
COMPUTING METHODS FOR PHYSICS
23 JANUARY 2019

You must submit your exam by following the instruction at http://www.roma1.infn.it/
people/rahatlou/cmp/

Composite Pattern for Calorimetric Jets (15 pt)

Calorimetric jets are used to evaluate the energy of quarks and gluons emitted in
hadronic interactions. An energy calorimeter is typically divided in cells, each
measuring an energy and providing a position. Energy deposits in the electromagnetic
and hadron calorimeters are combined into clusters. Clusters are then combined
together to form the jets.

Implement the following composite pattern

1. Class Deposit must have two data members: _energy ad _position

a. Use Vector3D (developed during the course) for position. You can use a
simple float instead (-3 penalty).

2. Overload + and += operators for Deposit. NB: adding two Deposits does NOT
return a Cluster.

3. In class Cluster implement add and remove methods

4. Position of a cluster is computed as the weighted average position of its individual
deposits. Deposits with more energy have a higher weight.

5. Overload the << operator properly for both classes to print info about the energy
and position. For a cluster, it must also print the number of children contained in the
cluster

6. Test your classes with a test program app.cc .

Provide {Deposit,Cluster,Vector3D}.{hh,cc} for evaluation. Submission of
app.cc is not mandatory. You will be asked to write a test application during the oral
discussion to test your classes.

Evaluation will be based on: successful compilation, correct use of C++ syntax, return
type and arguments of functions, data members and interface of classes, unnecessary
void functions, use of unnecessary C features, correct mathematical operations, and
correct physics

Deposit

_energy 
_position

Cluster

http://www.roma1.infn.it/people/rahatlou/cmp/
http://www.roma1.infn.it/people/rahatlou/cmp/
http://app.cc

COMPUTING METHODS FOR PHYSICS
23 JANUARY 2019

Angular resolution with python (15 pt)

The neutral pion with mass of 135 MeV decays almost  
exclusively in 2 photons. The photons are emitted with  
angles θ1 and θ2 with respect to the direction of the pion,  
ad the opening angle is given by α = θ1 + θ2 and 0 ≤ α ≤ π.

The decay probability as function of the opening angle is 

where E0 is the energy of the decaying π0. Provide a plot of this probability as a function
of α for E0 = 0.5, 1, 5, 10, 50, 100 GeV. The plot must show the curves for different
energies with different colours and legends.

The detector can distinguish the two photons when α > α0=0.2 rad.

Simulate 10000 π0 decays for each value of E0 = 0.5, 1, 5, 10, 50, 100 GeV.

Implement a function for integration with your favorite method (e.g. midpoint or MC).
Compute the fraction of decays with resolved (separated) photons

 
for each energy and plot it as function of E0. This curve is valid only for an ideal
detector with perfect angular resolution. In order to account for the detector resolution
apply a Gaussian smearing.

1. For each decay generate randomly the true values of θ1 and θ2 making sure that 0
≤ α ≤ π

2. Apply a Gaussian smearing to θ1 and θ2 with mean of μ=0 and width σ.

3. Recompute the fraction p(E0) for different values of the Gaussian width σ = 1%, 5%
and 10%.

4. Make a new plot of p(E0) versus E0, and overlay the 4 scenarios: no smearing
(ideal), 1%, 5% and 10% smearing.

5. Compute the fraction of decays that are lost (photons not resolved) when we go
from the ideal detector to 10% angular resolution, and print it on the screen.

Evaluation will be based on use of python features and data structures,
comprehensions (instead of C-style for loops), NumPy objects, labels, units, clarity ad
correctness of plots.

p(E0) =

R ⇡
↵0

f(↵)d↵
R ⇡
0 f(↵)d↵

<latexit sha1_base64="55hJHDlFptcwvtDfDkN1X1N/CBM=">AAACPXicbVBLSwMxGMzWV62vqkcvwSK0l7IrBb0IRRE8VugLunXJptk2NJsNSVYoy/4xL/4Hb968eFDEq1fTbg/adiAwmZmP5BtfMKq0bb9aubX1jc2t/HZhZ3dv/6B4eNRWUSwxaeGIRbLrI0UY5aSlqWakKyRBoc9Ixx/fTP3OI5GKRrypJ4L0QzTkNKAYaSN5xaYo33p2BV5BN5AIJy7l2ktcxMQIeXb64AoKg3J2r8BBRmCa5ezVduoVS3bVngEuE2dOSmCOhld8cQcRjkPCNWZIqZ5jC91PkNQUM5IW3FgRgfAYDUnPUI5CovrJbPsUnhllAINImsM1nKl/JxIUKjUJfZMMkR6pRW8qrvJ6sQ4u+wnlItaE4+yhIGZQR3BaJRxQSbBmE0MQltT8FeIRMi1qU3jBlOAsrrxM2udVp1at3ddK9et5HXlwAk5BGTjgAtTBHWiAFsDgCbyBD/BpPVvv1pf1nUVz1nzmGPyD9fMLZiatnQ==</latexit>

