential energy goes to infinity when r goes to zero.

q The self-interaction in the field theory is described as photons that are emitted and then are absorbed again by 
the same charge:

e- e-

e-

e+Vacuum
polarization

q The positron is “attracted” by the electron and it will  “screen” the charge of the electron in a such a way that its 
effective value diminishes.

q The more you go into the positron “cloud”  the lesser will be the shielding effect, so the electron effective 
charge increases.



q Let’s consider the interaction 
between two electrons:
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Running of αQED
e-

e-

e-

e-

The interaction is modified
by the vacuum polarization e+ e-

e-e-

e- e-

q A consequence of the vacuum polarization is that the charge of the electron becomes a function of the energy of 
the “probe” (that is of the other electron). The positrons “screen” the charge e-; the nearer we get to the charge
the lesser the “screening” is and the effective charge “increase”.
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Discovery of the asymptotic freedom in QCD (1973)

Actually it was found before
by ‘t Hooft and also by Parisi but
unfortunately (for them) they
didn’t publish it.



q Let’s consider the strong interaction  between two quarks:
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Running of αs

(like QED)

q

q q

qgluon
√αs

q

q q

qq

q
√αs √αs √αs

The production of virtual qq pair in the gluon propagator produces the same 
screening effect of the colour charge as in QED, hence the charge  should   
diminish at the increase of the distance (that is at low momentum transfer).

But since the gluons are “coloured” they exist
also diagrams like this one that modify the 
interaction and produce an effect of 
“antiscreening”

qq

qq

[ a fermions loop has opposite sign with respect to a bosons loop]



q The effect of the gluon self-interaction is such that:
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Running of αs

f = number of quarks with 4m2<Q2

Λ= scale (~200 MeV with f=4)

Q2~ Λ2 strong coupling perturbation approach
Q2>> Λ2 weak coupling perturbation approach

αs(Q2)

Asymptotic
freedom

Confinament barrier αs >1

1fm
distance

( )
( )

pa =
æ ö

- ç ÷Lè ø

2
2

2

12

33 2 log
s Q Qf

At high momentum transfer (that is at small  distances) αs is small and we can do QCD calculation with the 
perturbative method. At low momentum transfer the constant is big and we can not use the perturbative method.

The anti-screening effect is also present
in the SU(2)L since Z and W
have self-interactions too.



q The running of the coupling constants has been 
experimentally confirmed in the accessible energy 
range, but the more interesting thing here is that one 
can extrapolate the curves far beyond where we can 
test them experimentally. One sees then that these 
couplings form a triangle somewhere around 1016 GeV.
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Running coupling constants

q This plot shows the running of the gauge couplings within the 
MSSM. Since the particle content with Supersymmetry (SUSY) 
is different, the slope of the curves changes. Interestingly, the 
result is that the gauge couplings meet almost exactly (within the 
errorbars) in one point, somewhere around 1016 GeV, usually 
referred to as the GUT scale (which isn't too far off the Plank 
Scale (1019 GeV).



End of chapter 3
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End


