RICHIAMI DI TERMOLOGIA

- Introduzione alla Termodicamica
- Temperatura e calore
- Misura della temperatura
- Principio zero della termodinamica
- Taratura del termometro
- Scale di temperatura: Celsuis, Fahrenheit, Kelvin
- Termometro a gas a volume costante
- Gas ideale

Termodinamica: introduzione

Prendete un cubetto di ghiaccio dal frigorifero e poggiatelo sul tavolo.

Potete misurare varie grandezze meccaniche:

- massa, volume, densità, forza normale, coefficiente di attrito, etc...
- Allontanatevi ... tornate ... trovate una pozza d'acqua al posto del cubetto di ghiaccio.
- Con i concetti studiati in meccanica non si riesce a spiegare in modo "semplice" il fenomeno. Occorre introdurre concetti nuovi:
 - temperatura
 - calore
 - energia interna
 - stato termodinamico
 - etc..

Termodinamica: introduzione

- La termodinamica è nata per studiare i fenomeni termici, in particolare per studiare il funzionamento delle macchine termiche
- La termodinamica si basa sull'enunciazione di alcuni principi:

```
principio zero (1930)
```

- primo principio (1842)
- secondo principio (1824)
- terzo principio (1906)
- La termodinamica permette di trovare i punti di equilibrio di una reazione chimica tramite i potenziali termodinamici:
 - energia interna
 - entropia
 - entalpia
 - energia libera (Helmotz)
 - entalpia libera (Gibbs)

Calore e Temperatura

Esempio: guardiamo da "molto vicino" un solido cristallino:

- Ogni atomo è legato agli altri da forze elastiche e può vibrare intorno alla posizione di riposo.
- L'energia di ogni atomo, nel sistema di riferimento in cui il centro di massa del solido è fermo, vale:

$$E = \frac{1}{2}mV_x^2 + \frac{1}{2}mV_y^2 + \frac{1}{2}mV_z^2 + \frac{1}{2}kx^2 + \frac{1}{2}ky^2 + \frac{1}{2}kz^2$$
Energia cinetica Energia potenziale

La <u>TEMPERATURA</u> di un corpo è la misura dell'energia media di un atomo del corpo stesso:

$$E_{\text{media}} = 6 \cdot 1/2 \cdot kT = 3kT$$

- k = costante di Boltzman = 1.38 •10-23 J/K
- T = temperatura del corpo misurata in kelvin

[Il fattore 6 viene dal teorema di equipartizione dell'energia]

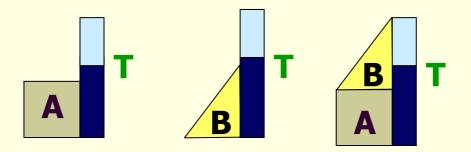
Variazione di Temperatura

- Per variare la temperatura di un corpo occorre variare l'energia media di un singolo atomo (o di una singola molecola)
- Se date una spinta al corpo, aumentate la sua velocità, quindi cambiate l'energia cinetica del centro di massa, ma NON la sua temperatura.
- Strofinate invece il corpo senza spostarlo. Le forze di attrito trasmettono il movimento coerente dello straccio ad un movimento incoerente degli atomi, ed il corpo di conseguenza si scalda.
- Mettete il corpo a contatto con uno più "caldo". Parte dell'energia degli atomi si trasferirà dal corpo più caldo a quello più freddo fino a quando l'energia media di un atomo sarà la stessa per tutti e due i corpi [equilibrio termico]. Un corpo si "scalda" e l'altro si "raffredda".
- Questo trasferimento incoerente di energia si chiama CALORE.
- Trasferimento coerente : <u>LAVORO</u>. Trasferimento incoerente : <u>CALORE</u>.

Calore

- Nel 1700 si pensava al calore come qualcosa contenuto in un corpo, il "calorico", che si trasmetteva da un corpo ad un altro.
- Il conte di Rumford dimostrò che questo era falso, con l'attrito si può "produrre" calore.
- Tuttavia il modello del calorico è utile per eseguire dei calcoli sulla trasmissione del calore.
- Nello stesso periodo di studiavano anche i fenomeni elettrostatici e si assumeva che all'interno di un corpo vi fosse qualcosa chiamato carica elettrica che si trasmette da un corpo ad un altro.

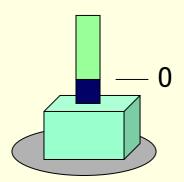
E questo è giusto.


Misura della Temperatura

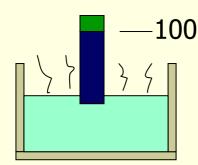
- Variando l'energia media degli atomi (o delle molecole in un gas) cambiano anche alcune caratteristiche macroscopiche della sostanza.
- Ad esempio può cambiare la distanza interatomica [proprietà microscopica]. Ad un'energia media più grande corrisponde una distanza più grande, allora la sostanza si dilata [proprietà macroscopica].
- Misurando ad esempio le variazioni di volume di un liquido si può misurare la sua variazione di temperatura (termometro a mercurio).
- Altre proprietà che si possono usare:
 - cambiamento di resistività di un filo
 - variazione di pressione di un gas a volume costante
 - variazione della differenza di potenziale tra le due saldature di una termocoppia
 - etc...
- La variazione di proprietà macroscopiche al variare della temperatura è diversa da sostanza a sostanza.
 Esempio: coefficiente di dilatazione termica α.

 $\Delta V = V \cdot \alpha \Delta T$

Principio zero della Termodinamica


- Se due corpi A e B si trovano in equilibrio termico con un terzo corpo T, allora essi sono in reciproco equilibrio termico.
- Supponete che il corpo T sia il tubicino di vetro contenente del mercurio:

- Per misurare T dovete aspettare un certo tempo affinché si stabilisca l'equilibrio termico tra il corpo ed il termometro.
- Se i due corpi A e B provocano lo stesso allungamento della colonna di mercurio, allora vuol dire che sono in equilibrio termico tra loro, cioè <u>hanno la stessa</u> <u>temperatura.</u>
- Il funzionamento dei termometri si basa sul principio zero, perché si misura sempre la temperatura del termometro e mai quella del corpo.
- La temperatura è una grandezza intensiva.


Taratura del termometro: scala Celsius

Mettiamo a contatto il termometro a mercurio con un cubetto di ghiaccio che sta fondendo:

All'altezza raggiunta dal mercurio nel tubicino si fa corrispondere la temperatura di 0 °C

Mettiamo ora a contatto il termometro con l'acqua che sta bollendo:

All'altezza raggiunta dal mercurio nel tubicino si fa corrispondere la temperatura di 100 °C

- Si divide ora la distanza tra 0 °C e 100 °C in 100 parti uguali, in modo tale che il grado Celsius (centi-grado) corrisponda alla centesima parte della differenza di temperatura tra il ghiaccio che fonde e l'acqua che bolle.
- Problema: l'acqua non bolle sempre alla stessa temperatura, ma dipende dalla pressione atmosferica.

Taratura del termometro: scala Fahrenheit

- Negli Stati Uniti utilizzano una diversa scala per misurare la temperatura:
 - la temperatura del ghiaccio fondente è 32 °F
 - la temperatura dell'acqua che bolle è 212 °F
 - la differenza di temperatura tra questi due punti è 180 °F.
- Quindi ΔT=100 °C = 180 °F

$$\Rightarrow$$
 1° C = $\frac{180}{100}$ ° F = $\frac{9}{5}$ ° F = 1.8° F

Per passare da °C a °F si fa:

$$T_F = 1.8 T_C + 32$$

Per passare da °F a °C si fa:

$$T_C = (T_F - 32) \cdot 5/9$$

esempio: 100 °F -> °C

$$T_C = (100 - 32) \cdot 5/9 = 37.8 \, ^{\circ}C$$

100 °F corrispondono circa alla temperatura del corpo umano.

Qual'è la scala giusta per misurare la temperatura?

Abbiamo detto che la temperatura è proporzionale all'energia media di un atomo (o di una molecola).

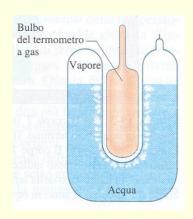
 $E_{\text{media}} = 3KT$ [per un solido cristallino]

Quale T dobbiamo usare?

- L'energia media è sempre positiva, quindi anche T deve essere positiva.
- Se gli atomi non vibrassero, l'energia media sarebbe nulla e T dovrebbe valere zero. La meccanica quantistica predice che l'energia non può mai essere uguale a zero, quindi T=0 non potrà mai essere ottenuta.
- La corrispondenza tra energia e temperatura deve essere univoca. T può essere determinata usando una legge fisica e non per confronto (taratura).
- Con un termometro a gas si può misurare T usando come calibrazione il punto triplo dell'acqua.

Termometro a gas a volume costante

- Si immerge il bulbo di gas nel bagno di cui si vuole misurare la temperatura
- Si alza o si abbassa il serbatoio R in modo tale che l'altezza del mercurio nella colonna di sinistra sia sempre la stessa. In questo modo si mantiene costante il volume occupato dal gas.
- Dalla differenza di altezza h del mercurio nei due bracci si misura la pressione del gas.


$$P_0 = P + \rho gh$$
 $P = P_0 - \rho gh$ (P=pressione del gas)

Si trova che vale la relazione: T = C·P

C è una costante di proporzionalità che va determinata con una procedura di calibrazione.

Calibrazione del termometro a gas: scala Kelvin

- Si possono usare le temperature di fusione del ghiaccio e di ebollizione dell'acqua.
- Oppure si può usare il punto triplo dell'acqua.

Solido-liquido-vapore possono coesistere soltanto ad una data temperatura e pressione

- Per l'acqua si ha: $P_3 = 6.11 \cdot 10^2$ Pa = 4.58 mm Hg
- Per DEFINIZIONE la temperatura del punto triplo vale:

$$T_3 = 273.16 \text{ K}$$

- quindi il kelvin è definito come 1/273.16 volte la temperatura del punto triplo dell'acqua.
- Temperatura di fusione del ghiaccio: 273.15 K (0 °C)
- Temper. di ebollizione dell'acqua = 373.15 K (100 °C)
- $\Delta T = 1 \text{ K è uguale a } \Delta T = 1 ^{\circ}\text{C}$
- Per passare da Kelvin a Celsius si fa:

$$Tc = T - 273.15$$

Misura della temperatura con il termometro a gas

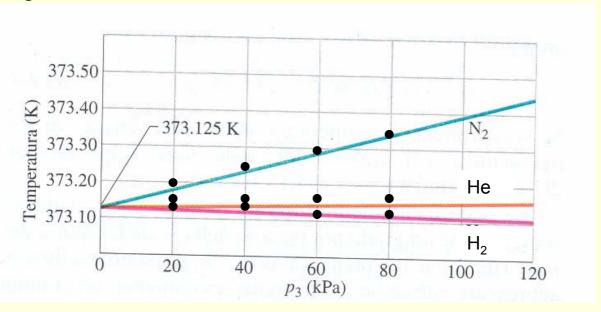
Dalla misura della temperatura del punto triplo abbiamo:

$$T_3 = C \cdot P_3$$
 $C = costante da determinare $P_3 = pressione del gas$
 $T_3 = 273.16 \text{ K}$$

 Misuriamo ora una temperatura qualsiasi, ad esempio l'acqua bollente.
 La pressione del gas sarà P

$$T = C \cdot P$$

Eliminando C dalle due equazioni si ha:


$$T = T_3 \cdot (P/P_3) = 273.16 \cdot (P/P_3)$$

$$[C=273.16/P_3]$$

- Quindi misurando la pressione P del gas si ricava la temperatura del gas e quindi dell'oggetto con il quale esso è in equilibrio termico.
- DOMANDA: la temperatura T misurata sarà la stessa qualunque sia il gas usato e qualunque sia la pressione P₃ del gas in corrispondenza del punto triplo?

Gas ideale

Misuriamo il punto di ebollizione dell'acqua con vari gas a diverse densità:

- Variare la densità del gas equivale a variare la pressione P₃ in corrispondenza del punto triplo.
- Si vede sperimentalmente che la misura della temperatura dell'acqua dipende sia dal tipo di gas che dalla densità, ovvero da P₃.
- Se prendiamo il gas sempre più rarefatto, diminuendo cioè P₃, le varie misure si avvicinano.
- Estrapolando le misure per P₃=0, convergono verso lo stesso valore.
 - Questo è quello che si otterrebbe con un gas ideale.
- Il comportamento di un gas reale tende sempre più a quello di un gas ideale tanto più la sua densità tende a zero.

Temperature di alcuni punti fissi

	Punti fissi	T in °C	T in K
Campione	Punto triplo dell'acqua	0.01	273.16
Principali	PEN dell'idrogeno (punto dell'idrogeno)	-252.88	20.26
	PEN dell'ossigeno (punto dell'ossigeno)	-182.97	90.17
	Equilibrio di ghiaccio e acqua satura d'aria (punto del ghiaccio)	0.00	273.15
	PEN dell'acqua (punto del vapor d'acqua)	100.00	373.15
	PFN dello zinco (punto dello zinco)	419.51	692.66
	PFN dell'antimonio (punto dell'antimonio)	630.50	903.65
	PFN dell'argento (punto dell'argento)	961.90	1235.05
	PFN dell'oro (punto dell'oro)	1064.50	1337.65
Secondari	PEN dell'elio	-268.93	4.22
	PEN del neon	-246.09	27.09
	PEN dell'azoto	-195.81	77.35
	PFN del mercurio	-38.86	234.29
	Punto di transizione del solfato di sodio	32.38	305.53
	PEN della naftalina	217.96	491.11
	PFN dello stagno	231.91	505.00
	PEN del benzofenone	305.90	579.05
	PFN del cadmio	320.90	594.05
	PFN del piombo	327.30	600.45

PFN: Punto di Fusione Normale (pressione di 1 atmosfera)

PEN: Punto di Ebollizione Normale (tensione di vapore saturo di 1 atm)

N.B. Se si varia la pressione di 1 cm di mercurio, il PFN varia di circa 0.00001 gradi, mentre il PEN varia di alcune decine di gradi. Di qui la tendenza sempre più diffusa a eliminare dai punti fissi tutti i punti di ebollizione, conservando solo punti di fusione e punti tripli.