Introduction to Particle Physics - Chapter 13 -Higgs boson discovery

Claudio Luci SAPIENZA UNIVERSITÀ DI ROMA

last update : 070117

Chapter summary:

- Higgs coupling with fermions and gauge bosons
- Branching ratios
- Higgs search at LEP
- Higgs search at LHC
- Higgs discovery at LHC
- Higgs properties
- A few words about Supersymmetry
- A few words about Dark Matter

Higgs couplings with W and Z

• Electroweak Lagrangian that is invariant for a local gauge transformation:

$$L = \overline{\Psi}_{L} \gamma^{\mu} \left[i \partial_{\mu} - g \overset{r}{I} \cdot \overset{r}{W}_{\mu}(x) - \frac{g'}{2} Y \cdot B_{\mu} \right] \Psi_{L} + \overline{\Psi}_{R} \gamma^{\mu} \left[i \partial_{\mu} - \frac{g'}{2} Y \cdot B_{\mu} \right] \Psi_{R} + L_{free} (\overset{r}{W}, B)$$

- Replacing in the Lagrangian the field $\boldsymbol{\phi}$ obtained after the spontaneous symmetry breaking

 $\varphi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$

we get the Higgs couplings with the gauge bosons:

Higgs couplings with the fermions

• After the spontaneous symmetry breaking we insert in the Lagrangian the field

and we get:

$$L = -\frac{g_e V}{\sqrt{2}} [\bar{e}_R e_L + \bar{e}_L e_R] - \frac{g_e}{\sqrt{2}} [\bar{e}_R e_L + \bar{e}_L e_R] H$$

$$Mass term Higgs coupling with the electron$$

$$m_e = \frac{g_e \cdot V}{\sqrt{2}}$$

$$L = -m_e \bar{e}e - \left(\frac{m_e}{V}\right) \bar{e}e H$$
N.B. the coupling constant is proportional to the fermion mass

Higgs boson search at LEP

^{1/3} Higgs production cross-section at LEP

With a luminosity of about 100pb^{-1} and reasonable detection efficiency, sensitive to a cross section of O(0.1) pb.

Need LEP2 to produce $m_{\rm H} \ge 65$ GeV. Reach $m_{\rm H} \le \sqrt{s} - M_{\rm Z}$

Must take into account many background processes

Higgs Branching Ratios

"Higgs couples to mass"

HZ decays

- Higgs boson decays into a b quark pair
- According to the Z decays we have different event topologies:
 - $Z \rightarrow e^+e^-$; $\mu^+\mu^-$ (small B.R. but very little background, it was the golden channel)
 - Z → √√ (good compromise between B.R. and background)
 - $Z \rightarrow q\overline{q}$ (High QCD background)

NO HIGGS FOUND AT LEP

^{1/3} Global electroweak fit and Higgs mass

Fit to data from LEP, SLD, Tevatron... Electroweak variables depend on m_t^2 and $\log m_{\rm H}$ through radiative corrections Consistency between predicted top and W mass (Z pole) and direct measurements Preference for low Higgs mass.

Electroweak fits $m_{\rm H} < 237 \; {\rm GeV} \; (95\% \; {\rm CL})$

Theory: self consistency of SM to GUT scale $\approx 10^{16}$ GeV $130 < m_{\rm H} < 190$ GeV. $m_{\rm H}$ higher - theory non-perturbative, $m_{\rm H}$ lower - vacuum unstable.

The Large Hadron Collider LHC

LHC rina

Installed in 26.7 km LEP tunnel

Depth of 70-140 m

Jura

LHC Control Room

The Large Hadron Collider LHC

Installed in 26.7 km LEP tunnel

LHC ring layout

Production cross-section at LHC

Collider Luminosity

The key parameter for the experiments is the event rate dN/dt. For a physics process with <u>cross-section σ </u> it is proprotional to the collider <u>Luminosity L</u>:

 $dN/dt = L\sigma$

unit of L : (surface × time)⁻¹

LHC: parton-parton interactions

not well defined parton energy but energy distribution \rightarrow pdf

PDFs are parameterizations of the partonic content of the proton:

at Hadron Colliders cross-section calculations are a convolution of the cross-section at parton level and PDFs

$$\sigma_{X} = \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f(x_{a}, f lav_{a}, Q^{2}) f(x_{b}, f lav_{b}, Q^{2}) \quad \sigma_{ab \to X}(x_{a}, x_{b}, Q^{2}).$$
Sum over initial partonic states a,b Parton Density Function hard scattering cross-section

Luminosity: 2011, 2012, 2015 and 2016

Pile-up

1/3

19

The ATLAS detector

ATLAS: $Z \rightarrow \mu^+ \mu^-$ candidate

Claudio Luci – Introduction to Particle Physics – Chapter 13

ATLAS: 50 years in one slide

The Higgs boson

The first Higgs seen in the ATLAS Experiment

SM Higgs Boson Production

Higgs Boson decay modes

Higgs couplings (tree level) $g_{HWW} = gm_W$ $g_{HZZ} = g \frac{m_Z}{2\cos \theta_W}$ $g_{Hee} = g \frac{m_e}{2m_W}$

Most used decay modes are built using isolated leptons (e,μ) , photons and missing energy

H→ZZ*→4I(<u>e,µ</u>)	~0.013%
Н→үү	~0.23%
Н→п	~6.3%
H→WW→IvIv	~1.1%

^{1/3} Higgs Boson Mass Measurement

- Precise measurement of m_H from channels with the best mass resolution: H→γγ and H→ZZ*→4I (e,µ) (but B.R.≈0.25% only)
- > Dominant uncertainties: photon energy scale ($H \rightarrow \gamma \gamma$), statistics ($H \rightarrow 4I$)

Combined mass: m_H =125.36±0.37 (stat) ±0.18 (syst) GeV

Combined Higgs Boson Mass

Higgs Boson Spin Measurement

- ➤ Test SM (0+) against various models
 - Spin-2 Higgs
 - Spin-0 odd (BSM Higgs)
 - (Spin-1 ruled out by observation of $H \rightarrow \gamma \gamma$ decays)

In all tested cases non-SM models rejected at >99% CL

(Multivariate analysis (MVA) based on angular variables)

^{1/3} Comparison with SM expectations

Measure the ratio between observed rate and SM Higgs boson expectation

 $\frac{\text{een}}{\text{the decay}} \qquad \qquad \text{Results are SM like (all <math>\mu_{s} \sim 1)}$

(µ on production modes have been combined assuming SM BR for the decay)

Higgs Boson Couplings

Coupling strengths scale with mass just as predicted by the SM

First look at 13 TeV data for H(125)

The electrons have a transverse momentum of 111 and 16 GeV, the muons 18 and 17 GeV, the jets 118 and 54 GeV. The invariant mass of the four lepton system is 129 GeV, the di-electron invariant mass is 91 GeV, the di-muon invariant mass is 29 GeV, The di-jet invariant mass is 2 TeV.

First look at 13 TeV data for H(125)

A brief introduction to SuperSymmetry

- SuSy is a generalization of the SM: symmetry between fermions and bosons
 - Introduces sfermions and gauginos
 - \rightarrow doubles particles content with respect to SM
 - ➤ Extended Higgs sector: h, H, A, H⁺, H⁻
- PRO:
 - > Alleviates hierarchy problem ($m_h << m_P$)
 - has a good Dark Matter candidate (neutralino)
 - > Allows for gauge coupling unification
- CONS:
 - >Over 100 free parameters (although with some ad hoc assumptions we can reduce the number of parameters)
 - wide range of possible experimental signatures

It was expected "something" at the TeV scale

Search for susy particles

a few diagrams with susy particles in the final state, with the decay chain

 \Box Lightest susy particle ($\tilde{\chi}_1^0$) escapes detection \rightarrow Missing Transverse Momentum and Missing Energy

Different analysis strategies according to many different final states

Claudio Luci – Introduction to Particle Physics – Chapter 13

^{1/3} example: gaugino and neutralino mass limits

From other susy searches many exclusions limits on the parameters phase space

now there is less and less room to "manouver".

Particles masses higher and higher; cross-sections lower and lower

ATLAS susy particles: Run2 results

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV

Status: March 2016

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8^{-1}$	$\frac{1}{\sqrt{s}} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{c} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_1^0 \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_1^0 \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \chi_1^0 (\text{compressed}) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q (\mathcal{U}_1^0 / \mathcal{V}_1^0 \mathcal{V}_1^0 \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \tilde{\chi}_1^0 \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \mathcal{K}_1^1 \rightarrow q \mathcal{M}^\pm \tilde{\chi}_1^0 \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \mathcal{M}^2 \mathcal{I}_1^0 \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \mathcal{M} \mathcal{K}_1^0 \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \mathcal{M} \mathcal{K}_1^0 \\ \mathrm{GMSB} (\tilde{\ell} NLSP) \\ \mathrm{GGM} (higgsino-bino NLSP) \\ \mathrm{GGM} (higgsino-bino NLSP) \\ \mathrm{GGM} (higgsino-bino NLSP) \\ \mathrm{GGM} (higgsino NLSP) \\ \mathrm{GGM} (higgsino NLSP) \\ \mathrm{GGM} (higgsino NLSP) \\ \mathrm{Gravitino} \mathrm{LSP} \end{array} $	$\begin{array}{c} 0\text{-3}\ e,\mu/1\text{-2}\ \tau \\ 0\\ \text{mono-jet}\\ 2\ e,\mu\ (\text{off-}Z)\\ 0\\ 1\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 2\ r,\mu\\ 2\ e,\mu\\ \gamma\\ \gamma\\ 2\ e,\mu\ (Z)\\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets) 2 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets <i>t</i> 0 - 2 jets 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	q. ž 980 GeV q. č 980 GeV q. č 610 GeV q. č 820 GeV ž 820 GeV ž 8 ž 1 ž 1 ž 900 GeV ž 900 GeV ž 900 GeV	1.85 TeV 1.52 TeV 1.6 TeV 1.38 TeV 1.4 TeV 1.63 TeV .34 TeV .37 TeV .3 TeV	$\begin{split} & m(\vec{q}) = m(\vec{g}) \\ & m(\vec{k}^{2}) = 0 \text{ GeV}, m(1^{st} \text{ gen.} \vec{q}) = m(2^{md} \text{ gen.} \vec{q}) \\ & m(\vec{k}^{2}) = 0 \text{ GeV} \\ & m(\vec{k}^{2}) = 50 \text{ GeV} \\ & m(\vec{k}^{2}) = 50 \text{ GeV} \\ & m(\vec{k}^{2}) < 550 \text{ GeV}, cr(NLSP) < 0.1 \text{ mm}, \mu < 0 \\ & m(\vec{k}^{2}) < 550 \text{ GeV}, cr(NLSP) < 0.1 \text{ mm}, \mu > 0 \\ & m(\vec{k}^{2}) > 430 \text{ GeV} \\ & m(\vec{k}) > 1.5 \text{ TeV} \end{split}$	1507.05525 ATLAS-CONF-2015-062 <i>To uppeur</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. ã med	$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{\chi}_{1}^{1} \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	2 2 2 2 2	1.78 TeV 1.76 TeV 1.37 TeV	m $(\tilde{\chi}_1^0)$ <800 GeV m $(\tilde{\chi}_1^0)$ =0 GeV m $(\tilde{\chi}_1^0)$ <300 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} b_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow b\bar{\chi}_{1}^{0} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow d\bar{\chi}_{1}^{+} \\ \bar{r}_{1}\bar{r}_{1}, \bar{r}_{1} \rightarrow b\bar{\chi}_{1}^{+} \\ \bar{r}_{1}\bar{r}_{1}, \bar{r}_{1} \rightarrow W\bar{\chi}_{1}^{0} \text{ or } \bar{\chi}_{1}^{0} \\ \bar{r}_{1}\bar{r}_{1}, \bar{r}_{1} \rightarrow \bar{\chi}_{1}^{0} \\ \bar{r}_{1}\bar{r}_{1}, \bar{r}_{1} \rightarrow \bar{\chi}_{1}^{0} \\ \bar{r}_{2}\bar{r}_{2}, \bar{r}_{2} \rightarrow \bar{r}_{1} + Z \\ \bar{r}_{2}\bar{r}_{2}, \bar{r}_{2} \rightarrow \bar{r}_{1} + h \end{array} $	0 2 e, μ (SS) 1-2 e, μ 0-2 e, μ 0 r 2 e, μ (Z) 3 e, μ (Z) 1 e, μ	2 b 0-3 b 1-2 b 0-2 jets/1-2 l nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes 9 Yes Yes Yes Yes Yes	3.2 3.2 20.3 20.3 20.3 20.3 20.3 20.3 20	b1 840 GeV j1 325-540 GeV j117-170 GeV 200-500 GeV j1 90-198 GeV 205-715 GeV j1 90-245 GeV 205-600 GeV j1 90-245 GeV 200-610 GeV j2 290-610 GeV 320-620 GeV	ieV	$\begin{split} n(\tilde{x}_{1}^{0}) <& 100 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 50 \mbox{ GeV } n(\tilde{x}_{1}^{0}) &= m(\tilde{x}_{1}^{0}) + 100 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) &= 55 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 16 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 160 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 200 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 200 \mbox{ GeV } \\ n(\tilde{x}_{1}^{0}) &= 200 \mbox{ GeV } \end{split}$	ATLAS-CONF-2015-066 1602.09058 1209.2102,1407.0583 608616, ATLAS-CONF-2016-00 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0, \tilde{\chi}_1^+ \ell \tilde{\chi}_1^- \nu (\tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0, h \rightarrow b \tilde{b} / W W \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0 \end{pmatrix} \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \\ 4 \ e, \mu \\ d. \qquad 1 \ e, \mu + \gamma \end{array}$	0 0 - 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		$m(\bar{\chi}_1^a)=m(m(\bar{\chi}_2^a))=m(m(\chi$	$\begin{split} & m(\tilde{x}_{1}^{0}){=}0 \; \text{GeV} \\ & m(\tilde{x}_{1}^{0}){=}0 \; \text{GeV} \; m(\tilde{\xi}, \tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{-}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{x}_{1}^{0}){=}0 \; \text{GeV} ; \; m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{-}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{\lambda}_{1}^{0}){=}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{1}^{0}){=}0, \; \text{sleptons decouplec} \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{1}^{0}){=}0, \; \text{sleptons decouplec} \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{2}^{0})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived	$\begin{array}{l} \text{Direct} \ \hat{x}_1^\top \hat{x}_1^\top \ \text{prod.}, \ \text{long-lived} \\ \text{Direct} \ \hat{x}_1^\top \ \hat{x}_1^\top \ \text{prod.}, \ \text{long-lived} \\ \text{Stable, stopped} \ \hat{g} \ \text{R-hadron} \\ \text{Metastable} \ \hat{g} \ \text{R-hadron} \\ \text{Metastable} \ \hat{g} \ \text{R-hadron} \\ \text{GMSB, stable} \ \hat{\tau}, \ \hat{\chi}_1^0 \rightarrow \hat{\tau}(\tilde{c}, \tilde{\mu}) + \\ \text{GMSB}, \ \hat{\chi}_1^0 \rightarrow \hat{\tau}(\tilde{c}, \tilde{\mu}) - \hat{\chi}(\tilde{c}, \tilde{\mu}) - \\ \text{GMSB}, \ \hat{\chi}_1^0 \rightarrow eev(euv)(\mu\nu) \\ \text{GAM} \ \hat{g}_{\tilde{g}}, \ \hat{\chi}_1^0 \rightarrow Z\tilde{G} \end{array}$	$ \begin{array}{c} \tilde{\chi}^{\pm}_{1} & \text{Disapp. trk} \\ \tilde{\chi}^{\pm}_{1} & \text{dE/dx trk} \\ & 0 \\ \text{dE/dx trk} \\ \tau(e,\mu) & 1\text{-}2\mu \\ 2\gamma \\ \text{displ. }ee/e\mu/\mu \\ \text{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - μμ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X [±] 270 GeV X [±] 495 GeV 8 850 GeV 8 537 GeV X ⁰ 537 GeV X ⁰ 440 GeV X ⁰ 1.0 TeV X ⁰ 1.0 TeV	1.54 TeV	$\begin{split} m(\tilde{k}_1^2) \cdot m(\tilde{k}_1^2) & -160 \text{ MeV}, r(\tilde{k}_1^2) & = 0.2 \text{ ns} \\ m(\tilde{k}_1^2) - m(\tilde{k}_1^2) & > 160 \text{ MeV}, r(\tilde{k}_1^2) & < 150 \text{ ns} \\ m(\tilde{k}_1^2) & = 100 \text{ GeV}, 10 \mu \text{s} & < \tau(\tilde{k}) & < 1000 \text{ s} \\ m(\tilde{k}_1^2) & = 100 \text{ GeV}, r & > 10 \text{ ns} \\ 10 & \text{ctar} & \mu \text{s} & < 50 \text{ s} \\ 10 & \text{ctar} & \mu \text{s} & < 50 \text{ s} \\ 10 & \text{ctar} & \mu \text{s} & \text{s} & \text{NS} \text{ Ns} \\ r & \text{ctar} & r(\tilde{k}) & < 3 \text{ ns}, \text{ SPS8 model} \\ 7 & \text{ctr} & \tilde{k}_1^2 & < 10 \text{ ns}, \\ 10 & \text{ctar} & \mu \text{s} & = 1.3 \text{ TeV} \\ 10 & \text{ctar} & \tilde{k}_1^2 & < 400 \text{ nm}, \\ m(\tilde{k}) & = 1.1 \text{ TeV} \end{split}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\\ Bilinear RPV CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu\\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu\\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qqq\\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq\\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow bs\\ \tilde{\chi}_1\tilde{s}, 1, \tilde{s} \rightarrow bs\\ \tilde{\tau}_1\tilde{s}_1, \tilde{s}_1 \rightarrow bs \end{array} $	$\begin{array}{cccc} & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ & \tilde{\gamma}_e & 4 \ e, \mu \\ & \tilde{\gamma}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 0 \\ & 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 6-7 jets 0-3 <i>b</i> 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes - - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ \$\vec{v}_i\$ \$v	1.7 TeV 1.45 TeV	$\begin{split} &\lambda_{311}^{2}=0.11, \lambda_{1527/133/233}=0.07\\ &\pi(\hat{\rho})=m(\hat{\rho}), c_{7,57}<1\text{ mm}\\ &\pi(\hat{r}_{1}^{3})>0.2\times m(\hat{k}_{1}^{7}), \lambda_{131}\neq 0\\ &\pi(\hat{k}_{1}^{7})>0.2\times m(\hat{k}_{1}^{7}), \lambda_{133}\neq 0\\ &\text{SI}(\iota)=BR(\iota)=0.6\\ &\pi(\hat{k}_{1}^{3})=600 \text{ GeV}\\ &\text{SIR}(\tilde{i}_{1}\rightarrow be/\mu)>20\% \end{split}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
Othe	r Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		m(ℓ̃1)<200 GeV	1501.01325
*O st	nly a selection of the avail ates or phenomena is sho	able mass limi wn.	its on new		1	-1 -1 1		Mass scale [TeV]	_

Evidence for Dark Matter

Comprises **majority** of **mass** in Galaxies Missing mass on Galaxy Cluster scale Zwicky (1937)

Almost collisionless Bullet Cluster Clowe+(2006)

Large **halos** around Galaxies Rotation Curves Rubin+(1980)

Non-Baryonic Big-Bang Nucleosynthesis, C M B A c o u s t i c O s c i l l a t i o n s *WMAP*(2010),*Planck*(2015)

Detecting Dark Matter

Assumption: non-gravitational interaction with ordinary matter

Detecting Dark Matter at LHC

Non-interacting DM particles → Missing transverse energy (MET)

X (jet, photon, etc..)

General analysis strategy

- Require MET
- Select for X
- Veto other objects
- Additional cuts to suppress background
- Data-driven techniques to estimate background → invert vetoes

Results are interpreted in the Simplified Model framework to allow comparison with Direct Detection

- Mediator particle connects the SM quarks to DM particles:
 - Axial Vector, Pseudoscalar, etc...
- Model depends on four parameters:
 - DM mass, Mediator mass, SM-mediator coupling, DM-mediator coupling

DM at ATLAS; one example: monojet

Backgrounds

- Main backgrounds are EW processes with intrinsic E_T^{miss}, accompanied by jets:
 - Z(vv)+jets: irreducible background
 - W(Iv)+jets: with unrecostructed or misidentified lepton
- Both estimated from data using leptonic Z or W control regions

Other backgrounds:

- Non-collision background (data)
- Multijet background (data)
- > $Z \rightarrow ee$, top, diboson (MC)

Signal Region MET

No excess observed

Dominant uncertainties: Statistical (3-10%), top (~3%), boson+jet modeling (2-4%)

^{1/3} DM at ATLAS; one example: monojet

Results

Limits as a function of DM & mediator mass Axial vector mediator, fixed values of $g_{DM} \& g_{SM}$ DM excluded up to 250GeV for 1 TeV mediator

LHC limits reinterpreted as limit on DM-proton scattering cross-section → LHC complementary at low m_{DM}

Parameter values & limit interpretation as recommended by the LHC Dark Matter Working Group [ArXiv:1603.04156]

End of chapter 13