NEUTRINO PHYSICS

Oscillations and Majorana neutrino

31 may 2011

"Neutrino Physics": http://www.roma1.infn.it/people/rahatlou/FNS3/

Dipartimento di Fisica

Fabio Bellini

Corso di Fisica Nucleare e Subnucleare II, A.A.2010-2011 http://www.romal.infn.it/people/luci/corso_fnsII.html

NEUTRINO OSCILLATION

• Neutrino flavour:

• Experimental observation:

- Implications:
 - Leptons mix: lepton flavour not conserved
 - Neutrinos have non zero mass: there must be some v mass spectrum
- Mixing angles? Neutrino masses? Dirac or Majorana?

NEUTRINOS IN THE STANDARD MODEL

- Fermions described by a Dirac field Ψ
- Standard Model(MS): chiral theory SU(2)_L X U(1)_Y
 - Chirality projector $P_{L}^{(R)}=(1\pm\gamma_{5})/2$, $P_{L}^{(R)}\Psi=\Psi_{L}^{(R)}$
 - Ψ_L and Ψ_R have different properties under SU(2)_L
 - ▶ Ψ_R SU(2) singlet \Rightarrow doesn't couple with W,Z bosons
 - \blacktriangleright Ψ_{L} SU(2) doublet
 - Mass term (after EW symmetry breaking): $m\overline{\Psi}_{L}\Psi_{R}$ + h.c. $\Rightarrow mix \Psi_{L}and \Psi_{R}$
- Minimal Standard Model(MMS):
 - neutrinos are massless!
 - there are only 3 neutrinos lighter than $M_Z/2$
- Neutrino interaction:

- Charged current:
$$\mathcal{L}_W = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} (\overline{\ell}_{L\alpha} \gamma^{\lambda} \nu_{L\alpha} W_{\lambda}^- + \overline{\nu}_{L\alpha} \gamma^{\lambda} \ell_{L\alpha} W_{\lambda}^+)$$

- Neutral current: $\mathcal{L}_Z = -\frac{g}{\cos\theta_W} \sum_{\alpha=e,\mu,\tau} \overline{\nu}_{L\alpha} \gamma^{\lambda} \nu_{L\alpha} Z_{\lambda}$

 $\alpha = e, \mu,$

INCORPORATE MASS AND MIXING

- **Higgs mechanism** (like in the quark sector):
 - Introduce Dirac Mass Term and diagonalize the mass matrix
 - Unitary matrix appears in Interaction Lagrangian
 - Neutral current not affected: <u>GIM mechanism</u>

$$\mathcal{L}_W = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau i=1,2,3} (\bar{\ell}_{L\alpha} \gamma^\lambda U_{\alpha i} \nu_{Li} W_\lambda^- + \bar{\nu}_{Li} \gamma^\lambda U_{\alpha i}^* \ell_{L\alpha} W_\lambda^+)$$

$$Amp(W^+ \rightarrow I_{\alpha} + v_i) = g/\sqrt{2}U_{\alpha i}^{*} \qquad \xrightarrow{v_i} \quad \frac{g}{\sqrt{2}}U_{\alpha i} \quad \ell_{\alpha}^{-}$$

• Orthogonality: 3 flavours ⇒ at least 3 mass eigenstates

$$|\nu_{\alpha}\rangle = \sum_{i=1,2,3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad |\nu_{i}\rangle = \sum_{\alpha=e,\mu,\tau} U_{\alpha i} |\nu_{\alpha}\rangle$$

• Flavour fraction of $|v_i\rangle = |U_{\alpha i}|^2$

v field: creates \overline{v} and destroys v This is why U* appear when ket $|v\rangle$ used

CHIRALITY AND HELICITY

Chirality (X)

- Acts on Dirac Spinor Space
- Projector: $P_L^{(R)} = (1 \pm \gamma_5)/2$
- Lorentz invariant! Interactions don't depend on reference frame!!
- Not conserved: mass term mixes right and left component

Helicity (H)

- Acts on physical space: spin projection on momentum direction H=σ·p/|p|
- Projector: $\Pi_{L}^{(R)} = (1 \pm \sigma \cdot p/|p|)/2$
- Not Lorentz invariant for massive particle, momentum reversed if boost with β>β_m=p/E
- Conserved

If m=0 Helicity and Chirality coincide (not the case for neutrinos!): X=H+O(m/E)

Nature has related the Weak Force to chirality eigenstates

WHAT WE KNOW FROM EXPERIMENTS

• Neutrino mixing matrix:

$$U_{PMNS} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \begin{bmatrix} 0.84 & 0.54 & 0.14 \\ 0.38 & 0.60 & 0.70 \\ 0.38 & 0.60 & 0.70 \end{bmatrix}$$

	CKM		
0.97	0.22	0.003	
0.22	0.97	0.04	
0.009	0.04	0.99	

• Neutrino mass spectrum

- Quarks and charged legsoalapdedagedtasardissingaestiatesU(2)xU(1)
- Neutrinos as flavour eigenstates
- Unitary triangles, useful when measure sides and angles, have no practical use in lepton flavour mixing
 - neutrino oscillation theory

SPECIAL CASE: 2 NEUTRINOS

- Similar to $K^0-\overline{K}^0$ mixing: weak eigenstates \neq strong eigenstates
 - but neutrinos don't decay (no exponential term)
 - always relativistic and tiny mass difference
 - **Flavour change in vacuum oscillates with L/E**:

(macroscopic quantum coherence interference)

• Why quarks and charged leptons don't oscillate?

$$U = \begin{array}{c} \nu_{1} & \nu_{2} \\ cos\theta & sin\theta \\ -sin\theta & cos\theta \end{array} \right]$$

$$P[\nu_{\alpha} \to \nu_{\beta}] = \sin^2(2\theta)\sin^2(\Delta m^2 L/4E)$$

no distinction $\theta \Leftrightarrow \pi/2-\theta$, $\Delta m^2 \Leftrightarrow -\Delta m^2$

if $\Delta m \text{ or } \theta = 0 P(\nu_{\alpha} \Rightarrow \nu_{\beta}) = \delta_{\alpha\beta}$

3 NEUTRINOS CASE

$$P[\nu_{\alpha} \rightarrow \nu_{\beta}] = \delta_{\alpha\beta} - 4\sum_{i>j} Re(U^*_{\alpha i}U_{\beta i}U_{\alpha j}U^*_{\beta j})sin^2(\Delta m^2_{ij}L/4E) + 2\sum_{i>j} Im(U^*_{\alpha i}U_{\beta i}U_{\alpha j}U^*_{\beta j})sin^2(\Delta m^2_{ij}L/2E)$$

• Phenomenology simplified by two experimental results:

one small angle: 9₁₃<10°

- Experiments with $\Delta m^2 L/E=O(1)$ can't distinguish δm_{SOL} eigeinstates (m₁ and m₂)

sensitive to 3rd column

- At solar energies (MeV) μ,τ under production threshold:
 - sensitive to 1st row
- $|U_{e3}| = sin(9_{13})$ 9_{13} only link between oscillations: $9_{13} < 10^{\circ}$
 - oscillations decoupled

F. Bellini

THE ATMOSPHERIC ANOMALY

- Primary cosmics produce π in the upper atmosphere:
 - $\pi \Rightarrow \mu \nu_{\mu}, \mu \Rightarrow e \nu_{\mu} \nu_{e} \quad \varphi(\nu_{\mu}) = 2 \cdot \varphi(\nu_{e})$

- Isotropy of the >2GeV cosmic rays flux + Gauss' law :
 - v rate up/down symmetric (no need knowledge flux)

- Measuread Flux: $[\phi(v_{\mu})/\phi(v_{e})]/[\phi(v_{\mu})/\phi(v_{e})]_{MC} \sim 0.65$
- - $P_{ee}=1$, $P_{e\mu}=0$, $P_{\mu\mu}=1$ -sin²(2 Θ_{Atm})sin²($\Delta m^2_{Atm}L/4$
 - Zenith no oscillation, Nadir average oscillation
 - ► $P_{\mu\mu} = 1 0.5 \cdot \sin^2(2 \vartheta_{Atm}) = 1 0.5 N^{\uparrow}/N^{\downarrow} \Rightarrow \vartheta = 45^{\circ}$
 - Oscillations start horizontal: Ev~GeV, L~1000km,
 - $\Delta m^2_{Atm} \sim E_v/L \ 3 \cdot 10^{-3} \ eV$

NEUTRINOS FROM THE SUN

In the center of the sun $4p + 2e^{-} \rightarrow {}^{4}He + 2v_{e}$ Q=26.73 MeV $<E_{v}>\approx 0.3 \text{MeV}$

Solar $\Phi(v) \approx 6 \cdot 10^{10} v/cm^2 s$

10

These are ν_2 Neutrinos !!!

SOLAR ANOMALY

• Several experiments sensitive to different solar v's measure a v flux deficit: problem with solar model?

- SNO(D₂0 Cerenkov detector) measure both charged and total v flux:
 - ES: $v_{e,\mu,\tau}e \rightarrow v_{e,\mu,\tau}e \Rightarrow \Phi(v_e) + 0.155 \Phi(v_{\mu,\tau})$
 - CC: $v_e D \rightarrow e^-pp \Rightarrow \Phi(v_e)$
 - NC: $vD \rightarrow vpn \Rightarrow \Phi(v_{e,\mu,\tau})$
- NC rate as expected from Solar Model

• CC/NC ratio: $\frac{\phi(\nu_e)}{\phi(\nu_e) + \phi(\nu_{\mu,\tau})} = 0.357 \pm 0.030$

THE WHOLE PICTURE

 $|\Delta m_{13}^2| \approx |\Delta m_{23}^2| \approx |\Delta m_{atm}^2| \approx (2.40 \pm 0.15) \cdot 10^{-3} \text{ eV}^2 \quad \Delta m_{12}^2 \approx \Delta m_{sol}^2 \approx (7.58 \pm 0.21) \cdot 10^{-5} \text{ eV}^2$

12

MASS SPECTRUM

- From oscillation experiments we know that neutrinos are massive:
 |Δm²₁₃|≈|Δm²₂₃|≈|Δm²_{atm}|≈(2.40±0.15) · 10⁻³ eV² Δm²₁₂≈Δm²_{sol}≈(7.58±0.21) · 10⁻⁵ eV²
- Oscillation experiments are not sensitive to the absolute neutrino mass

DIRECT MEASUREMENT

- Based purely on kinematics without further assumptions
 - Kinematically constrained measurement: $\pi \rightarrow \mu \nu, \tau \rightarrow 5\pi \nu$
 - Not competitive $m_{\nu} \leq O(100 \text{ keV})$ for π decay (MeV for τ decay)
 - Time of flight
 - ▶ long baseline \Rightarrow neutrino from supernovae explosion (emitted in 10 s) m_v≤O(10eV)

⁻ Events fraction near end-point ≈ $(m_v/Q)^3$: 10⁻¹³ for ³H ⇒ low Q, high count rate & energy resolution

KATRIN

• The MAC-E filter:

- Adiabatic guiding of electrons along magnetic field:
 - $\mu = E_{K\perp}/B = \text{const}$
 - $E_e = E_{K\perp} + E_{K\parallel} = const$
 - ► $E_{K\perp} \Rightarrow E_{K||}$
 - High energy pass filter to due potential $E_{K||}>U_0$
- High resolution $\Delta E/E=B_{min}/B_{max}\approx 10^{-4}$
- Large solid angle: 2π

Actual limits m_v ≤ 2.3 eV 90% CL (Mainz,Troitsk)

Katrin points to $m_v \approx 0.2.eV$

F. Bellini

MAJORANA OR DIRAC

LEPTON NUMBER CONSERVATION

- Experimental evidence:
 - Particle produced together with μ^+ in π^+ decay produce a μ^- and never a μ^+
 - Opposite for π^- decay

• Conventional explanation

- $-\ v_{\mu}$ and \overline{v}_{μ} are distinct from each other
- There exists a quantum number conserved during interactions: the lepton number
 - Dirac fermion
- Alternative explanation
 - Weak interactions couple to chirality eigenstates
 - <u>Left-handed</u> chirality particle interacts giving a μ^- (μ^+ opposite for right-handed chirality)
 - There exists only one particle with two chirality states
 - We don't see μ^+ because chirality flip is suppressed $\propto (m_{\nu}/E_{\nu})^2$

Majorana fermion

F. Bellini

MAJORANA NEUTRINO

- Dirac equation: $i(\gamma^{\mu}\partial_{\mu}-m)\Psi=0$
 - Ψ_L , Ψ_R irreducible representations of Lorentz group (Chirality $P_L^{(R)}=(1\pm\gamma_5)/2$, $P_L^{(R)}\Psi=\Psi_L^{(R)}$)
 - $\Psi = \Psi_L + \Psi_R , i \gamma^{\mu} \partial_{\mu} \Psi_L = m \Psi_R , i \gamma^{\mu} \partial_{\mu} \Psi_R = m \Psi_L$
 - Massless fermions described by two degrees of freedom: decoupled equations
- Minimal description of a massive neutral fermion with 2 degrees of freedom (Majorana 1937):
 - $\Psi = \Psi^{c}$ particle and anti-particle coincide
- C charge conjugation operator: $\Psi^{C} = C\overline{\Psi}^{T}$, $C = i\gamma^{2}\gamma^{0}$
 - Using γ properties: Ψ^{c}_{R} is left-handed
 - $\Psi = \Psi^{c} \Rightarrow \Psi_{L} + \Psi_{R} = \Psi^{c}_{L} + \Psi^{c}_{R} \Rightarrow \Psi_{R} = \Psi^{c}_{L}, \Psi_{L} = \Psi^{c}_{R}$
 - Only two independent components: $\Psi^{M}=\Psi_{L}+\Psi^{C}_{L}$
 - Majorana theory simpler ad more economical then Dirac theory
- If Ψ≡Ψ^C
 - No longer free to phase-redefine v_i without consequences
 - Mixing matrix U can contain addition CP-violating phases
 - Affect only processes with lepton number violation

 $U_{PMNS} \cdot \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

F. Bellini

MASS TERM

MS: chiral theory SU(2)_L X U(1)_Y

- Ψ_L and Ψ_R have different properties under SU(2)_L: Ψ_L doublet, Ψ_R singlet
- Ψ_L , Ψ_R irreducible representations of Lorentz group
- General Lorentz invariant mass term includes:
 - Dirac mass term: $L^{D} = -m_{D} \overline{\Psi}^{D} \Psi^{D} = -m_{D} (\overline{\Psi}_{L} \Psi_{R} + \overline{\Psi}_{R} \Psi_{L})$
 - Need a Ψ_{R} <u>sterile</u> component
 - L^{D} creates/absorbs v_{L} and absorbs/creates \overline{v}_{R}
 - ▶ L^D mixes chirality, <u>does not</u> mix particle/antiparticle component
 - Majorana Mass term: $L^{M}=-1/2m_{M}\overline{\Psi}^{M}\Psi^{M}=-1/2m_{M}(\overline{\Psi}^{C}_{L}\Psi_{L}+\overline{\Psi}_{L}\Psi^{C}_{L})$
 - ▶ L^M create/absorbs **one** particle <u>with left and right chirality</u>
 - ▶ L^M mixes chirality, mixes <u>charge conjugated components</u>
 - ➡ Violation of any additive quantum number (Lepton number, etc...)
 - Only possible for totally (under all MS gauge groups) neutral particles
 - Only neutrinos could have this mass term, they are very peculiar

MASS MATRIX

- Most general mass term **for 1 v** compatible with Lorentz invariance: $L^{D+M}=L^{D}+L^{M}L+L^{M}R$
 - $L^{D+M} = -m_D \overline{\Psi}_L \Psi_R 1/2m_M \overline{\Psi}_L^C \Psi_L 1/2m_M \overline{\Psi}_R \Psi^C_R + h.c.$

$$L^{D+M} = -\frac{1}{2} \begin{bmatrix} \bar{\nu}_L^C & \bar{\nu}_R \end{bmatrix} \begin{bmatrix} m_L & m_D \\ m_D & m_R \end{bmatrix} \begin{bmatrix} \nu_L \\ \nu_R^C \end{bmatrix} + h.c.$$

Right components, sterile

Left components, active

field notation change $\Psi \rightarrow v$

$$\mathcal{L}^{\mathrm{D+M}} = \frac{1}{2} \overline{N_L^c} M N_L + \mathrm{H.c.}, \qquad M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}, \qquad N_L = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}.$$

- VL, VR are not mass eigenstates, only neutrino fields in term of which the model is constructed
- Diagonalizing the Mass Matrix:

$$N_{L} = U n_{L}, \qquad n_{L} = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \end{pmatrix}, \qquad U^{T} M U = \begin{pmatrix} m_{1} & 0 \\ 0 & m_{2} \end{pmatrix}, \qquad L^{D+M} = -\frac{1}{2} \sum_{k=1,2} m_{k} \bar{\nu}_{kL}^{C} \nu_{kL} + h.c$$
$$\nu_{k} = \nu_{kL} + \nu_{kL}^{c} \qquad (k = 1, 2).$$

- Most general D+M mass term = Sum of 2 Majorana mass term for the fields $v_k = v_k^C$
- ► As a result of K⁰K⁰ mixing, the neutral K mass eigenstates are K_L, K_S=0.5(K⁰±K⁰). As a result of neutrino mixing (induced by Majorana mass term) v mass eigenstates are Majorana neutrino
- ► $N_L=Un_L \Rightarrow v_L$, v_R^C combination of v_{1L} , v_{2L} , *possible oscillation between sterile and active states*

SEE-SAW

- Majorana masses cannot come from the progenitor of the Dirac Mass term: H_{SM} $\overline{v}_R v_L$
- Possibles progenitors of Majorana mass term:
 - H_{SM} H_{SM} V^CV_L: <u>not renormalizable</u> (v^CV_L isospin triplet)
 - H_{Isospin=1} v
 ^Cv_L: excluded by Standard Model measurements (Z,W couplings and widths)
 - $m_R \overline{v}_R^C v_R$: ok ($\overline{v}_R^C v_R$ Isospin singlet)
 - ▶ mL=0
 - ▶ m_D: order of magnitude EW symmetry breaking scale ≈100 GeV
 - m_R: unprotected by any symmetry
 - ➡ If MS is a low energy effective theory of a more general gauge group, it's reasonable to expect m_R of the order of this new symmetry breaking scale
 - → $m_R \approx m_D^2/m_v \approx 10^{15} \text{ GeV} \approx \text{GUT scale}!$
 - 2 Majorana neutrinos, one big mass sterile neutrino $(m_N = m_R)$, one light neutrino $(m_v = m_D^2/m_R)$
 - Explanation of the smallness of neutrino mass
 - Sterile neutrinos are very heavy and therefore decoupled from the active ones

HOW TO TEST MAJORANA NATURE

- The most sensitive LNV process: Neutrinoless Double Beta Decay (0vββ)
- Second order weak nuclear process: $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$
 - $(A,Z) \rightarrow (A,Z+2) + 2 e^- + 2\overline{v}$ allowed by the MS

Only if:

massive neutrinos \rightarrow chirality flip Majorana neutrino $\Delta L=2$

• Possible only in few even-even nuclei:

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

NEUTRINOLESS DOUBLE BETA DECAY: 0VBB

• Many diagrams can contribute:

Whatever diagram causes 0vββ, it's observation would imply Majorana mass

Schetcher, Valle Phys. Rev. D25 2951 1982

NEUTRINOLESS DOUBLE BETA DECAY: 0Vββ

• Assuming the dominant mechanism is:

- Chirality flip \Rightarrow Amp($0\nu\beta\beta$) \propto | $\sum m_i U_{ei}^2$ | $\equiv m_{\beta\beta}$
 - > This is what you expect, the only term that violates L in the lagrangian is the v mass term

$$m_{\beta\beta} = \cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13}$$

Due to Majorana phases cancellations may occur

$0\nu\beta\beta \Leftrightarrow \nu$ Mass

• The measurable quantity is the half life:

F. Bellini

$0\nu DBD$ in Experiments

THE ISOTOPE CHOICE

27

EXPERIMENTAL STRATEGIES

source ≠ detector

source = detector

+++ Topology, Bkgd($2\nu\beta\beta$ exception) --- M, ΔE, ε

Calo-tracko detectors (NEMO, MOON, DCBA)

+++ M, ΔE, ε --- Topology, Bkgd(2vββ exce.)

Diodes (MAJORANA, GERDA) Bolometers (CUORE, LUCIFER) Solid-state devices scintillators (COBRA) Solid scintillators(CANDLES) Liquid loaded scintillator(SNO++,Kamland) Gaseous/Liquid TPC (EXO)

HEIDELBERG-MOSCOW: KLAPDOR CLAIM

source = detector

- 5 HP-Ge diodes: 10.9 kg (86% enriched ⁷⁶Ge)
- Exposure: 53.9 kg y (1990-2001)
- $\Delta E_{FWHM} \sim 4 \ keV @ Q_{BB} \approx 2039 \ keV$
- $\tau^{0\nu}{}_{1/2} > 1.9 \cdot 10^{25} \, y \ \Leftrightarrow \ \left< m_{\beta\beta} \right> \ < 0.35 \ eV$

- Exposure: 71.7 kg y(1990-2003)
- Background ~0.11 counts/keV/kg/y

$$\tau^{0\nu}{}_{1/2} = 1.2 \cdot 10^{25} \text{ y}$$
$$\Leftrightarrow$$
$$\left< m_{\beta\beta} \right> = 0.44 \text{ eV}$$

CUORICINO

- Particle energy converted into phonons \rightarrow temperature variation $\Delta T = E/C$
- Need very low heat capacity: TeO₂ crystals (dielectric, diamagnetic) @~8mK

source = detector

Detector response in this configuration: ≈ 0.1 mK/MeV ≈ 0.3 mV/MeV

CUORICINO RESULTS

- Exposure (2003-2008):
 - $M \cdot t = 19.75 \text{ kg}^{130} \text{Te} \cdot \text{y}$
- Background level:

 $(0.16\pm0.01) \rm counts/keV/kg/y$

 $\tau_{1/2}^{0\nu} > 2.8 \cdot 10^{24} \,\mathrm{y} \,@90\% CL$

- ~50% from degraded α from inert material (Cu) facing crystals
- ~40% from ²⁰⁸Tl multi-Compton (cryostat contamination)
- ΔE_{FWHM}~7.5 keV @ Q_{ββ} ~2527 keV

 $m_{\beta\beta} < 0.3 \div 0.7 \,\mathrm{eV}$

NEMO 3

Tracking detector: ~6000 Geiger mode drift chambers (95%He+4%alcohol+1%Ar)

NEMO 3 RESULTS

Isotope	Exposure (kg·y)	Τ _{1/2} (Ονββ), γ	$\langle m_v \rangle$, eV [NME ref.]
¹⁰⁰ Mo	26.6	> 1.1 · 10 ²⁴	< 0.45 - 0.93 [1-3]
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 - 1.6 [1-3]; < 2.3 [7]
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.7 - 2.4 [4,5] ;< 4.8 - 7.6 [6]
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 - 3.1 [2,3]
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 - 19.5 [2,3]
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6 [7]

Background: natural radioactivity, mainly ²¹⁴Bi and ²⁰⁸Tl, Rn, neutrons (n,γ), muons F. Bellini

Isotope	S/B	(2νββ), γ (ΝΕΜΟ 3)
¹⁰⁰ Mo	40	$(7.11 \pm 0.02(stat) \pm 0.54(syst)) \cdot 10^{18}$ (SSD favoured) [1]
¹⁰⁰ Mo(0 ⁺ ₁)	3	(5.7 ^{+1.3} -0.9(stat))±0.8(syst))·10 ²⁰ [2]
⁸² Se	4	(9.6± 0.3(stat)±1.0(syst))·10 ¹⁹ [1]
¹¹⁶ Cd	7.5	(2.8± 0.1(stat)±0.3(syst))·10 ¹⁹ [3]
¹³⁰ Te	0.35	(6.9± 0.9(stat)±1.0(syst))·10 ²⁰ [6]
¹⁵⁰ Nd	2.8	(9.11 ^{+0.25} -0.22(stat)±0.63(syst))·10 ¹⁸ [4]
⁹⁶ Zr	1.0	(2.35± 0.14(stat)±0.16(syst))·10 ¹⁹ [5]
⁴⁸ Ca	6.8	(4.4 ^{+0.5} _{-0.4} (stat)±0.4(syst))·10 ¹⁹ [6]

FUTURE STRATEGIES

• Enrichment: difficult and expensive

- To start to explore(cover) inverted hierarchy:
 - M~0.1(1) Ton
 - B~10⁻²(10⁻³) counts/keV/kg/y
- Background sources:
 - Natural radioactivity: U, Th($\tau \sim 10^{10}$ y) in detector and surroundings
 - Contamination ~10⁻¹³ g/g (close or below detectability of HPGE, NAA, ICPMS)
 - Neutrons: from radioactivity and muon-induced
 - Cosmic rays: (in)direct interaction and activation

CUORE

Closed packed array of 988 TeO₂ crystals ≈200 Kg ¹³⁰Te ~10²⁷ nuclides

LUCIFER

• Scintillating bolometers: use different α/γ light emission for background discrimination

F. Bellini

GERDA

Background: detector surroundings & Ge cosmogenic activation source = detector cleanroom lock Phase 1: - 18 kg bare (HM+IGEX) ⁷⁶Ge diodes in LAr Background ~10⁻² counts/keV/kg/y LN/LAr _ lead Scrutinize KK-HM claim in 1 year — Ge Commissioning started Nov 2010 insulation water

• Phase 2:

- 40 Kg enriched segmented diodes
- Background ~10⁻³ counts/keV/kg/y
- Sensitivity: $\tau^{0\nu}_{1/2} \sim 2 \cdot 10^{26} y$ $\langle m_{\beta\beta} \rangle < 90-200 \text{ meV}$

SUPERNEMO

First prototype module in 2011

x 20	NEMO-3		SuperNEMO
	$\frac{100}{T_{1/2}} M_0 = 7.10^{18} y$	Choice of isotope	⁸² Se (and/or ¹⁵⁰ Nd) $T_{1/2}(\beta\beta 2\nu) = 10^{20} y$
	7 kg	Isotope mass M	100 - 200 kg
	$\varepsilon(\beta\beta0\nu) = 8 \%$	Efficiency E	$\epsilon(\beta\beta0\nu) \sim 30 \%$
	$^{214}\text{Bi} < 300 \ \mu\text{Bq/kg}$ $^{208}\text{Tl} < 20 \ \mu\text{Bq/kg}$	$N_{exclu} = f(BKG)$ Internal contaminations 208 TL and 214 Bi in the BB fail	$^{214}\text{Bi} < 10 \ \mu\text{Bq/kg}$ $^{208}\text{Tl} < 2 \ \mu\text{Bq/kg}$
	$(^{208}\text{Tl}, ^{214}\text{Bi}) \sim 1 \text{ evt}/ 7 \text{ kg}/\text{y}$		$(^{208}\text{Tl}, ^{214}\text{Bi}) \sim 1 \text{ evt}/ 100 \text{ kg}/\text{y}$
	FWHM(calo)= <mark>8%</mark> @3MeV	2νββ	FWHM(calo)=4% @3MeV
	$T_{1,2}(\beta\beta 0v) > 2.10^{24} v$	SENSITIVITY	$T_{1/2}(\beta\beta 0v) > 2 \ 10^{26} v$
	$< m_{v} > < 0.3 - 0.7 \text{ eV}$		$< m_{v} > < 50 \text{ meV}$
	1) ββ s	ource production	2) Energy resolution
	3) Radi	opurity	4) Tracking
5 m			

EXO-200

• 200 kg Liquid (80% ¹³⁶Xe) Xe TPC + scintillation: ¹³⁶Xe \rightarrow ¹³⁶Ba⁺⁺ + 2e⁻ (+ 2v_e)

Charge collection

-75kV

Mass $(ton)_{13}$	Eff. ₀(%)	Run Time (yr)	σ _E /E @ 2.5MeV (%)	Radioactive Background (events)	শT _{1/2} ⁰∿ββ -(yr, 90%CL)	m _{ββ} (meV)
0.2	70	2	1.6	40	6.4×10 ²⁵	133-186

- Full EXO ~Ton scale gas or liquid TPC
- Single Ba⁺ tagging in real time
 - Ion extraction from TPC and trapping
 - Ion identification with Laser Induced Fluorescence
 F. Bellini

source = detector

LOADED LIQUID SCINTILLATORS

Poor resolution but hugh mass and low background compensate

source = detector

Data taking foreseen in 2011

SNO++

¹⁵⁰Nd (i.a.=5.6%)

0.1% natural load Nd ~56 kg ¹⁵⁰Nd

ΔE_{FWHM}~ 6.4% @ 3367 keV

Sensitivity(3y): $\langle m_{\beta\beta} \rangle \sim 100 \text{ meV}$

Kamland -Xe ¹³⁶Xe (i.a.=8.9%) 200-400 kg enriched ¹³⁶Xe ΔE_{FWHM} ~5% @ 2479 keV Sensitivity(5y): 〈m_{ββ}〉 <150 meV

