Collider Particle Physics
 - Chapter 3 -

 A brief overview of the Standard Model

 A brief overview of the Standard Model}

Claudio Luci
SAPIENZA
UNIVERSITÀ DI ROMA

Chapter Summary

\square Gauge theories
\square Goldstone theorem
Higgs mechanism
\square Gauge bosons mass and Weinberg angle
fermions mass
W coupling and weak charged current
\square Z coupling and weak neutral current
Feynman vertex in the SM
\square QCD Lagrangian
Running coupling constants

Gauge theories

Global gauge invariance: $\quad \Psi(x) \rightarrow \Psi^{\prime}(x)=e^{i Q \Lambda} \cdot \Psi(x)$
Let's do a transformation where $\boldsymbol{\Lambda}$ is a function of the space-time point \mathbf{x} :

$$
\Lambda=\Lambda(x) \quad \begin{aligned}
& \Psi(x) \rightarrow \Psi^{\prime}(x)=\mathrm{e}^{i q \Lambda(x)} \cdot \Psi(x) \\
& \bar{\Psi}(x) \rightarrow \bar{\Psi}^{\prime}(x)=\mathrm{e}^{-i q \Lambda(x)} \cdot \bar{\Psi}(x)
\end{aligned}
$$

\square Dirac Lagrangian of a free particle: $\mathrm{L}=i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi$
\square This Lagrangian is not invariant for a local gauge transformation:

Covariant derivative

To preserve the local invariance we introduce the covariant derivative:

$$
D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}(x) \quad \text { (minimal substitution) }
$$

$\square A_{\mu}$ is a vector field (the photon field) which, under the gauge transformation, becomes:

$$
\mathrm{A}_{\mu}(x) \rightarrow \mathrm{A}_{\mu}(x)-\partial_{\mu} \Lambda(x)
$$

\square The covariant derivative is invariant under a gauge transformation: $D_{\mu} \Psi \rightarrow D_{\mu} \Psi^{\prime}=e^{i q \Lambda(x)} D_{\mu} \Psi$

Proof:

$$
\begin{aligned}
D_{\mu} \Psi & =\left(\partial_{\mu}+i q A_{\mu}(x)\right) \Psi(x) \rightarrow\left(\partial_{\mu}+i q A_{\mu}(x)-i q \partial_{\mu} \Lambda(x)\right) e^{i q \Lambda(x)} \Psi(x)= \\
& =e^{i q \Lambda(x)} \partial_{\mu} \Psi(x)+i q \partial_{\mu} \Delta(x) \cdot e^{1 q \Lambda(x)} \Psi(x)+ \\
& +i q A_{\mu}(x) \cdot e^{i q \Lambda(x)} \Psi(x)-i q \partial_{\mu} \Lambda(x) e^{i q \pi(x)} \Psi(x)= \\
& =e^{i q \Lambda(x)}\left(\partial_{\mu}+i q A_{\mu}(x)\right) \Psi(x)=e^{i q \Lambda(x)} D_{\mu} \Psi(x)
\end{aligned}
$$

QED Lagrangian

$$
\mathrm{L}=i \bar{\Psi} \gamma^{\mu} D_{\mu} \Psi-m \bar{\Psi} \Psi
$$

\square This is invariant for a local gauge transformation:

\square For completeness we have to add to the Lagrangian the kinetc term for A_{μ} :

$$
L_{\text {free }}(\text { fotone })=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad\left[F_{\mu \nu}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}\right]
$$

\square If the photon were massive, we should add to the Lagrangian a mass term like this one:

$$
\frac{1}{2} m_{\gamma}^{2} A_{\mu} A^{\mu}
$$

which would violate the local gauge invariance.

$$
A_{\mu} A^{\mu} \rightarrow\left(A_{\mu}-\partial_{\mu} \Lambda\right)\left(A^{\mu}-\partial^{\mu} \Lambda\right) \neq A_{\mu} A^{\mu}
$$

SU(2) symmetry and Yang-Mills field

\square Let's take the following doublet:

$$
\Psi \equiv\binom{\Psi_{1}}{\Psi_{2}} \quad \Psi_{1} \text { e } \Psi_{2} \text { Dirac spinors }
$$

\square We can write the Lagrangian as:

$$
\mathrm{L}=i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi
$$

$$
\bar{\Psi} \equiv\left(\begin{array}{ll}
\bar{\Psi}_{1} & \bar{\Psi}_{2}
\end{array}\right)
$$

Let the Lagrangian be invariant for a (infinitesimal) logal gauge transformation:

$$
\Psi(x) \rightarrow[1-i g \vec{\Lambda}(x) \cdot \vec{I}] \Psi(x) \quad \vec{I}=\left(I_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right) \quad \text { Isospin operators }\left[I_{i}, \mathrm{I}_{j}\right]=\varepsilon_{1 j k} \mathrm{I}_{k}
$$

Let's introduce the covariant derivative:

$$
D_{\mu} \equiv \partial_{\mu}+i g \vec{I} \cdot \vec{W}_{\mu}(x)
$$

(g=coupling constant)
\square The vector fields W_{μ} transform as:

$$
\vec{W}_{\mu}(x) \rightarrow \vec{W}_{\mu}(x)-\partial_{\mu} \vec{\Lambda}(x)+g \vec{\Lambda}(x) \times \vec{W}_{\mu}(x)
$$

The kinetic term is: $L_{\text {free }}(W)=-\frac{1}{4} \vec{W}_{\mu \nu} \cdot \vec{W}^{\mu \nu}$

$$
\left[\vec{W}_{\mu v}=\partial_{\mu} \vec{W}_{v}-\partial_{v} \vec{W}_{\mu}-g \vec{W}_{\mu} \times \vec{W}_{v}\right]
$$

Glashow-Weinberg-Salam Model

In the SM the particles are classified as:
\square Glashow introduced the weak hypercharge:

$$
\mathrm{Q}=\mathrm{I}_{3}+\frac{1}{2} Y
$$

\square The weak isospin doublet can be rotated in the space $\operatorname{SU}(2)_{\mathrm{L}}$ and the Lagrangian must stay unchanged.
\square Moreover the Lagrangian must be invariant under $\mathrm{U}(1)_{\mathrm{Y}}$ transformation.

$$
\text { Symmetry Group of the Model } \Rightarrow \mathrm{SU}(2)_{L} \otimes U(1)_{Y}
$$

\square Free Lagrangian of the Model:

$$
\mathrm{L}_{\text {free }}=i \bar{\Psi}_{L} \gamma^{\mu} \partial_{\mu} \Psi_{L}+i \bar{\Psi}_{R} \gamma^{\mu} \partial_{\mu} \Psi_{R}
$$

\square Infinitesimal gauge transformations:

$$
\begin{gathered}
\operatorname{SU}(2)_{L} \\
\Psi_{L}(x) \rightarrow[1-i g \tilde{\Lambda}(x) \cdot \vec{I}] \Psi_{L}(x) \\
\Psi_{R}(x) \rightarrow \Psi_{R}(x)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{U}(1)_{Y} \\
\Psi_{L}(x) \rightarrow\left[1-i \frac{g^{\prime}}{2} \lambda(x) \cdot Y\right] \Psi_{L}(x) \\
\Psi_{R}(x) \rightarrow\left[1-i \frac{g^{\prime}}{2} \lambda(x) \cdot Y\right] \Psi_{R}(x)
\end{gathered}
$$

$\vec{\Lambda}(x):$ vector in the weak isospin space

GWS Lagrangian

\square Covariant derivative:

$$
D_{\mu} \equiv \partial_{\mu}+i g \vec{I} \cdot \vec{W}_{\mu}(x)+i \frac{g^{\prime}}{2} \mathrm{Y} \cdot \mathrm{~B}_{\mu}
$$

\square gauge bosons must transform accordingly:

$$
\begin{aligned}
& \quad \operatorname{SU}(2)_{L} \\
& \vec{W}_{\mu} \rightarrow \vec{W}_{\mu}+\partial_{\mu} \vec{\Lambda}(x)+g \vec{\Lambda}(x) \times \vec{W}_{\mu} \\
& B_{\mu} \rightarrow B_{\mu}
\end{aligned}
$$

$$
\begin{array}{|l}
\quad \mathrm{U}(1)_{Y} \\
\vec{W}_{\mu} \rightarrow \vec{W}_{\mu} \\
B_{\mu} \rightarrow B_{\mu}+\partial_{\mu} \lambda(x)
\end{array}
$$

\square kinetic term of the vector boson: $\quad L_{\text {free }}(\vec{W}, B)=-\frac{1}{4} \vec{W}_{\mu \nu} \cdot \vec{W}^{\mu \nu}-\frac{1}{4} B_{\mu \nu} \cdot B^{\mu \nu}$

The complete Lagrangian is:

$$
L=\bar{\Psi}_{L} \gamma^{\mu}\left[i \partial_{\mu}-g \vec{I} \cdot \vec{W}_{\mu}(x)-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{L}+\bar{\Psi}_{R} \gamma^{\mu}\left[i \partial_{\mu}-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{R}+L_{\text {free }}(\vec{W}, B)
$$

N.B. we don't have mass terms for the gauge bosons because they break the local gauge symmetry

$$
\text { We don't have } \mathrm{m} \bar{\Psi} \Psi \text { because } \bar{\Psi} \Psi=\bar{\Psi}_{R} \Psi_{L}+\bar{\Psi}_{L} \Psi_{R}
$$

$\lambda \varphi^{4}$ Lagrangian

Scalar field Lagrangian:

$$
\begin{array}{r}
\mathrm{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\frac{1}{2} m^{2} \varphi^{2} \Rightarrow \partial_{\mu} \partial^{\mu} \varphi+m^{2} \varphi=0 \quad \text { [Eq. of motion] } \\
\text { (spin 0 particle of mass } m \text {) }
\end{array}
$$

\square Let's add "something" to the Lagrangian: $L=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\frac{1}{2} \mu^{2} \varphi^{2}-\frac{1}{4} \lambda \varphi^{4} \begin{aligned} & \mu \text { and } \lambda \text { are constant, } \\ & \text { with } \mu^{2}<0 ; \lambda>0\end{aligned}$
N.B. if $\mu^{2}<0$, then $-\frac{1}{2} \mu^{2} \varphi^{2}$ can not be the mass term
\square to note: the Lagrangian has reflection symmetry $(\varphi \rightarrow-\varphi)$:
to note: The calculation of scattering amplitudes with the technique of Feynman diagrams is a perturbative method where the fields are treated as fluctuations around a state of minimum energy: the ground state (vacuum, $\varphi=0$).

In the present case $\varphi=0$ is not the ground state.

Spontaneous breaking of a discrete symmetry

-We consider the Lagrangian as a kinetic term $T=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)$ minus a potential energy term \mathbf{V} equal to:

$$
V(\varphi)=\frac{1}{2} \mu^{2} \varphi^{2}+\frac{1}{4} \lambda \varphi^{4}
$$

\square The minimum of the potential correspond to:

$$
\frac{\partial V}{\partial \varphi}=\varphi\left(\mu^{2}+\lambda \varphi^{2}\right)=0 \longrightarrow \begin{aligned}
& \varphi=0 ; \\
& \varphi= \pm V \quad ; \quad v=\sqrt{-\frac{\mu^{2}}{\lambda}}
\end{aligned}
$$

We choose the minimum $\varphi=v$ as the ground state and introduce the field $\chi(x)$

$$
\varphi(x)=v+\chi(x)
$$

Although the Lagrangian has reflection symmetry, the ground state does not have this symmetry, and when we choose one we break the symmetry. This is the spontaneous symmetry breaking.

Spontaneous breaking of a continuous symmetry

Complex scalar field: $\quad \varphi=\frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right)$

$$
\mathrm{L}=\left(\partial_{\mu} \varphi\right)^{*}\left(\partial^{\mu} \varphi\right)-\mu^{2} \varphi^{*} \varphi-\lambda\left(\varphi^{*} \varphi\right)^{2}
$$

$$
\Longrightarrow \quad \mathrm{L}=\frac{1}{2}\left(\partial_{\mu} \varphi_{1}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \varphi_{2}\right)^{2}-\frac{1}{2} \mu^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\frac{1}{4} \lambda\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2} \quad V\left(\varphi_{1}, \varphi_{2}\right)=\frac{1}{2} \mu^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)+\frac{1}{4} \lambda\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2}
$$

The Lagrangian is invariant under $\mathbf{U (1) :} \quad \varphi \rightarrow \varphi^{\prime}=e^{i \alpha} \varphi$
\square The minimum condition occurs on the circle: $\varphi_{1}^{2}+\varphi_{2}^{2}=v^{2} ; \quad v=\sqrt{-\frac{\mu^{2}}{\lambda}}$

\square We choose the following minimum around which do the perturbative expansion: $\varphi_{1}=V ; \varphi_{2}=0$

$$
\begin{aligned}
& \varphi_{1}(x)=v+\chi_{1}(x) \\
& \varphi_{2}(x)=\chi_{2}(x)
\end{aligned} \quad \varphi(x)=\frac{1}{\sqrt{2}}\left(v+\chi_{1}(x)+\mathrm{i} \chi_{2}(x)\right)
$$

Goldstone theorem

After the choice of the minimum, the Lagrangian becomes:

$$
\begin{aligned}
\mathrm{L} & =\left[\frac{1}{2}\left(\partial_{\mu} \chi_{1}\right)\left(\partial^{\mu} \chi_{1}\right)-\lambda v^{2} \chi_{1}^{2}\right]+\left[\frac{1}{2}\left(\partial_{\mu} \chi_{2}\right)\left(\partial^{\mu} \chi_{2}\right)\right]- \\
& -\left[\lambda v\left(\chi_{1}^{3}+\chi_{1} \chi_{2}^{2}\right)+\frac{1}{4} \lambda\left(\chi_{1}^{4}+\chi_{2}^{4}+2 \chi_{1}^{2} \chi_{2}^{2}\right)\right]+\frac{1}{4} \lambda v^{4}
\end{aligned}
$$

$$
\begin{aligned}
& m_{\chi_{1}}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}}>0 \\
& m_{\chi_{2}}=0
\end{aligned}
$$

\square The third term represents self-interactions:

\square The second term represents a scalar field with zero mass (Goldstone boson):
\square You can "move" along the minimum without "wasting" energy.

Goldstone's theorem: the spontaneous breaking of a continuous symmetry generates one (or more) scalar bosons with zero mass.

Brout-Englert-Higgs mechanism

The Higgs mechanism (for short) corresponds to the spontaneous symmetry breaking of a Lagrangian which is invariant under a local gauge transformation.

Goldstone's theorem + gauge bosons

Let us consider the Lagrangian $\boldsymbol{\lambda} \phi^{4}$ with the covariant derivative:

$$
\angle=\left(\partial_{\mu}-i q A_{\mu}\right) \varphi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \varphi-\mu^{2} \varphi^{*} \varphi-\lambda\left(\varphi^{*} \varphi\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \varphi=\frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right)
$$

\square which is invariant under the gauge transformation $\mathrm{U}(1): \varphi(x) \rightarrow \varphi^{\prime}(x)=\mathrm{e}^{i q \Lambda(x)} \cdot \varphi(x)$
\square If $\mu^{2}<0$ the field φ must be developed around a minimum different from $\varphi=0$, for example:

$$
\begin{aligned}
& \varphi_{1}(x)=v+\chi_{1}(x) \\
& \varphi_{2}(x)=\chi_{2}(x)
\end{aligned} \square \varphi(x)=\frac{1}{\sqrt{2}}\left(v+\chi_{1}+i \chi_{2}\right)
$$

Actually the mechanism could be also called Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism since there were three independent papers in 1964. In what follows we will call it Higgs mechanism for short.

The Higgs mechanism

The Lagrangian becomes:
$\begin{aligned} L= & {\left[\frac{1}{2}\left(\partial_{\mu} \chi_{1}\right)\left(\partial^{\mu} \chi_{1}\right)-\lambda v^{2} \chi_{1}^{2}\right]+\left[\frac{1}{2}\left(\partial_{\mu} \chi_{2}\right)\left(\partial^{\mu} \chi_{2}\right)\right]+} \\ & +\frac{1}{2} q^{2} v^{2} A_{\mu} A^{v}-q v A_{\mu} \partial^{\mu} \chi_{2}+\frac{1}{4} F_{\mu v} F^{\mu v}+\text { interaction terms }\end{aligned}$
\square Let's analyze the Lagrangian:

- scalar field χ_{1} with mass $m_{\chi_{1}}=\sqrt{2 \lambda v^{2}}$
- a massless Goldstone boson χ_{2}
- the gauge boson A_{μ} has got a mass term $\mathrm{m}_{A}=q v$
\square However, the term $A_{\mu} \partial^{\mu} \chi_{2}$, which seems to allow the gauge boson A_{μ} to transform into χ_{2} as it propagates, casts doubt on this interpretation:

Degree of freedom of the Lagrangian

- Before spontaneous symmetry breaking:
> 2 real scalar fields $\phi 1$ and $\$ 2$,
>2 helicity states of $A \mu$ (spin 1 , zero mass)
$\rightarrow 4$ degree of freedom .
- After spontaneous symmetry breaking:
> 2 real scalar fields $\phi 1$ and $\$ 2$,
>3 helicity states of $A \mu$ (spin 1 , with mass)
$\rightarrow 5$ degree of freedom .

IT DOESN'T WORK.

Local gauge transformation

\square Let's change the parameterization of $\varphi(x)$ using the "module" and the "phase":

$$
\varphi(x)=\frac{1}{\sqrt{2}}[v+H(x)] e^{i \frac{\theta(x)}{v}} \quad H(x) \text { and } \theta(x) \text { are real fields }
$$

\square We make a gauge transformation in order to eliminate the field $\boldsymbol{\theta}(\mathrm{x})$:

- If we choose: $\Lambda(x)=-\frac{1}{q v} \theta(x) \quad \theta^{\prime}(x)=0 \quad$ (unitarity gauge) $\varphi^{\prime}(x)=\frac{1}{\sqrt{2}}[v+H(x)]$
\square The Goldstone boson connects the various vacuum states that are degenerate in energy. With the gauge transformation we have "removed" this unwanted degree of freedom and the field ϕ has become real.

With the new parameterization the field θ should not appear explicitly in the Lagrangian.

The Higgs boson

Let's check the degree of freedom of the transformed Lagragian:

In the new unitarity gauge we have:

$$
\varphi^{\prime}(x)=\frac{1}{\sqrt{2}}[v+H(x)] ; \quad A_{\mu}^{\prime}(x)=A_{\mu}(x)+\frac{1}{q v} \partial_{\mu} \theta(x)
$$

$$
\begin{aligned}
\mathrm{L} & =\left[\frac{1}{2}\left(\partial_{\mu} H\right)^{2}-\lambda v^{2} H^{2}\right]+\frac{1}{2} q^{2} v^{2} A_{\mu} A^{\nu}+\frac{1}{2} q^{2} A_{\mu} A^{\nu} H^{2} \\
& +q^{2} v A_{\mu} A^{\nu} H-\lambda v H^{3}-\frac{1}{4} \lambda H^{4}-\frac{1}{4} F_{\mu v} F^{\mu v}+\frac{1}{4} \lambda v^{4}
\end{aligned}
$$

\square The Lagrangian does not depend on θ as we expected: the Goldstone boson has disappeared. It was "eaten" by the gauge boson which gained weight and gained mass:
\square The Lagrangian now describes a scalar boson H (Higgs) and a vector gauge boson A_{μ}, of mass respectively:

$$
m_{H}=\sqrt{2 \lambda v^{2}} \quad m_{A}=q v
$$

The other terms of the Lagrangian describe the interactions between fields and self-interactions:
N.B. this is the Abelian Higgs mechanism, ie valid for a commutative symmetry group.

Higgs mechanism and Yang-Mills fields

\square We study the spontaneous symmetry breaking for the (non-Abelian) $\operatorname{SU}(2) X U(1)$ group. We start from the following Lagrangian and study SU(2):

$$
\mathrm{L}=\left(\partial_{\mu} \varphi\right)^{+}\left(\partial^{\mu} \varphi\right)-\mu^{2} \varphi^{+} \varphi-\lambda\left(\varphi^{+} \varphi\right)^{2} \quad \varphi=\binom{\varphi_{a}}{\varphi_{b}}=\frac{1}{\sqrt{2}}\binom{\varphi_{1}+i \varphi_{2}}{\varphi_{3}+i \varphi_{4}}
$$

The Lagrangian is invariant under a global transformation of $\operatorname{SU}(2)$:

$$
\varphi(x) \rightarrow \varphi^{\prime}(x)=e^{i \bar{\Lambda} \cdot \vec{I}} \varphi(x)
$$

\square In order for it to be so also for a local transformation, the covariant derivative must be introduced:

$$
\begin{gathered}
\varphi(x) \rightarrow \varphi^{\prime}(x)=[1+i \vec{\Lambda}(x) \cdot \vec{I}] \varphi(x) \\
D_{\mu} \equiv \partial_{\mu}+i g \vec{I} \cdot \vec{W}_{\mu}(x) \quad \overrightarrow{\mathrm{W}}_{\mu}(x) \rightarrow \vec{W}_{\mu}(x)-\partial_{\mu} \vec{\Lambda}(x)+\mathrm{g} \vec{\Lambda}(x) \times \vec{W}_{\mu}(x)
\end{gathered}
$$

The Lagrangian can be written as:

$$
L=\left(\partial_{\mu} \varphi+i g \vec{I} \cdot \vec{W}_{\mu} \varphi\right)^{+}\left(\partial_{\mu} \varphi+i g \vec{I} \cdot \vec{W}_{\mu} \varphi\right)-\left(\mu^{2} \varphi^{+} \varphi-\lambda\left(\varphi^{+} \varphi\right)^{2}\right)-\frac{1}{4} \vec{W}_{\mu \nu} \cdot \vec{W}^{\mu \nu}
$$

Higgs mechanism and Yang-Mills fields

$$
L=\left(\partial_{\mu} \varphi+i g \vec{I} \cdot \vec{W}_{\mu} \varphi\right)^{+}\left(\partial_{\mu} \varphi+i g \vec{I} \cdot \vec{W}_{\mu} \varphi\right)-\left(\mu^{2} \varphi^{+} \varphi-\lambda\left(\varphi^{+} \varphi\right)^{2}\right)-\frac{1}{4} \vec{W}_{\mu \nu} \cdot \vec{W}^{\mu \nu}
$$

\square Let us consider the case $\mu^{2}<0$ and $\lambda>0$. The minimum of the potential is for:

$$
\begin{aligned}
& \varphi^{+} \varphi=-\frac{\mu^{2}}{2 \lambda}=\frac{v^{2}}{2} \\
& \varphi^{+} \varphi=\left(\varphi_{a}^{*} \varphi_{b}^{*}\right)\binom{\varphi_{a}}{\varphi_{b}}=\varphi_{a}^{*} \varphi_{a}+\varphi_{b}^{*} \varphi_{b}=\frac{1}{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}+\varphi_{3}^{2}+\varphi_{4}^{2}\right)=\frac{v^{2}}{2}
\end{aligned}
$$

\square We choose a minimum thus breaking the symmetry of the ground state: $\quad \varphi_{1}=\varphi_{2}=\varphi_{4}=0 ; \quad \varphi_{3}=v^{2}$
The vacuum ground state we have chosen is: $\varphi_{0}=\frac{1}{\sqrt{2}}\binom{0}{v}$
\square We make the perturbative expansion around this state, choosing an appropriate gauge in order to have:

$$
\varphi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)}
$$

N.B. in this way three scalar fields have been eliminated from the gauge transformation leaving only one field: $\mathrm{H}(\mathrm{x})$

Higgs mechanism and Yang-Mills fields

\square We can rewrite the Lagrangian in terms of the Higgs field H :

$$
\begin{aligned}
L & =\left[\frac{1}{2}\left(\partial_{\mu} H\right)^{2}-\lambda v^{2} H^{2}\right]+\frac{g^{2} v^{2}}{8}\left[\left(W_{\mu}^{1}\right)^{2}+\left(W_{\mu}^{2}\right)^{2}+\left(W_{\mu}^{3}\right)^{2}\right] \\
& + \text { higher order terms }+ \text { kinetic term for the } \vec{W}
\end{aligned}
$$

This Lagrangian describes a mass scalar Higgs field: $\quad m_{H}=\sqrt{2 \lambda v^{2}}=\sqrt{\left(-2 \mu^{2}\right)}=$???? GeV
\square and three massive gauge bosons of mass: $m_{w}=\frac{1}{2} g v$
\square The three gauge bosons "swallowed" the three Goldstone fields, gaining mass.

It is necessary to extend these concepts to the entire $\operatorname{SU}(2) \mathrm{XU}(1)$ symmetry

SU(2) x U(1) y and Higgs field

\square Electroweak Lagrangian invariant under gauge transformation:

$$
L=\bar{\Psi}_{L} \gamma^{\mu}\left[i \partial_{\mu}-g \vec{I} \cdot \vec{W}_{\mu}(x)-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{L}+\bar{\Psi}_{R} \gamma^{\mu}\left[i \partial_{\mu}-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{R}+L_{\text {free }}(\vec{W}, B)
$$

\square We introduce four real scalar fields φ_{i} into the Lagrangian:

$$
\mathrm{L}=\left(D_{\mu} \varphi\right)^{+}\left(D^{\mu} \varphi\right)-\mu^{2} \varphi^{+} \varphi-\lambda\left(\varphi^{+} \varphi\right)^{2} \quad D_{\mu} \equiv \partial_{\mu}+i g \vec{I} \cdot \vec{W}_{\mu}(x)+i \frac{g^{\prime}}{2} \mathrm{Y} \cdot \mathrm{~B}_{\mu}
$$

\square We are interested in the case where $\mu^{2}<0$ and $\lambda>0$.
\square We follow Weinberg and arrange the four φ_{i} fields in a weak isospin doublet with weak hypercharge $Y=1$

$$
\varphi=\binom{\varphi^{+}}{\varphi^{0}}=\frac{1}{\sqrt{2}}\binom{\varphi_{1}+i \varphi_{2}}{\varphi_{3}+i \varphi_{4}} \quad \begin{aligned}
& \varphi^{+} \text {ha carica elettrica } \mathrm{Q}=1 \\
& \text { e } \varphi^{0} \text { ha } \mathrm{Q}=0
\end{aligned}
$$

We choose the minimum of the potential such that $\varphi_{0}=\frac{1}{\sqrt{2}}\binom{0}{v}$ and develop $\boldsymbol{\varphi}(\mathbf{x})$ around this point.
WWith an appropriate choice of the gauge we have: $\varphi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)}$

SU(2) x U(1) y and Higgs field

\square The Lagrangian becomes:

$$
L=\left[\frac{1}{2}\left(\partial_{\mu} H\right)^{2}-\lambda v^{2} H^{2}\right]+\frac{g^{2} v^{2}}{8}\left[W_{\mu}^{1} W^{1 \mu}+W_{\mu}^{2} W^{2 \mu}\right]+\frac{v^{2}}{8}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)\left(g W^{3 \mu}-g^{\prime} B^{\mu}\right)
$$

+ higher order terms + kinetic terms for the \vec{W} and B
\square From here we see that the $\mathbf{W}_{\mu}{ }^{1}$ and $\mathbf{W}_{\mu}{ }^{2}$ fields have a "conventional" mass term $m_{w}=\frac{1}{2} \mathrm{gv}$ while the $W_{\mu}{ }^{3}$ and B_{μ} fields are mixed.
\square We need to rotate these two fields so that the mass term is diagonal in the new two fields A_{μ} and Z_{μ} :

$$
\frac{v^{2}}{8}\left(\begin{array}{ll}
W_{\mu}^{3} & B_{\mu}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{\prime 2}
\end{array}\right)\binom{W^{3 \mu}}{B^{\mu}} \quad \begin{aligned}
& \text { Mass matrix. It must be diagonalized. One of the } \\
& \text { two eigenvalues is zero. }
\end{aligned}
$$

$$
\frac{v^{2}}{8}\left(g^{2}\left(W_{\mu}^{3}\right)^{2}-2 g g^{\prime} W_{\mu}^{3} B^{\mu}+g^{\prime 2} B_{\mu}^{2}\right)=\frac{v^{2}}{8} \cdot\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}+0 \cdot\left(g W_{\mu}^{3}+g B_{\mu}\right)^{2}
$$

$$
A_{\mu}=\frac{\left(g^{\prime} W_{\mu}^{3}+g B_{\mu}\right)}{\sqrt{g^{2}+g^{\prime 2}}} \quad m_{A}=0 \quad Z_{\mu}=\frac{\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)}{\sqrt{g^{2}+g^{\prime 2}}} m_{z}=\frac{1}{2} v \sqrt{g^{2}+g^{\prime 2}}
$$

Mass of bosons and Weinberg angle

\square We introduce the Weinberg angle (ie. Weak angle) defined as:

$$
\frac{g^{\prime}}{g}=\tan \theta_{w} \quad ; \quad \frac{g}{\sqrt{g^{2}+g^{\prime 2}}}=\cos \theta_{w} \quad ; \quad \frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}=\sin \theta_{w}
$$

$$
\begin{aligned}
& A_{\mu}=\cos \theta_{W} B_{\mu}+\sin \theta_{W} W_{\mu}^{3} \\
& Z_{\mu}=-\sin \theta_{W} B_{\mu}+\cos \theta_{W} W_{\mu}^{3}
\end{aligned}
$$

Remembering that:

$$
m_{w}=\frac{1}{2} g v \text { and } m_{z}=\frac{1}{2} v \sqrt{g^{2}+g^{\prime 2}}
$$

$$
\square \frac{m_{w}}{m_{z}}=\cos \theta_{w}
$$

\square The spontaneous breaking of the $S U(2)_{L} X U(1)_{Y}$ symmetry gave rise to the following mass spectrum:

$$
\begin{aligned}
& 1 \text { Higgs boson, } \mathrm{m}_{H}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}} \\
& 2 \text { charged boson } \mathrm{W}^{ \pm}, \mathrm{m}_{w}=\frac{1}{2} \mathrm{gv} \\
& 1 \text { neutral boson } \mathrm{Z}, \mathrm{~m}_{Z}=\frac{\mathrm{m}_{W}}{\cos \theta_{W}} \\
& 1 \text { massless neutral boson (photon) }
\end{aligned}
$$

N.B. $\mathrm{Q} \varphi_{0}=\left(I_{3}+\frac{1}{2} Y\right)\binom{0}{v}=0$

The charge of the minimum we have chosen is zero, therefore the symmetry $\mathrm{U}(1)^{\mathrm{em}}$ is not broken and the photon remains massless

Gauge Bosons Mass

\square From the analysis of the neutrino-electron scattering we obtain the relationship:

$$
\frac{g^{2}}{8 m_{w}^{2}}=\frac{G}{\sqrt{2}}
$$

\square Given that:

$$
m_{w}=\frac{1}{2} g v \quad v=\frac{1}{\sqrt{(G \sqrt{2})}}
$$

The vacuum expectation value depends only on the Fermi constant:

$$
v=\frac{1}{\sqrt{(G \sqrt{2})}}=\frac{1}{\sqrt{\left(\sqrt{2} \cdot 1.17 \cdot 10^{-5} \mathrm{GeV}^{-2}\right)}} \approx 246 \mathrm{GeV}
$$

\square As we will see, this relation holds:

$$
\mathrm{g} \cdot \sin \theta_{W}=\mathrm{e} \quad\left[\alpha=\frac{\mathrm{e}^{2}}{4 \pi}\right]
$$

$$
\square m_{w}=\left(\frac{\pi \alpha}{G \sqrt{2}}\right)^{\frac{1}{2}} \frac{1}{\sin \theta_{w}}
$$

$\sin \vartheta_{w}$ must be determined experimentally. The first measurement was made with the deep inelastic scattering of neutrinos in the 1970s.

$$
\sin ^{2} \theta_{w} \approx 0.23 \Rightarrow \mathrm{~m}_{w} \approx 80 \mathrm{GeV} ; \mathrm{m}_{z} \approx 90 \mathrm{GeV}
$$

N.B. The mass of the Higgs boson is not predicted by the Standard Model because it depends on the unknown parameter λ which appears in the potential $V(\varphi)$.

Fermions mass

\square The fermion mass term -mee cannot be explicitly put in the Lagrangian because it breaks the $S U(2)_{\mathrm{L}} X U(1)_{Y}$ symmetry (it mixes lefthanded and righthanded components):

$$
-\mathrm{m} \bar{e} \mathrm{e}=-\mathrm{m} \overline{\mathrm{e}}\left[\frac{1}{2}\left(1-\gamma^{5}\right)+\frac{1}{2}\left(1+\gamma^{5}\right)\right] \mathrm{e}=-\mathrm{m}\left(\bar{e}_{R} e_{L}+\bar{e}_{L} e_{R}\right)
$$

\square We remind that:
$\left(\begin{array}{cccc} & \mathrm{I} & \mathrm{I}_{3} & \mathrm{Y} \\ v_{e} & \frac{1}{2} & \frac{1}{2} & -1 \\ \mathrm{e}_{L}^{-} & \frac{1}{2} & -\frac{1}{2} & -1 \\ \mathrm{e}_{R}^{-} & 0 & 0 & -2\end{array}\right)$

The Higgs boson has the right quantum numbers to couple to e_{L} and e_{R}.
\square We add to the Lagrangian the ("Yukawa") term invariant under gauge transformations:

$$
\begin{array}{r}
L=-g_{e}\left[\bar{L} \varphi e_{R}+\bar{e}_{R} \bar{\varphi} L\right] \quad \text { where } \quad L=\binom{v_{e}}{e^{-}}_{L} ; \varphi=\binom{\varphi^{+}}{\varphi^{0}} \\
\left(\begin{array}{ll}
\bar{v}_{e} & \bar{e}_{L}^{-}
\end{array}\right)\binom{\varphi^{+}}{\varphi^{0}} e_{R}^{-}=\left(\bar{v}_{e} \varphi^{+} e_{R}^{-}+\bar{e}_{L}^{-} \varphi^{0} e_{R}^{-}\right) \quad g_{\mathrm{e}}=\text { coupling constant }
\end{array}
$$

Fermion mass

\square After spontaneous symmetry breaking, the Lagrangian becomes:

$$
\varphi=\frac{1}{\sqrt{2}}\binom{0}{v+H}
$$

$$
\mathrm{m}_{e}=\frac{g_{e} \cdot v}{\sqrt{2}} \quad \underline{\uparrow} \quad \begin{gathered}
\uparrow \\
\text { mass term }
\end{gathered} \quad \underline{\text { Coupling of the electron with the Higgs boson }}
$$

$\square \mathrm{L}=-m_{e} \bar{e} e-\left(\frac{m_{e}}{v}\right) \bar{e} e H \quad$ N.B. The coupling constant is proportional to the mass of the fermion
To generate the masses of the "up" quarks, a conjugated Higgs doublet is introduced:

$$
\tilde{\varphi}=i \sigma_{2} \varphi^{*}=\frac{1}{\sqrt{2}}\binom{\bar{\varphi}^{0}}{-\varphi^{-}} \Rightarrow \frac{1}{\sqrt{2}}\binom{v+H}{0}
$$

$$
L=-g_{d} \bar{L}_{q} \varphi d_{R}-g_{u} \bar{L}_{q} \tilde{\varphi} u_{R}+\text { hermitian conjugate } \quad L_{q}=\binom{u}{d}_{L}
$$

$$
\square \mathrm{L}=-m_{d} \bar{d} d-m_{u} \bar{u} u-\left(\frac{m_{d}}{v}\right) \bar{d} d H-\left(\frac{m_{u}}{v}\right) \bar{u} u H
$$

Complete Electroweak Lagrangian

Electroweak Lagrangian invariant under gauge transformation:

$$
L=\bar{\Psi}_{L} \gamma^{\mu}\left[i \partial_{\mu}-g \vec{I} \cdot \vec{W}_{\mu}(x)-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{L}+\bar{\Psi}_{R} \gamma^{\mu}\left[i \partial_{\mu}-\frac{g^{\prime}}{2} Y \cdot B_{\mu}\right] \Psi_{R}+L_{\text {free }}(\vec{W}, B)
$$

\square We add to the Lagrangian four real scalar fields φ_{i} to give mass to the gauge bosons through the mechanism of spontaneous symmetry breaking:

$$
\mathrm{L}=\left(D_{\mu} \varphi\right)^{+}\left(D^{\mu} \varphi\right)-\mu^{2} \varphi^{+} \varphi-\lambda\left(\varphi^{+} \varphi\right)^{2}
$$

\square We add to the Lagrangian an interaction between the fermions and the φ field to give mass to the fermions:

$$
L=-g_{e}\left[\bar{L} \varphi e_{R}+\bar{e}_{R} \bar{\varphi} L\right] \quad L=-g_{d} \bar{L}_{q} \varphi d_{R}-g_{U} \bar{L}_{q} \tilde{\varphi} u_{R} \text { + herm. con. }
$$

What is this φ field? I DON'T KNOW!

Gauge Bosons Couplings

W coupling

\square The (charged) W couples with particles of the doublet producing both of them (channel s) or inducing a transition in the other particle (channel t).

$\binom{v_{e}}{e^{-}}_{L}$	$\binom{v_{\mu}}{\mu^{-}}_{L}$	$\binom{v_{\tau}}{\tau^{-}}_{L}$
$\binom{u}{d^{\prime}}_{L}$	$\binom{c}{s^{\prime}}_{L}$	$\binom{t}{b^{\prime}}_{L}$

\square N.B. In the s channel the charge of the \mathbf{W} boson is unique because the two vertices are temporally separated, while in the t channel they are not (the time order product automatically takes this into account), so you can have the exchange of a \mathbf{W}^{+}or of \mathbf{W}^{-}. For the purposes of the calculation, the thing is perfectly analogous.The W is coupled to a charged current because there is a transition between the two states of the weak isospin doublet, the electric charge of which differs by one.
\square The matrix element can be written as:

$$
M=\frac{g}{\sqrt{2}}\left(J^{\mu}\right)^{+} \frac{1}{M_{W}^{2}-q^{2}} \frac{g}{\sqrt{2}}\left(J^{\mu}\right)
$$

Weak Charged Current

\square Charge-raising weak current of electrons and quarks:

$$
\mathrm{J}_{e}^{\mu}=\overline{\mathrm{u}}(v) \gamma^{\mu} \frac{1-\gamma^{5}}{2} u(e) \quad \mathrm{J}_{q}^{\mu}=\overline{\mathrm{u}}(\mathrm{u}) \gamma^{\mu} \frac{1-\gamma^{5}}{2} u\left(d^{\prime}\right)
$$

\square As we can see, the charge-raising weak current has the form:

$$
\mathrm{J}_{\mu}^{+}=\overline{\mathrm{u}}\left(v_{e}\right) \gamma_{\mu} \frac{1-\gamma^{5}}{2} u(e)
$$

\square The operator $1 / 2\left(1-\gamma^{5}\right)$ is the projector of the left-handed chiral state for particles and of the right-handed chiral state for antiparticles, which coincide with the states having negative and positive helicity for particles of zero mass:

$$
\frac{1-\gamma^{5}}{2} u \equiv u_{L} ; \quad \bar{u}_{L}=\bar{u} \frac{1+\gamma^{5}}{2} ; \quad \frac{1-\gamma^{5}}{2} v \equiv v_{R} ; \quad \bar{v}_{R}=\bar{v} \frac{1+\gamma^{5}}{2}
$$

We also remind you that :

$$
\gamma_{\mu} \frac{1-\gamma^{5}}{2}=\frac{1+\gamma^{5}}{2} \gamma_{\mu} \frac{1-\gamma^{5}}{2}
$$

Weak Charged Current

\square The charge-raising weak current can also be written as:

$$
J_{\mu}^{+}=\bar{v} \frac{1+\gamma^{5}}{2} \gamma_{\mu} \frac{1-\gamma^{5}}{2} e=\bar{v}_{L} \gamma_{\mu} e_{L}
$$

N.B. Indichiamo con \bar{v} ed e gli spinori.
we have thus obtained a purely vector current which only couples to the left-handed components of the particles.

- We now write the charge-lowering weak current:

$$
\mathrm{J}_{\mu}^{-}=\overline{\mathrm{e}} \gamma_{\mu} \frac{1-\gamma^{5}}{2} v=\overline{\mathrm{e}} \frac{1+\gamma^{5}}{2} \gamma_{\mu} \frac{1-\gamma^{5}}{2} v=\overline{\mathrm{e}}_{L} \gamma_{\mu} v_{L}
$$

N.B. we denote the spinors by the name of the particle without distinguishing between u and v

We recall the electromagnetic current:

$$
\mathrm{J}_{\mu}^{\text {e.m. }}=-\overline{\mathrm{e}} \gamma_{\mu} e=-\left(\overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R}+\overline{\mathrm{e}}_{L} \gamma_{\mu} e_{L}\right)
$$

A vector current does not mix left-handed and right-handed states

Weak Charged Current

\square In a compact way, the two raising and lowering weak charged currents can be written as follows:

$$
\chi_{L}=\binom{v_{e}}{e^{-}}_{L} \quad ; \bar{\chi}_{L}=\left(\begin{array}{ll}
\bar{v}_{e} & e^{-}
\end{array}\right) ; \quad \sigma^{ \pm}=\frac{1}{2}\left(\sigma_{1} \pm i \sigma_{2}\right)
$$

$$
\sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad ; \quad \sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \square \quad J_{\mu}^{ \pm}=\bar{\chi}_{L} \gamma_{\mu} \sigma^{ \pm} \chi_{L}
$$

\square If we now require that the weak interactions be invariant under rotations in the space of the weak isospin, it is necessary to introduce a third current of isospin that conserves the charge:

$$
J_{\mu}^{3}=\bar{\chi}_{L} \gamma_{\mu} \frac{1}{2} \sigma^{3} \chi_{L}=\frac{1}{2} \bar{v}_{L} \gamma_{\mu} v_{L}-\frac{1}{2} \bar{e}_{L} \gamma_{\mu} e_{L}
$$

$$
\sigma^{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

\square This current cannot be directly associated with the weak neutral current (exchange of the Z) because $J_{\mu}{ }^{3}$ couples only to the left-handed components, while the \mathbf{Z} also couples to the right-handed ones.

To try to solve the problem Glashow proposed to deal simultaneously with electromagnetic interactions (which are described by a neutral current) and weak interactions.

Weak Neutral Current

DIn 1961 Glashow suggested the introduction of a weak hypercharge current:

$$
J_{\mu}^{Y}=\bar{\Psi} \gamma^{\mu} Y \Psi
$$

where the weak hypercharge Y is connected to the third component of the weak isospin through a relationship similar to that of Gell-Mann Nishijima:

$$
Q=I_{3}+\frac{1}{2} Y \quad \square \quad J_{\mu}^{e m}=J_{\mu}^{3}+\frac{1}{2} J_{\mu}^{Y}
$$

\square The e.m. current is a combination of the weak hypercharge current and the third component of the weak isospin current.The weak hypercharge Y is the generator of the symmetry of the $U(1)_{Y}$ group, therefore the unification of the weak interactions and the electromagnetic interactions revealed the existence of a larger symmetry group:

$$
S U(2)_{L} \otimes U(1)_{Y}
$$

Quantum numbers

The quantum numbers of the first family of particles are:

$$
\left(\begin{array}{ccccc}
& \mathrm{I} & \mathrm{I}_{3} & \mathrm{Q} & \mathrm{Y} \\
v_{e} & \frac{1}{2} & \frac{1}{2} & 0 & -1 \\
\mathrm{e}_{L}^{-} & \frac{1}{2} & -\frac{1}{2} & -1 & -1 \\
\mathrm{e}_{R}^{-} & 0 & 0 & -1 & -2 \\
U_{L} & \frac{1}{2} & \frac{1}{2} & \frac{2}{3} & \frac{1}{3} \\
d_{L}^{\prime} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{3} & \frac{1}{3} \\
U_{R} & 0 & 0 & \frac{2}{3} & \frac{4}{3} \\
d_{R}^{\prime} & 0 & 0 & -\frac{1}{3} & -\frac{2}{3}
\end{array}\right) \begin{gathered}
\text { N.B. Members of the same doublet have the same hy } \\
\begin{array}{c}
\text { The hypercharge current can be written as: } \\
\begin{array}{c}
\mathrm{J}_{\mu}^{\gamma}=2 \mathrm{~J}_{\mu}^{e m}-2 \mathrm{~J}_{\mu}^{3}= \\
=-2\left(\bar{e}_{R} \gamma_{\mu} e_{R}+\bar{e}_{L} \gamma_{\mu} e_{L}\right)-\left(\bar{v}_{L} \gamma_{\mu} v_{L}-\bar{e}_{L} \gamma_{\mu} e_{L}\right)= \\
=-2 \cdot\left(\bar{e}_{R} \gamma_{\mu} e_{R}\right)-1 \cdot\left(\bar{\chi}_{L} \gamma_{\mu} \chi_{L}\right)
\end{array} \\
\hline \text { hypercharge }
\end{array}
\end{gathered}
$$

For quarks we have:

$$
J_{\mu}^{Y}=\frac{4}{3} \cdot\left(\bar{u}_{R} \gamma_{\mu} u_{R}\right)-\frac{2}{3} \cdot\left(\bar{d}_{R}^{\prime} \gamma_{\mu} d_{R}^{\prime}\right)+\frac{1}{3}\left(\bar{u}_{L} \gamma_{\mu} u_{L}+\bar{d}_{L}^{\prime} \gamma_{\mu} d_{L}^{\prime}\right)
$$

The interaction in the Standard Model

To preserve the gauge invariance of the $S U(2)_{L} \times U(1)_{Y}$ symmetry of the GWS model, it is necessary to introduce 3 vector bosons W associated with the weak isospin and a vector boson B associated with hypercharge.

The interaction has the form:

$$
-i\left(g \vec{J}_{\mu} \cdot \vec{W}^{\mu}+\frac{1}{2} g^{\prime} J_{\mu}^{\curlyvee} \cdot B^{\mu}\right)
$$

g and g 'are two coupling constants

$$
{ }_{\mu} \text { e } \vec{W}_{\mu}: \text { vettori nello spazio dell'isospin debole }
$$

\square In terms of charged currents $\quad \overrightarrow{\mathrm{J}}_{\mu}^{ \pm}=J_{\mu}^{1} \pm i J_{\mu}^{2}$ we have:

$$
\overrightarrow{\mathrm{J}}_{\mu} \cdot \overrightarrow{\mathrm{W}_{\mu}}=J_{\mu}^{1} W^{\mu 1}+J_{\mu}^{2} W^{\mu 2}+J_{\mu}^{3} W^{\mu 3} \square \overrightarrow{\mathrm{j}}_{\mu} \cdot \vec{W}_{\mu}=\frac{1}{\sqrt{2}} J_{\mu}^{+} W^{\mu+}+\frac{1}{\sqrt{2}} J_{\mu}^{-} W^{\mu-}+J_{\mu}^{3} W^{\mu 3}
$$

\square where:

$$
\mathrm{W}^{\mu \pm}=\frac{1}{\sqrt{2}}\left(\mathrm{~W}^{\mu 1} \mp i \mathrm{~W}^{\mu 2}\right)
$$

```
W }\mp@subsup{}{}{\mu\pm}\mathrm{ descrivono bosoni carichi massivi W W, mentre W W }\mp@subsup{W}{}{\mu3}\mathrm{ e B B sono campi neutri
```


The interaction in the Standard Model

\square In the GWS model the $\operatorname{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ symmetry is "broken" and the neutral fields mix to give rise to a massless combination (the photon) and a massive combination (the Z)

$$
\begin{gathered}
\begin{array}{c}
A_{\mu}=\cos \theta_{w} B_{\mu}+\sin \theta_{W} W_{\mu}^{3} \\
Z_{\mu}=-\sin \theta_{W} B_{\mu}+\cos \theta_{W} W_{\mu}^{3}
\end{array} \\
\theta_{w}: \text { angolo di Weinberg (angolo weak) }
\end{gathered}
$$

\square In terms of the A_{μ} and Z_{μ} fields, the neutral current interaction becomes:

$$
-i\left(g J_{\mu}^{3} \cdot W^{\mu 3}+\frac{1}{2} g^{\prime} J_{\mu}^{\gamma} \cdot B^{\mu}\right)=-i\left(g \sin \theta_{W} J_{\mu}^{3}+g^{\prime} \cos \theta_{W} \frac{J_{\mu}^{\gamma}}{2}\right) A^{\mu}-i\left(g \cos \theta_{W} J_{\mu}^{3}-g^{\prime} \sin \theta_{W} \frac{J_{\mu}^{\gamma}}{2}\right) Z^{\mu}
$$

\square The first term can be identified with electromagnetic interaction:

$$
-\mathrm{ie} J_{\mu}^{\mathrm{em}} \cdot A^{\mu} \quad \text { We also remind you that: } \quad J_{\mu}^{\mathrm{em}}=J_{\mu}^{3}+\frac{1}{2} J_{\mu}^{\curlyvee}
$$

The two expressions are consistent if:

$$
g \sin \theta_{w}=g^{\prime} \cos \theta_{w}=e
$$

$$
e=\frac{g g^{\prime}}{\sqrt{g^{\prime 2}+g^{2}}}
$$

Weinberg Angle

The weak mixing angle directly depends on the coupling constants of $S U(2)_{L} \times U(1)_{Y}$

$$
g \sin \theta_{w}=g^{\prime} \cos \theta_{w}=e
$$

$$
\tan \theta_{w}=\frac{g}{g}
$$The GWS model does not predict the value of θ_{w} to be measured.Of course, for the model to be valid, all electroweak phenomena must be described from a single angle θ_{w}.Many of the experimental tests of the model consisted of measuring the angle θ_{w} and comparing these values.

But ... BE CAREFULL

\square There are two definitions of the Weinberg angle:

$$
\text { masse: } \mathrm{m}_{w}=m_{z} \cos \theta_{w} \text { accoppiamenti: } g \sin \theta_{w}=g^{\prime} \cos \theta_{w}=e
$$

\square At the "tree" level (fundamental level) the two definitions coincide, but the radiative corrections modify the two expressions in a different way, therefore it is necessary to specify the renormalization scheme adopted. (This caused a few additional minor problems in Lep's time).

Z interaction: neutral current

Let's go back to the interaction term of the Z:

$$
\begin{aligned}
& -i\left(g \cos \theta_{w} J_{\mu}^{3}-g^{\prime} \sin \theta_{w} \frac{J_{\mu}^{\curlyvee}}{2}\right) Z^{\mu} \quad \text { furthermore } \quad \mathrm{J}_{\mu}^{\curlyvee}=2 \mathrm{~J}_{\mu}^{e m}-2 \mathrm{~J}_{\mu}^{3} \\
& =-i\left[g \cos \theta_{W} J_{\mu}^{3}-g ' \sin \theta_{W}\left(J_{\mu}^{e m}-J_{\mu}^{3}\right)\right] Z^{\mu}=-i\left[g \cos \theta_{W} J_{\mu}^{3}-g ' \sin \theta_{W} J_{\mu}^{e m}+g ' \sin \theta_{W} J_{\mu}^{3}\right] Z^{\mu}= \\
& =-i\left[g \frac{\cos ^{2} \theta_{w}}{\cos \theta_{w}} J_{\mu}^{3}-g \frac{\sin ^{2} \theta_{w}}{\cos \theta_{w}} J_{\mu}^{e m}+g \frac{\sin ^{2} \theta_{w}}{\cos \theta_{w}} J_{\mu}^{3}\right] Z^{\mu}= \\
& =-i \frac{g}{\cos \theta_{w}}\left[J_{\mu}^{3}-\sin ^{2} \theta_{w} J_{\mu}^{e m}\right] Z^{\mu}=-i \frac{g}{\cos \theta_{w}} J_{\mu}^{N \cdot c .} Z^{\mu} \\
& \left\langle\text { ricorda: } \mathrm{g}^{\prime}=g \frac{\sin \theta_{w}}{\cos \theta_{w}}\right\rangle
\end{aligned}
$$

We have obtained a neutral current that couples with the Z:

$$
\underbrace{J_{\mu}^{N . C .}}_{\mu}=J_{\mu}^{3}-\sin ^{2} \theta_{W} J_{\mu}^{\text {em }} \longleftarrow \text { It couples to both lefthanded and righthanded (charged) states }
$$

The Z couples to both left-handed and right-handed states. The coupling depends on the quantum numbers of the particles involved.

```
N.B. The Z couples only to lefthanded neutrinos
```


C_{y} and C_{A} determination

\square The weak current can be written in terms of the axial and vector couplings:

$$
\begin{aligned}
& \hline J_{\mu}^{N . c .}(f)=\bar{u}_{f} \gamma_{\mu} \frac{1}{2}\left(c_{v}^{f}-C_{A}^{f} \gamma^{5}\right) u_{f} \\
& {\left[\text { per le correnti cariche } \mathrm{c}_{V}=c_{A}=1\right]}
\end{aligned}
$$

The coupling of Z with $\overline{f f}$ can be written:

$$
-i \frac{g}{\cos \theta_{w}}\left[J_{\mu}^{3}-\sin ^{2} \theta_{w} J_{\mu}^{e m}\right] Z^{\mu}=-i \frac{g}{\cos \theta_{w}} \bar{u}_{f} \gamma_{\mu}\left[\frac{1-\gamma^{5}}{2} I^{3}-Q \sin ^{2} \theta_{w}\right] u_{f} \cdot Z^{\mu}
$$

\square The vectorial and axial couplings are given by the coefficients of the terms:

$$
\bar{u}_{f} \gamma_{\mu} u_{f} \quad \text { e } \quad \bar{u}_{f} \gamma_{\mu} \gamma^{5} u_{f}
$$

then we have: $C_{V}=I_{3}^{f}-2 Q^{f} \sin ^{2} \theta_{W} \quad$ e $\quad C_{A}=I_{3}^{f}$
N.B. Neutral current is not of the V-A type, so the Z couples with both left-handed and right-handed particles.

C_{V} and C_{A} couplings

$\left(\begin{array}{ccccc} & \mathrm{I}_{3}^{f} & \mathrm{Q}^{f} & \mathrm{C}_{A}^{f} & \mathrm{C}_{v}^{f} \\ v_{e} & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\ \mathrm{e}_{L}^{-} & -\frac{1}{2} & -1 & -\frac{1}{2} & -\frac{1}{2}+2 \sin ^{2} \theta_{w} \\ u_{L} & \frac{1}{2} & \frac{2}{3} & \frac{1}{2} & \frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w} \\ d_{L}^{\prime} & -\frac{1}{2} & -\frac{1}{3} & -\frac{1}{2} & -\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{w} \\ \mathrm{e}_{R}^{-} & 0 & -1 & 0 & 2 \sin ^{2} \theta_{w} \\ u_{R} & 0 & \frac{2}{3} & 0 & -\frac{4}{3} \sin ^{2} \theta_{w} \\ d_{R}^{\prime} & 0 & -\frac{1}{3} & 0 & \frac{2}{3} \sin ^{2} \theta_{w}\end{array}\right)$

$$
\begin{aligned}
& C_{V}=I_{3}^{f}-2 Q^{f} \sin ^{2} \theta_{w} \\
& C_{A}=I_{3}^{f}
\end{aligned}
$$

the righthanded neutrino has both c_{V} and c_{A} equal to zero, so it does not appear in the table.

In the $\mathrm{C}_{\mathrm{v}}{ }^{\mathrm{f}}$ coupling we have $\boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{\theta}_{\mathrm{w}}$, which is the quantity that is measured experimentallyIn the couplings of right-handed particles there is no axial term because these particles interact only through the electromagnetic interaction which is vectorial.Radiative corrections modify these couplings at the percent level. At Lep the Z couplings were measured with an error of this order of magnitude and it was therefore possible to verify the precision of the radiative corrections of the Standard Model.

Z coupling to lefthanded and righthanded states

The W couples only to the left-handed states due to the factor $\left(1-\gamma^{5}\right) / 2$
The Z couples to both left-handed and right-handed states because its coupling is of the type $\left(c_{V}-c_{A} V^{5}\right) / 2$

$$
J_{\mu}^{\text {N.c. }}(f)=\bar{u}_{f} \gamma_{\mu} \frac{1}{2}\left(c_{v}^{f}-c_{A}^{f} \gamma^{5}\right) u_{f}
$$

Neutral current can also be expressed in terms of coupling with left-handed and right-handed states:

$$
\begin{aligned}
J_{\mu}^{N . C .}(f) & =g_{L} \bar{u}_{L}^{f} \gamma_{\mu} u_{L}^{f}+g_{R} \bar{u}_{R}^{f} \gamma_{\mu} u_{R}^{f} \quad \text { Let's assume: } c_{V}=g_{L}+g_{R} ; c_{A}=g_{L}-g_{R} \\
& \frac{1}{2}\left(c_{V}^{f}-c_{A}^{f} \gamma^{5}\right)=\frac{1}{2}\left[g_{L}+g_{R}-\left(g_{L}-g_{R}\right) \gamma^{5}\right]=g_{L} \frac{1-\gamma^{5}}{2}+g_{R} \frac{1+\gamma^{5}}{2} \\
& g_{L}=\frac{c_{V}+c_{A}}{2}=I_{3}^{f}-Q^{f} \sin ^{2} \theta_{W} \quad g_{R}=\frac{c_{V}-c_{A}}{2}=-Q^{f} \sin ^{2} \theta_{W}
\end{aligned}
$$

From here we see again that the neutrino has no right-handed coupling since its charge \mathbf{Q} is zero.

Relationship between G_{5} and neutral current

\square From the comparison of Fermi's theory with the GWS model for charged currents (see muon decay) we find the relation:

$$
\frac{G}{\sqrt{2}}=\frac{g^{2}}{8 M_{w}^{2}}
$$

\square In a process with neutral current where $q^{2} \ll M_{z}{ }^{2}$, we can write:

$$
\mathcal{M}^{N C}=\left(\frac{g}{\cos \theta_{W}} J_{\mu}^{N C}\right) \frac{1}{M_{Z}^{2}}\left(\frac{g}{\cos \theta_{W}} J^{N C_{\mu}}\right) \quad \square \quad \mathcal{M}^{N C}=\frac{g^{2}}{\cos ^{2} \theta_{W}} \frac{1}{M_{Z}^{2}} J_{\mu}^{N C} J^{N C \mu}
$$

\square A parameter ρ is introduced which takes into account the relative intensity of weak neutral and charged currents, linked to the mass of the bosons:

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}
$$

In the SM, at the tree level (fundamental level), $\rho=1$. Radiative corrections, or the presence of new physics, change this relationship.

Therefore, usually the amplitude of neutral currents is written as follows, where the Fermi constant is used:

$$
M^{N C}=\frac{4 G}{\sqrt{2}} 2 \rho J_{\mu}^{N C} J^{N C} \mu
$$

Feynman rules for the verteces in the SM

\square Electromagnetic interactions:

\square Weak neutral interactions:

[^0]
QCD and the Standard Model

\square The QCD is analogous to QED but with the $U(1)_{\text {em }}$ group replaced by $\operatorname{SU}(3)_{c}$
\square The main difference between QED and QCD comes from the fact that the former is Abelian while the latter is not: the generators of $\operatorname{SU}(3)_{c}$ do not commute and this leads to self-interactions between the gluons.
The Lagrangian for free quarks may be written as:

$$
\mathscr{L}=\sum_{q} \overline{\bar{\psi}}{ }_{q}^{j} i \gamma^{\mu} \partial_{\mu} \psi_{q}^{k}-\sum_{q} m_{q} \bar{\psi}{ }_{q}^{j} \psi_{q}^{j} . \quad \text { The indices } \mathrm{j} \text { and } \mathrm{k} \text { refer to colour (j,k:1,2,3) }
$$

\square We proceed as we did for QED: we require the Lagrangian to be invariant under a local gauge transformation, we introduce a covariant derivative with 8 gauge bosons (gluons) and we add to the Lagrangian the kinetic term for the gluons

Here are the diagrams of the quark-gluon interaction and gluons self interactions:

g

Complete Lagrangian of the Standard Model

$$
\begin{aligned}
\mathscr{L}= & -\frac{1}{4} \boldsymbol{W}_{\mu v} \cdot W^{\mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \text { Gluon fields } \\
& +\bar{L} \gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-\frac{1}{2} g \tau \cdot \boldsymbol{W}_{\mu}-\frac{1}{2} g^{\prime} Y B_{\mu}\right) L \\
& +\bar{R} \gamma^{\mu}\left(\mathrm{i} \partial_{\mu}-\frac{1}{2} g^{\prime} Y B_{\mu}\right) R \\
& +\left|\left(\mathrm{i} \partial_{\mu}-\frac{1}{2} g \tau \cdot W_{\mu}-\frac{1}{2} g^{\prime} Y B_{\mu}\right) \varphi\right|^{2}-V(\varphi) \\
& -\left(g_{1} \bar{L} \varphi R+g_{2} \bar{L} \tilde{\varphi} R+\text { Hermitian conjugate }\right) \\
& +\frac{1}{2} g_{\mathrm{s}}\left(\bar{\psi}_{q}^{j} \gamma^{\mu} \lambda_{j k}^{a} \psi_{q}^{k}\right) G_{\mu}^{a} .
\end{aligned}
$$

$\left\{\begin{array}{l}\mathrm{W}^{ \pm}, \mathrm{Z}^{0}, \gamma \text { and gluon kinetic } \\ \text { energies and self-interactions }\end{array}\right.$ $\left\{\begin{array}{l}\text { fermion kinetic energies and their } \\ \text { interactions with } W^{ \pm}, Z^{0} \text { and } \gamma\end{array}\right.$ $\left\{\begin{array}{l}\text { masses and couplings of the } \\ \mathrm{W}^{ \pm}, \mathrm{Z}^{0}, \gamma \text { and Higgs boson }\end{array}\right.$ $\left\{\begin{array}{l}\text { fermion masses and coup- } \\ \text { lings to the Higgs boson }\end{array}\right.$ \{quark-gluon couplings
\square L= left-handed fermion doublet, R=right-handed singlet; ϕ the Higgs doublet and its conjugate; $\psi=$ quark colour field.

Standard Model couplings

\square We collect together some relations between the parameters of the Standard Model $\operatorname{SU}(3)_{\mathrm{C}} \times \operatorname{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$:

$$
\begin{aligned}
& \frac{G}{\sqrt{ } 2}=\frac{g^{2}}{8 m_{\mathrm{w}}^{2}} \quad g=e\left(\sin \theta_{\mathrm{W}}\right)^{-1} \quad g^{\prime}=e\left(\cos \theta_{\mathrm{w}}\right)^{-1} \\
& \alpha=\frac{e^{2}}{4 \pi} \approx \frac{1}{137} \quad \alpha_{1}=\frac{g^{\prime 2}}{4 \pi} \approx \frac{1}{100} \quad \alpha_{2}=\frac{g^{2}}{4 \pi} \approx \frac{1}{30} \\
& \alpha_{3}=\frac{g_{\mathrm{s}}^{2}}{4 \pi} \approx 0.4 \rightarrow 0.1 .
\end{aligned}
$$

\square These 'constants' depend on a characteristic momentum Q (or, equivalently, a distance $1 / Q$) of the interaction.

The values quoted for α, α_{1}, and α_{2} are for Q of the order of a few GeV while for α_{3} we give the variation over the range 1-100 GeV .

Running of $\alpha_{0 \leq D}$

In classical electromagnetism the potential energy of an electron in the field generated by the same electron (self-energy) is equal to:

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r}
$$

The potential energy goes to infinity when r goes to zero.

The self-interaction in the field theory is described as photons that are emitted and then are absorbed again by the same charge:

The positron is "attracted" by the electron and it will "screen" the charge of the electron in a such a way that its effective value diminishes.The more you go into the positron "cloud" the lesser will be the shielding effect, so the electron effective charge increases.

Running of $\alpha_{\text {ose }}$

\square Let's consider the interaction between two electrons:

\square A consequence of the vacuum polarization is that the charge of the electron becomes a function of the energy of the "probe" (that is of the other electron). The positrons "screen" the charge e; the nearer we get to the charge the lesser the "screening" is and the effective charge "increase".

μ : scale factor

Discovery of the asymptotic freedom in QCD (1973)

The Nobel Prize in Physics 2004
"for the discovery of asymptotic freedom in the theory of the strong interaction"

David J. Gross
(J) $1 / 3$ of the prize

USA
Kavli Institute for
Theoretical Physics,
University of
California
Santa Barbara, CA,
USA
b. 1941
b. 1949
b. 1951

H. David Politzer Frank Wilczek
(D) $1 / 3$ of the prize
(D) $1 / 3$ of the prize

USA
USA
California Institute
Massachusetts
of Technology Institute of
Pasadena, CA, USA Technology (MIT)
Cambridge, MA,
USA

Actually it was found before by 't Hooft and also by Parisi but unfortunately (for them) they didn't publish it.

Running of α

Let's consider the strong interaction between two quarks:

The production of virtual qq pair in the gluon propagator produces the same screening effect of the colour charge as in QED, hence the charge should diminish at the increase of the distance (that is at low momentum transfer).

[a fermions loop has opposite sign with respect to a bosons loop]

Running of α_{s}

The effect of the gluon self-interaction is such that:

$$
\alpha_{s}\left(Q^{2}\right)=\frac{12 \pi}{(33-2 f) \log \left(\frac{Q^{2}}{\Lambda^{2}}\right)}
$$

$\mathrm{f}=$ number of quarks with $4 \mathrm{~m}^{2}<\mathrm{Q}^{2}$
$\Lambda=$ scale $(\sim 200 \mathrm{MeV}$ with $\mathrm{f}=4)$

The anti-screening effect is also present in the $S U(2)_{\perp}$ since Z and W
have self-interactions too.

$Q^{2} \sim \Lambda^{2}$ strong coupling $Q^{2} \gg \Lambda^{2}$ weak coupling	\rightarrow	perturbation-approach perturbation approach

At high momentum transfer (that is at small distances) α_{s} is small and we can do QCD calculation with the perturbative method. At low momentum transfer the constant is big and we can not use the perturbative method.

Running coupling constants

The running of the coupling constants has been experimentally confirmed in the accessible energy range, but the more interesting thing here is that one can extrapolate the curves far beyond where we can test them experimentally. One sees then that these couplings form a triangle somewhere around $10^{16} \mathrm{GeV}$.

This plot shows the running of the gauge couplings within the MSSM. Since the particle content with Supersymmetry (SUSY) is different, the slope of the curves changes. Interestingly, the result is that the gauge couplings meet almost exactly (within the errorbars) in one point, somewhere around $10^{16} \mathrm{GeV}$, usually referred to as the GUT scale (which isn't too far off the Plank Scale ($10^{19} \mathrm{GeV}$).
\square UNIVERSITÀ DI ROMA

End of chapter 3

[^0]: c_{V} and c_{A} determine the intensity of the coupling of the Z with the fermions.

