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Scales in the Universe

Matter: 10 Tm

Crystal: 10°m

Nucleus: 10-1%m
Interdisciplinary Research
with lons Beams
Nucleon: 1071°m

Quark-Gluon Plasma ‘
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Hadron Structure and
- Hadronic Matter Research

Quark Matter Research



-~ Protons

~~and Neutrons
) 107" m ]
Proton
/v

o

=

10" m

0

85k Nucleus

[GeV]

0.3

1

Proton

Scales in nuclear
physics

Fig. 1.1. Length scales and structural hi-
erarchy in atomic structure. To the right,
typical excitation energies and spectra are
shown. Smaller bound systems
larger excitation energies.

possess



Physical units

Common unit for length and energy:
® Length: fm (Fermi) — femtometer

1 fm = 10"">m =102 cm corresponds approximately to the size of the proton
® Energy: eV — electron volt

1 eV =1.602:10-'° J is the energy gained by a particle with charge 1e by
traversing a potential difference of 1V

Prefixes for the decimal multiples:
1keV =10% eV; 1MeV =10°eV; 1GeV =10° eV; 1TeV=1012 eV

® Units for particle masses: MeV/c?or GeV/c? according to the
mass-energy relation: Ez=mc?, the total energy E>’=mc?+p?c?

= speed of light in vacuum ¢=299 792 458 m/s

* Correspondence to the International System of Units (SI):
1MeV/ ¢? =1.783 103 kg



System of units in elementary particle physics

Length and energy scales are connected by the uncertainty principle:

Ax Ap > 1h
The Planck constant 4 is a physical constant reflecting the sizes of quanta
in quantum mechanics

h = 6.626 068 96(33) x 107 J s = 4.135 667 33(10) x 107"° eV s

h
the reduced Planck constant #: 7 = 5

Unit system used in elementary particle physics: /7 = ¢ =1

=» identical determination for masses, momentum, energy,
inverse length and inverse time
[m]=[p]=[E]=[1/L]=[1/t]= keV, MeV,...

Typical masses:

® photon m=0

® neutrinom, <1 eV

® electron m.=511 keV (=9.10938215x10-3! kg)

® nucleon (proton, neutron) m,=938 MeV (=1.672621637x10-2" kg) B



Angular momentum

Spin- ¢
The spin angular momentum S of any physical system is quantized.

The allowed values of S are: ¢ _ | s(s +1)

Spin quantum numbers s is n/2, where n can be any non-negative integer:

§ = 0,1,1,2,2,...
2" 2

—

Orbital angular momentum (or rotational momentum) — L
Orbital angular momentum can only take on integer quantum numbers

L=0,1,2,...

Total angular momentum: J — G 4 J,

For each J exist 2J+1 projections of the angular momentum

M=—J-J+1,..J—1,7



Statistics: fermions and bosons

System of N particles: 1,2,...,N
Wavefunction: @/)(ff’l, s rF’N)

Symmetry: Replace two particles: 1<->2
Ui P g g Pyr) = 0 = P 5 P s Py

Phase factor C (C?*=1):
® Bosons: C= +1
® Fermions: C=-1

Spin-statistics theorem:
¢ fermions have a half integer spin (1/2, 3/2, 5/2, ...)
® bosons have an integer spin (0, 1, 2, ...)

E.g.: Bosons: photons (y) J=1, pions () J=0
Fermions: e,u,v,p,n J=1/2, A-resonance J=3/2

10



Electric charge and dipole moment

¥ The electric charge is quantized : quanta — e

e? 1

the fine-structure constant a as: @ = — = e
f—l?ﬁ;n}iﬂ' 137

&, is the electric constant. In particle physics ¢=1,s0 o = 2 /47

® The Bohr magneton and the nuclear magneton are the physical
constants and natural units which are used to describe the magnetic
properties (magnetic dipole moment) of the electron and atomic nuclei
respectively.

Bohr magneton g (in SI units) :

g = 9.27400915x10-24 J/T
L, =1.001159652 1, = 5.7883817555x1075 eV/T

eh
QmP

nuclear magneton uy : HN = pn < pg by factor 1836

proton: u,=2.79 uy
neutron: u,= -1.91 uy~ -2/3 u, 11



Fundamental interactions

Interaction Current Theory Mediators Relative Range
Strength (m)

Strong Quantum chromodynamics(QCD)  gluons 1038 1015
Electromagnetic Quantum electrodynamics(QED) photons 1036 o0
Weak Electroweak Theory W and Z bosons 102 1018
Gravitation General Relativity(GR) gravitons 1 00

(not yet discovered)

Particle Electromagnetic Week Strong Statistic
interraction interraction  interraction
Photon + (+) B
Lepton + F
Baryon + + + F
Meson + + + B B=Bosons
Quarks + + + F F=Fermions
Gluons + B

12



Structure of atoms (history)

The existance of atomic nucleus was discovered in 1911 by Ernest

Rutherford, Hans Geiger and Ernest Marsden =

leads to the downfall of the plum pudding model (J.J. Thomson) of the atom, and
the development of the Rutherford (or planetary) model.

J.J. Thomson (1904) ,plum pudding model‘ : the atom is composed of electrons
surrounded by a soup of uniformly distributed positive charge (protons) to

balance the electrons' negative charges

Experiment 1909-1911: Rutherford
bombarded gold foils with a-particles
(ionized helium atom)

o-particles

Expected results from plum pudding
model : alpha particles passing through
the atom practically undisturbed.

Gold Foil Ernest Rutherford

(1871-1937)

& -Particle
emitter

Detecting Screen

Observed results: a small portion of
the particles were deflected by large
angles, indicating a small, concentrated

positive charge ,core* 3



Nuclear models

Rutherford (or planetary) model: Juciaus )

the atom has very small positive 'core' — nucleus - containing

protons with negatively charged electrons orbiting around it @

(as a solar sytem - planets around the sun). )
orbits |

= the atom is 99.99% empty space ! The nucleus is approximately 100,000
times smaller than the atom. The diameter of the nucleus is in the range of
1.75 fm (1.75x1071° m) for hydrogen (the diameter of a single proton) to
about 15 fm for the heaviest atoms

Experimental discovery of the neutrons — James Chadwick in 1932
(the existance of neutral particles (neutrons) has been predicted by Rutherford in 1921)

Experimentally found::

The nucleus consists of protons and neutrons

Neutron: charge = (0, spin 1/2
m,=939.56 MeV (m,=938.27 MeV)

Mean life time T, = 885.7 s ~ 15 minutes 72 —>p+e +V,

14




Nuclear force

The atomic nucleus consists of protons and neutrons (two types of baryons) bound
by the nuclear force (also known as the residual strong force).

The baryons are further composed of subatomic fundamental particles known as
quarks bound by the strong interaction. The residual strong force is a minor
residuum of the strong interaction which binds quarks together to form protons

and neutrons. @

Properties of nuclear forces :

1. Nuclear forces are short range forces. For a distance of the order of 1 fm they
are quite strong. It has to be strong to overcome the electric repulsion between the
positively charged protons.

2. Magnitude of nuclear force is the same for n-n, n-p and p-p as it is charge
independent.

3. These forces show the property of saturation. It means each nucleon interacts
only with its immediate neighbours.

4. These forces are spin dependent forces.

5. Nuclear forces do not obey an inverse square law (1/r?). They are non-central
non-conservative forces (i.e. a noncentral or tensor component of the force does not
conserve orbital angular momentum, which is a constant of motion under central
forces). 15




Nuclear Yukawa potential

Interactions between the particles must be carried by some quanta of interactions,
e.g. a photon for the electromagnetic force.

Hideki Yukawa (1907-1981): Nuclear force between two nucleons can be considered as
the result of exchanges of virtual mesons (pions) between them.

Yukawa potential (also called a screened Coulomb potential): A
e—mr = n
— o2
V(r ) =—& r Yukawa potential with a hard core:
where g is the coupling constant (strength of interraction). ;gga

repulsive core

2
i
¥

Since the field quanta (pions) are massive (m) the nuclear
force has a certain range, i.e. V>0 for large r.

At distances of a few fermi, the force between two nucleons is 0
weakly attractive, indicated by a negative potential.

s Wi

At distances below 1 fermi (ry ~1.12 fm): the force becomes
strongly repulsive (repulsive core), preventing nucleons
merging. The core relates to the quark structure of the -5
nucleons.

attraction

]

16




Global Properties of Nuclei

A - mass number gives the number of nucleons in the nucleus
Z - number of protons in the nucleus (atomic number)

N — number of neutrons in the nucleus

A=Z+N

A
In nuclear physics, nucleus is denoted as X , where X is the chemical symbol of the
element, e.g. 'H —hydrogen, '2C —carbon, > Au—gold

79

Different combinations of Z and N (or Z and A) are called nuclides

" nuclides with the same mass number A are called isobars 177 N, 1;0, 197F

" nuclides with the same atomic number Z are called isotopes 'C, °C

* nuclides with the same neutron number N are called isotones C, “N

" nuclides with neutron and proton number exchanged are called mirror nuclei f H, ; He

" nuclides with equal proton number and equal mass number, but different states of
excitation (long-lived or stable) are calle nuclear isomers 1800 180mp
7 b 7

E.g.: The most long-lived non-ground state nuclear isomer is tantalum-180m, which has a half-life in
excess of 1,000 trillion years

17
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Stability of nuclei

Stability of nucleus

/ Unstable nuclei

Decay schemes™

Stable nuclei

" o-decay — emission of o-particle (*He): 238U — 23Th + «

" B-decay - emission of electron (3-) or positron (*) by week
interaction

B~ decay: the weak interaction converts a neutron (n) into a
proton (p) while emitting an electron (e-) and an electron
antineutrino (v.): > p+e +v,

B* decay: the weak interaction converts a proton (p) into a
neutron (n) while emitting a positron (e*) and an electron neutrino

(v,): p—on+e’+v, \
 fission - spontaneous decay into two or more lighter nuclei /&
" proton or neutron emission @ @

18



@ Stability of nuclei

Stable nuclei only occur in a very narrow band in the Z —N plane. All other nuclei
are unstable and decay spontaneously in various ways.

[xe]
o
T
\
'-‘:E\
[
Q
-2

m [}-stabl lid =
In the case of a surplus | etk T

of protons, the inverse
reaction may occur: i.e.,
the conversion of a B
proton into a neutron
via B*-decays

Isobars with a large
surplus of neutrons gain
energy by converting a
neutron into a proton
via f -decays .

L1 1 1 | 1|
100 120 140 160 180

N

lllll A W
20 40 60\80

Fe- and Ni-isotopes possess the maximum binding/energy per nucleon and they are
therefore the most stable nuclides.

In heavier nuclei the binding energy is smaller because of the larger Coulomb repulsion.
For still heavier masses, nuclei become unstable to fission and decay spontaneously into
two or more lighter nuclei - the mass of the original atom should be larger than the sum

of the masses of the daughter atoms. 0



Radionuclides

Unstable nuclides are radioactive and are called radionuclides.
Their decay products ('daughter' products) are called radiogenic nuclides.

About 256 stable and about 83 unstable (radioactive) nuclides exist naturally
on Earth.

The probability per unit time for a radioactive nucleus to decay is known as the
decay constant 4. It is related to the lifetime 7 and the half life 7 ,, by:

t=1/L and t,=1In2/A

The measurement of the decay constants of radioactive nuclei is based upon
finding the activity (the number of decays per unit time):

A =—-dN/dt =N
where N is the number of radioactive nuclei in the sample.

The unit of activity is defined 1 Bq [Becquerel] =1 decay/s.

20



Binding energy of nuclei

8

The mass of the nucleus; M (Z,N)=my -N+mp-Z —Ep

Ejy is the binding energy per nucleon or mass defect (the strength of the nucleon binding ).
The mass defect reflects the fact that the total mass of the nucleus is less than the sum of the
masses of the individual neutrons and protons that formed it. The difference in mass is
equivalent to the energy released in forming the nucleus.

The general decrease in binding energy

%Fa m
-~ e A L

beyond iron (*3Fe) is due to the fact that,

29

=

§ 877%! é e — o | i as nuclei get bigger, the ability of the
27- oy, PR 0l 238y strong force to counteract the

Bedll i ueld] [ electrostatic repulsion between protons
E 54 %ay becomes weaker.

2 4. The most tightly bound isotopes are %2Ni,
g sl 8Fe, and >°Fe, which have binding

s 5 3:51 energies of 8.8 MeV per nucleon.

& Elements heavier than these isotopes can
21

=]
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20 40 60 80 100 120 140 160 180 200 220 240

Mass number [A)

yield energy by nuclear fission; lighter
isotopes can yield energy by fusion.

Fusion - two atomic nuclei fuse together to form a heavier nucleus
Fission - the breaking of a heavy nucleus into two (or more rarely three) lighter nuclei

21



Nuclear Landscape

Nuclear Landscape
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@ Nuclear abundance

Abundance of the elements in the solar system as a function of their mass number A,
normalized to the abundance of silicon Si (= 10°):

' T 1 T Light nuclei: the synthesis of the presently
1010)" | existing deuterium >H and helium *He
He from hydrogen 'H fusion mainly took place
_ | at the beginning of the universe (minutes
1084 o -+ after the big bang).
C|Ne
’ 7 Nuclei up to >°Fe, the most stable nucleus,
1081 l{ S Fe Abundance [Si=10] were produced by nuclear fusion in stars.
A
L. (Ea - 1 Nuclei heavier than this last were created
1 . .
104l |Na |  in the explosion of very heavy stars
F P (supernovae)
£ s i
1021 -
i L GZL(rZr i
t= Sn Pt 1
i D¥vbht( \H8]
10-2 | | | 1 1 1 | | | | 1 | | | | | 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

Mass number A 23
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Size of nuclel

The diameter of the nucleus is in the range of 1.75 fm (1.75x10~1°> m) for hydrogen (the

diameter of a single proton) to about 15 fm for the heaviest atoms, such as uranium.

The charge distribution function of a nucleus
= Woods-Saxon distribution:

Po

r—R
1+e ¢

p(r)=

where r is the distance from the center of nucleus;
the parameters are adjusted to the experimental
data:

a=0.5 fm

po =0.17 fm — normal nuclear density

R = Ry"A fm - nuclear radius
where the radius of nucleon is Ry=1.2 fm

Experimental data show that R~A13 =
Stable nuclei have approximately a constant
density in the interior

Charge Distribution (e/ fm?)

o
=
T

0.05

=
(=

I (fm)

i B
E nucle

ar radius |
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Nuclear models

Nuclear models

/

Models with strong interaction between

the nucleons

C
*s* Liquid drop model
C
%* a-particle model

*%* Shell model

N/
" LN

Nucleons interact with the nearest
neighbors and practically don‘t move:
mean free path A << R, nuclear radius

N

Models of non-interacting
nucleons

o .
** Fermi gas model

X Optical model

N/
“‘...

Nucleons move freely inside the nucleus:
mean free path A ~ R, nuclear radius

25



The liquid drop model

8

The liquid drop model is a model in nuclear physics which treats the nucleus as a drop of
incompressible nuclear fluid, first proposed by George Gamow and developed by Niels Bohr
and John Archibald Wheeler. The fluid is made of nucleons (protons and neutrons), which are
held together by the strong nuclear force. This is a crude model that does not explain all the
properties of the nucleus, but does explain the spherical shape of most nuclei. It also helps to
predict the binding energy of the nucleus.

The parametrisation of nuclear masses as a function of A and Z, which is known as the
Weizsicker formula or the semi-empirical mass formula, was first introduced in 1935

M(A,Z)=Zm ,+ Nm , - E,

Eg is the binding energy of the nucleus :

) 72 (N=2)2 5
EB = ay - A — as - A3 — ac - —t —ASym * ————— — —
- — o’ A3 . A . Al/2
" Volum term Surface term — e
Coulomb term Assymetry term  Pairing
term
Empirical parameters:
ay =~ 16MeV —11.2 MeV/c? for even Z and N (even-even nuclei)
as ~ 20MeV g 0 MeV/c? for odd A (odd-even nuclei)
ac ~ 0,75MeV +11.2 MeV/c? for odd Z and N (odd-odd nuclei).

ASym ~ 21MeV 26



@ Binding energy of the nucleus

Volume energy (dominant term): E, =a,A

The basis for this term is the strong nuclear force. The strong force
affects both protons and neutrons =» this term is independent of Z. (%)

The strong force has a very limited range, and a given nucleon may only

interact strongly with its nearest neighbors and next nearest neighbors.

Therefore, the number of pairs of particles that actually interact is K
roughly proportional to A.

2/3
Surface energy: Es=-asA

This term, also based on the strong force, is a correction to the volume term. A nucleon at the
surface of a nucleus interacts with less number of nucleons than one in the interior of the
nucleus, so its binding energy is less. The surface energy term is therefore negative and is
proportional to the surface area :

If the volume of the nucleus is proportional to A (V=4/37R?), then the radius should be
proportional to A1/3 (R~A1/3 and the surface area to A2/3 (S=1 R2=nA2/3),

Z 2
Coulomb (or electric) energy: Ec=-ac A3
The electric repulsion between each pair of protons in a nucleus contributes toward
decreasing its binding energy: q.q
from QED - interaction energy for the charges q,,q, inside the ball £, ~ # -



Binding energy of the nucleus

E =-a —(N —Z )2
Asymmetry energy (also called Pauli Energy): asym = “hsym T

An energy associated with the Pauli exclusion principle: two fermions can not occupy exactly
the same quantum state . At a given energy level, there is only a finite number of quantum
states available for particles.

As long as mass numbers are small, nuclei tend to have the same number of protons and
neutrons. Heavier nuclei accumulate more and more neutrons, to partly compensate for the
increasing Coulomb repulsion by increasing the nuclear force. This creates an asymmetry in
the number of neutrons and protons.

For, e.g., 28Pb it amounts to N —-Z = 44. The dependence of the nuclear force on the surplus of
neutrons is described by the asymmetry term. This shows that the symmetry decreases as the
nuclear mass increases.

If it wasn't for the Coulomb energy, the most stable form of nuclear matter would have N=Z,
since unequal values of N and Z imply filling higher energy levels for one type of particle,
while leaving lower energy levels vacant for the other type

Pairing energy: E = o

pair A3
An energy which is a correction term that arises from the effect of spin-coupling. Due to
the Pauli exclusion principle the nucleus would have a lower energy if the number of
protons with spin up will be equal to the number of protons with spin down. This is also
true for neutrons. Only if both Z and N are even, both protons and neutrons can have
equal numbers of spin up and spin down particles An even number of particles is more
stable (0<0 for even-even nuclei) than an odd number (6>0). 78




@ The liquid drop model

20 The different contributions to the
< N binding energy per nucleon versus mass
[ B Volume energy number A:
S ..F -~ ~
— 15 i Surface ener [ The horizontal line at ~ 16 MeV
% s represents the contribution of the
: \ Coulomb aner \ volume energy.
10 N M\ This is reduced by the surface energy,
= Asymmetry energy —— the asymmetry energy and the
L o Coulomb energy to the effective
5 Total binding energy binding energy of = 8 MeV (lower line).
- The contributions of the asymmetry
i and Coulomb terms increase rapidly
0 l l ' | | with A, while the contribution of the
0 50 100 150 200 230 surface term decreases.

A

The Weizsicker formula is often mentioned in connection with the liquid drop model. In fact,
the formula is based on some properties known from liquid drops: constant density, short-
range forces, saturation, deformability and surface tension. An essential difference, however,
is found in the mean free path of the particles: for molecules in liquid drops, this is far

smaller than the size of the drop; but for nucleons in the nucleus, it is large.
29
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The basic concept of the Fermi-gas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly
interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli
exclusion principle =

 Simple picture of the nucleus:

— Protons and neutrons are considered as moving freely within the nuclear volume.
The binding potential is generated by all nucleons

— In a first approximation, these nuclear potential wells are considered as
rectangular: it is constant inside the nucleus and stops sharply at its edge

— Neutrons and protons are distinguishable fermions and are therefore situated in
two separate potential wells

Proton

— Each energy state can be ocupied by two potential— -~ "
nucleons with different spin projections w2 PE

— All available energy states are filled by Neutron Protons Neutons | |

the pairs of nucleons = no free states , no potentil ﬁ x
transitions between the states oo ool |
— The energy of the highest occupied state DA

is the Fermi energy Ep

— The difference B ‘ between the top of the well and the Fermi level is constant for
most nuclei and is just the average binding energy per nucleon B/A =7-8 MeV. ,



Number of nucleon states

Heisenberg Uncertainty Principle: Az Ap > %fi.
The volume of one particle in phase space: 27 7

The number of nucleon states in a volume V:

Hd d’p V"‘”T”Z"I’

= 0 (1)
(271)° (271:)°

At temperature T = 0, i.e. for the nucleus in its ground state, the lowest states
will be filled up to a maximum momentum, called the Fermi momentum py.
The number of these states follows from integrating eq.(1) from 0 to p,,..=Pr:

V-4x | pid
Y vz p; V-p; 2)
n= 3 T 3 = n=-—.3
(2711) (271)* -3 67°h
Since an energy state can contain two fermions of the same species, we can have
3 3
: V-(p2) v-(p2)
Neutrons: N = - g ; Protons: Z = Py ; ;

pr" is the fermi momentum for neutrons, p? — for protons



Fermi momentum

4z 4z
Use R= R, A3 fm, 14 =?R3 =?R03A

The density of nucleons in a nucleus = number of nucleons in a volume V:
3 3 3.3
671’ 3 ' extn® 9 Y

two spin states

n=2

Fermi momentum pg:

1/3 1/3 1/3
p _ 67[2;_13” _ 9”%3 n _ 97[ n h (4)
’ 2V 4A R, 4A R,
After assuming that the proton and neutron potential wells have the same radius,
we find for a nucleus with n=2=N =A/2 the Fermi momentum p_.

1/3
pp=pr=pl= 9_7[ i =~ 250 MeV /c il’h.e nucleons move t:reely
8 R, <+——_ inside the nucleus with large

momenta.

2
Fermi energy: E, = zpF =~ 33 MeV

M =938 MeV- the mass of nucleon 4



Nucleon potential

Prote R . The difference B¢ between the top of the
potential—- | well and the Fermi level is constant for
— 1 A most nuclei and is just the average binding
Neutron 'Protons  Neutrons , B
potential | -0-0———0-0— energy per nucleon B/A =7-8 MeV.
00 0O | \70
oo o0 EP |ED =» The depth of the potential V, and the
Sl g | Fermi energy are independent of the mass
v

number A:

V,=E,+B =40 MeV

Heavy nuclei have a surplus of neutrons. Since the Fermi level of the protons and
neutrons in a stable nucleus have to be equal (otherwise the nucleus would enter a
more energetically favourable state through #-decay) this implies that the depth of
the potential well as it is experienced by the neutron gas has to be larger than of the
proton gas (cf Fig.).

Protons are therefore on average less strongly bound in nuclei than neutrons. This
may be understood as a consequence of the Coulomb repulsion of the charged

protons and leads to an extra term in the potential:
o he

Ve=(4-1) 7 5




Kinetic energy

The dependence of the binding energy on the surplus of neutrons may be
calculated within the Fermi gas model.

First we find the average kinetic energy per nucleon:

d LY P
n - 3
j E. dE j E. dp n r
dp where = Const - p
J-EF dl 5 J-pF dn d P v
o dE o dp P distribution function
pr 15 24 5 . of the nucleons
kin P~ ¢ ; |
o p7dp b 2M

The total kinetic energy of the nucleus is therefore

o (¥ GRP+ 2 1)

@ 3 h? 4 \'”3 ol (5)
Ban(N, 2) = 10371 R? ( -f ) A2/3

where the radii of the proton and the neutron potential well have again been
taken the same. 6




Binding energy

This average Kinetic energy has a minimum at N = Z for fixed mass number A (but
varying N or, equivalently, Z). Hence the binding energy gets maximal for N = Z.

If we expand (5) in the difference N — Z we obtain

3 R
- 10M R?

O
8

Ein(N. Z)

(

The first term corresponds to the volume
energy in the Weizsiacker mass formula,
the second one to the asymmetry energy.
The asymmetry energy grows with the
neutron (or proton) surplus, thereby
reducing the binding energy

Note: this consideration neglected the
change of the nuclear potential connected
to a change of N on cost of Z. This
additional correction turns out to be as

important as the change in Kinetic energy.

2/3 E(N 2
) A 2(‘\ Z) +)

9T A
/
/

E  Net Proton Potential

A

e

Ve
Net Neutron Tmniil |
Potential ‘ SN
| ey
Fermi Level Q?_ * /
| |
\ |
\ /i
\ /i

SymmctryI
Effect

b

;‘r Coulomb Effect




Shell model

Magic numbers: Nuclides with certain proton and/or neutron numbers are found
to be exceptionally stable. These so-called magic numbers are

2,8, 20, 28, 50, 82, 126
— The doubly magic nuclei:  SHe,, 1%°0g, 30Cagg, 30Cass, a9°Pbiog

— Nuclei with magic proton or neutron number have an unusually large number
of stable or long lived nuclides.

— A nucleus with a magic neutron (proton) number requires a lot of energy to
separate a neutron (proton) from it.

— A nucleus with one more neutron (proton) than a magic number is very easy to
separate.

— The first exitation level is very high: a lot of energy is needed to excite such
nuclei

— The doubly magic nuclei have a spherical form

=> nucleons are arranged into complete shells within the atomic nucleus



Excitation energy for magic nuclei
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Fig. 17.5. The energy E of the first excited state of even-even nuclei. Note that it
is particularly big for nuclei with “magic” proton or neutron number. The excited
states generally have the quantum numbers J¥ = 27. The following nuclei are
sxceptions o this ride: §He., "800k, a8 Caans 55 Gean: 3088sn (OF); 2558 tiaa, 282Pbias
(37) and 13Cg, 304 (17). E; is small further away from the “magic” numbers —
and is generally smaller for heavier nuclei (data from [Le78]).



Nuclear potential

The energy spectrum is defined by the nuclear potential
=» solution of Schrodinger equation for a realistic potential

The nuclear force is very short-ranged => the form of the potential follows the
density distribution of the nucleons within the nucleus:

= for very light nuclei (A < 7), the nucleon distribution has Gaussian form
(corresponding to a harmonic oscillator potential)

= for heavier nuclei it can be parameterised by a Fermi distribution. The latter
corresponds to the Woods-Saxon potential
e.g. 3) approximation by the

1) Woods-Saxon potential: {/(r)=— Uy — rectangular potential well
1 — with infinite barrier energy :
+e
2) a>0: U(r) -

approximation by the
|~ rectangular potential

well : 0 R T
—038 U( )_ _UO’ r<R U 0, r<R
~1.0 : 3 r[gn] 3 3 7 3 r)= 0, I‘ZR (r)_ oo, I"ZR



Schrodinger equation

Schrodinger equation: HY = E¥Y (1)
Single-particle n K2
Hamiltonian operator: H=- M +U(r) (2)

Eigenstates: W(r) - wave function
Eigenvalues: E - energy
U(r) is a nuclear potential — spherically symmetric =

2
V2=la(za)+ 1 a(sin6’)+ 10

o\ or) r’sind o6 r’sin’ @ 0¢’
Angular part: A= 2 (sing)+— L&
nstiiar part: siné 06 sin’ 8 0¢°
W Al=1’ Vz—ia rZa 1 L
T rPor\' or) rn
L — operator for the orbital angular momentum
1y, (6,p) =11 +1)Y,,(6,9) 3)

Eigenstates: Y,,, — spherical harmonics
11



Radial part

The wave function of the particles in the nuclear potential can be decomposed into
two parts: a radial one % /(r), which only depends on the radius r, and an angular
part Y,,,(0, ¢) which only depends on the orientation (this decomposition is possible

for all spherically symmetric potentials):

‘P(r,é’, (0): ¥ (r)-Y,, (99 (0) @
From (4) and (1) =>
i 1a(,0) 117 _
[_ZMrar( ar)-l_r_ﬁ } 1(")YM)—E ‘Pl(")YMP)
=> e(. for the radial part:
{_ 19 ( 0 ]+h2 W+D }‘Pl(r)=E %, (r) )
2M r*or\ or) r* 2M
Substitute in (5): v (r)= R(r)
r
@ _nd R(r)+h l(l+1)R(r)=E R(r) (6)

2M  dr? rr 2M
12



Constraints on E

Eq. for the radial part: n* dzRg") + [E _h_z AU +1)}R(r) —0 (7)
2M  dr
From (7) 2
1) Energy eigenvalues for orbital angular momentum /:
E:
I=0 s
I=1 p states
I=2 d
=3 f

2) For eachl: -l<m <l => (2l+1) projections m of angular momentum.

The energy is independent of the m quantum number, which can be any integer
value between * /. Since nucleons also have two possible spin directions, this
means that the [ levels are 2-(2/+1) times degenerate if a spin-orbit interaction is
neglected.

3) The parity of the wave function is fixed by the spherical wave function Y,; and
_1)\ n
reads (~1)% P‘P(r,@, (0)= PY\(r)-Y,, (99 (0): (_l)l ¥ (r)-Y, (99 (0)

= s,d,.. -even states; p.f,... - odd states
13



Main quantum number n

Eq. for the radial part: n* dzRg" ) +|E— h_z lI+1) R(r)=0 (7)
2M dr r

Solution of differential eq: y”(r)+A(r)y(r)=0

J.(x)

0 *‘& = %(0,0)=" )it Y,,(0,0)

_2ME

=» Bessel functions j,(kr)

Jy(x) 2
: Tx(x) k

O 100 1 #?
) Jy(x)

.-/

0.4 l=1 \‘ =2\

0.2

Boundary condition for the surface, i.e. at r=R: WY(R,0,0) =0

=» restrictions on k in Bessel functions: j,(kr)=0

= main quantum number n — corresponds to nodes of the Bessel function : X,

2ME
2

k-Rr)=X kK*R*=X R*=X? 8)
nl nl nm

14



Shell model

Thus, according to Eq. (8) :

=0 s—states }j,

n=1 X,=314
n=2 X, =628
n=3 X, =942

=1 p-states j,

=1 X, =449
X, =772

2

=2 d—states j,
1 X,,=5.76
3

f —states j,

X, =6.99

n=1
=4 g-—states j,
n=1 X,=81

X2 n

— X2 9
E, = MR {— E,=Const-X, )

Nodes of Bessel function

Energy states are quantized =» structure of energy states E

state E ,=C-X’ degeneracy states withE<E,

Is E,=C-9.86 2 2+
1p E,,=C-202 6

d E,=C-332 10 18

2s E, =C-395 2
1f E,, =C-488 14 34
2p E, =C-59 6 40
lg E,=C-64 18 58

First 3 magic numbers are reproduced, higher — not!
2, 8, 20, 28, 50, 82, 126

Note: here for U(r) = rectangular potential well

with infinite barrier energy 5



Shell model with Woods-Saxon potential

Woods-Saxon potential:

0.0+

=02

U =-—
1+e ¢ "l
N 0o 1 2 2 3 3 4 4 A4
nt Is 1p 1d 2s 1f 2p 1g 2d 3s
Degeneracy 2 6 10 2 14 6 18 10 2
States with E < E,, | 2 8 18 20 34 40 58 68 70

The first three magic numbers (2, 8 and 20) can then be understood as
nucleon numbers for full shells.This simple model does not work for the
higher magic numbers. For them it is necessary to include spin-orbit

coupling effects which further split the n/ shells.

16




Spin-orbit interaction

Introduce the spin-orbit interaction V,; — a coupling of the spin and the orbital

angular momentum: Ve
H=- + U(r ) + ‘/ls
2M

2

hzl +U(r)+V, }P(r,e, ¢)=E ¥(r,6,9)

hZI +U (r)}y(’” 6,0)=(E~V,) ¥(r,6,p)

where  V,¥(r,0,p) =V, ¥(r,6,9)
Eigenstates eigenvalues
spin-orbit interaction: Vi =C,(,s)
total angular momentum: } =1 +s
e TN N3
Jjoj=U +s)I +s)=1 +s +2s
-2 -2 -2

> - 1
l.s=—(j =1 —
s 2(1 S )

17



Spin-orbit interaction

1_.2 -2 =2

C, E(J -l —s )¥Y(r,0,p)=V ¥ (r,0,p)

Vv, =C, —[](]+1) I(I+1)-s(s+1)]

Consider:
1 Rl 1 1 1 3] h?
i =1+—: V.=C,—|(I+>)1+>)-1*-1-=-=|=C,,—1
J=0T s =G| U 22|74
1 A | 1 1 3] h?
=1——: V.=C,—|(I-)I+=>)-1I"-1-=--=|=-C, —(I+1
J 2 Is Is 2 ( 2)( 2) 2 2_ Is ( )

This leads to an energy splitting 4E,, which linearly increases with the angular

momentum as 27 +1
AE Is =~ <‘/ls >

It is found experimentally that V, is negative, which means that the state with
J =I+ 1/2 is always energetically below the j =1 — 1/2 level.

18



Spin-orbit interaction

The total angular momentum quantum
number j = [£1/2 of the nucleon is denoted by
an extra index j:  nl;

the 1f state splits into a 1f,, and a 1fs,,
1f;,
The nlj level is (2j + 1) times degenerate

=» Spin-orbit interaction leads to a sizeable
splitting of the energy states which are indeed
comparable with the gaps between the nl
shells themselves.

Magic numbers appear when the gaps
between successive energy shells are
particularly large.

2, 8, 20, 28, 50, 82, 126

Single particle energy levels:
X2

3d — e T2
52

J @D o —|:. 112
— 12 i
|' ! a2
| .
1i—| L
126 —— - — —
RS e Eee,, . L
{ 52 f L2
2f 2f —| -
12 ="
| |
| |
|
1h —| i _|_|'_
3?—'—4___22__2 e — P
2d 11/ 2d —{ ne
et ' “5/2
I| T/2 |
_|
19— A S
0T ____“5’2_1;2(“0 i Y2 112
PO @ T
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20— —-——— .
az_gj o a2
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