- Introduction: an historical review
- Applications in medical diagnostics
- Particle accelerators for medicine
- Applications in conventional radiation therapy
- Hadrontherapy, the frontier of cancer radiation therapy
- Proton-therapy
- Carbon ion therapy
- Neutrons in cancer therapy

Diagnostics is essential!

CT and Hounsffeld numbers

G. Hounsfield

1979 Nobel Prize for Physiology or Medicine

Through the measurement of the attenuation coefficient in many directions and slices (i.e. many radiographies) the Hounsfield numbers are calculated for all the Voxels (=VOlume piXELS)

Nuclear Magnetic Resonance

1938-1945

Felix Bloch and Edward Purcell discover and study NMR

In 1954 Felix Bloch became
the first CERN Director General

MRI = Magnetic Resonance Imaging

A MRI scanner

SPECT = Single Photon Emission Computer Tomography

In reactors slow neutrons produce ${ }^{98} \mathrm{Mo}+\mathrm{n}={ }^{99} \mathrm{Mo}+\mathrm{y}$
${ }^{99} \mathrm{Mo}(66 \mathrm{~h})={ }^{99 \mathrm{~m}}$ Tc $(6 \mathrm{~h})+\mathrm{e}^{-}+\mathrm{V}$ gamma of 0.14 MeV

Emilio Segrè

1937: Discovery of element 43 "Technetium" ${ }^{97} \mathrm{Tc}(2.6 \mathrm{My})$
1938: discovery of ${ }^{99 m}$ Tc with E. McMillan

The element 43

* Lanthanide Series	$\begin{array}{\|c} 58 \\ \mathrm{Ce} \end{array}$	$\begin{gathered} 59 \\ \mathrm{Pr} \end{gathered}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	61	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	${ }^{63} \mathrm{Eu}$	$\begin{gathered} 64 \\ \mathbf{G d} \end{gathered}$	$\begin{array}{\|c} 65 \\ \mathrm{~Tb} \end{array}$	Dy	$\stackrel{67}{67}$	Er	Tm	${ }^{70} \mathrm{Yb}$	$\begin{array}{\|c} 71 \\ \mathbf{L u} \end{array}$
Series	$\begin{aligned} & 90 \\ & \hline 90 \\ & \hline \end{aligned}$	Pa	$\begin{array}{\|c} 92 \\ \mathbf{U} \end{array}$	93	94	95	96	97	98	99	100	101	102	103

Legend - click to find out more..

H - gas	Li - solid	Br - liquid	Tc - synthetic
Non-Metals	Transition Metals		Rare Earth Metals
Alkali Metals	Alkali Earth Metals		Halogens
Other Metals		Inert Elements	

- The element 43 was missing
- In 1925 W. Noddack and I.

Tacke announced the discovery of Rhenium (75) and Masurium (43)

- In 1934 Fermi and his group were bombarding "all" the elemnts with slow neutrons and Segrè was in charge of procuring the different elements
- ...but asking for a sample of Masurium he was answerd "Numquam vidi"...

The discovery of technetium

The Rad Lab is officially established within the UC Physics
Department with Lawrence as director; in Italy, Segrè examines an "invaluable gift" of material irradiated by the 27 -inch cyclotron and discovers the first artificial element, later named technetium.

The discovery of technetium

- Lawrence was using deflectors for the cyclotron made of Molybdenum (42)
- Segrè thought : Molybdenum + proton... 42 + 1 = 43 !
- In February 1937 Segrè received a letter from Lawrence with some Molybdenum coming from the deflectors and...
- ...the element 43 was identified with the help of a chemist (Carlo Perrier)
- The element 43 was called Technetium since it is the first element artificially produced (the most stable isotope has an half-life of 4.2 x 10^{6} years)

SPECT scanner

85\% of all nuclear medicine

examinations use technetium

produced by slow neutrons
in reactors

- Measurement of the density the molecules which contain technetium
- Information on morphology and/or metabolism
... liver
lungs bones ...

Lead collimators to channel the gammas of 0.14 MeV

Positron Emission Tomography (PET)

- FDG with ${ }^{18}$ F is the most used drug (half life 110 minutes)
- Measurement of the density of ${ }^{18} \mathrm{~F}$ through back-to-back gamma detection
- Information on metabolism

- H_{2} water is bombarded with protons to produce ${ }^{18} \mathrm{~F}$
- Fluoro-Deoxy-D-Glucose (FDG) is synthesized

- FDG is transported to the hospital
- FDG is injected into the patient
- FDG is trapped in the cells that try to metabolize it
- Concentration builds up in proportion to the rate of glucose metabolism
- Tumors have a high rate of glucose metabolism and appear as "hot spots" in PET images

- 18FDG/PET images
- The cocaine addict has depressed metabolism !

The BGO calorimeter of the L3 experiment at LEP

 (CERN 1989-2000)BGO crystals have been developed for detectors in particle physics

- 11000 BGO crystals
- Precise measurement of the energy deposited by the particles
- Almost 4π coverage

The new diagnostics: CT/PET

morphology metabolism

David Townsend
CERN: 1970-78
Uni Ginevra
UPSM Pittsburgh and

Ronald Nutt
(CTS - CTI)

Exercise: the production of FDG for PET

The full FDG-PET chain

Courtesy IBA

- 20 MeV proton beam (cyclotron)
- Current: $50 \mu \mathrm{~A}$
- FWHM : about 15 mm
- Target : 99\% 18-O enriched water
- Reaction : 18-O (p,n) 18-F
- Fluorine 18 : half-life $\mathrm{t}_{1 / 2}=110 \mathrm{~min}$.
- Irradiation time 60 min.

One TR19 cyclotron by the company ACSI
(Vancouver, Canada) is installed at the Policlinico Gemelli in Rome

It is daily used for FDG production

The target

Pipes for cooling. Why?
Let's suppose that the beam completely stops in the target:
$20 \mathrm{MeV} \times 50 \mu \mathrm{~A} \times(1 / \mathrm{e})=1000 \mathrm{~W}$
$1 \mathrm{cal}=4.18 \mathrm{~J}$ i.e. $1 \mathrm{~cm}^{3}$ of water passes between 0 and 100 degrees

Scheme \& questions

20 MeV proton

Enriched water
target
(about $1 \mathrm{~cm}^{3}$)

- The proton stops in water?
- "Sometimes" the reaction 18-O (p,n) 18-F occurs. Probability?

Range of the protons in water

Important to remember : $\mathbf{2 0 0} \mathbf{~ M e V} \rightarrow \mathbf{2 7} \mathbf{c m}$

Range of protons in water

$20 \mathrm{MeV} \rightarrow \mathbf{0 . 4} \mathbf{~ c m ~} \mathbf{-}$ All protons stop in the target

Residual range

Energy (MeV)	Range (cm)
20	0.42
15	0.25
10	0.12
5	0.036

20	0	0.17	0.30	0.42	1.0	Path (cm)
	20	15	10	0		Energy (MeV)

The reaction can take place in any point of the path
i.e. at different energies !

A useful link:

physics.nist.gov - NIST National Institute of Standards and technology

The cross section

For the exercise we will consider an average value of 100 mb for all the energies
(1 barn = 10-24 cm^{2})

Calculations

- How many 18-O targets are there?
$20 \mathrm{~g}(18+1+1)$ of enriched H 2 O contain N_{0} molecules
$\rightarrow 6.022 \times 10^{23} / 20 \rightarrow 3 \times 10^{22} 18-0$ atoms/cm ${ }^{3}$
- How many "bullets" per second?

Current / charge of the proton

$$
N_{R}=\sigma \times \frac{I}{e} \times \frac{N_{t}}{V} \times L_{t} \times \Delta t
$$

N_{R}	number of reactions i.e. number of 18-F nuclides produced
σ	cross section
I	beam current
e	charge of the electron
N_{t}	number of traget 18-O nuclei
V	volume of the target
L_{t}	thickness of the target ?
$\Delta \mathrm{t}$	Irradiation time interval

- Thickness of the target \rightarrow range $=0.42 \mathrm{~cm}$
- In 60 minutes : $\mathrm{N}_{0}=2 \times 10^{15} 18$-F nuclei are produced
- Which is the corresponding activity?
- $N(t)=N_{0} \times \exp (-t / \tau)$
- At $\mathrm{t}=0$ the activity $\mathrm{dN} / \mathrm{dt}$ is: N_{0} / τ
- F-18: $\mathrm{t}_{1 / 2}=110 \mathrm{~min} \rightarrow \tau=\mathrm{t}_{1 / 2} / \ln 2=158 \mathrm{~min}=9480 \mathrm{~s}$
- Activity : A $=2 \times 10^{11} \mathrm{~Bq}(\mathrm{~Bq} \rightarrow$ Bequerel)
- $1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}(\mathrm{Ci} \rightarrow$ Curie $)$
- The produced activity is about 6 Ci at the end of the irradiation
$\Delta N=A \times \Delta t-N(t) \times \frac{\Delta t}{\tau}$
Irradiation

Decay

$$
N(t)=A \tau \times\left(1-e^{-t / \tau}\right)
$$

- If $\mathrm{t} \ll \tau$ the effect can be neglected
- If $t \gg \tau$ saturation effect : production \sim decay
- For 18-F : the regime is far from saturation for $\mathrm{t}<120 \mathrm{~min}$.
- Exercise - Taking this effect into account about 4.5 Ci of activity are produced in 60 min . irradiation

A realistic supply chain

End of part II

