
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

More on Templates
Standard Template Library

exception in C++

Roma, 15 June 2008

Sh. Rahatlou, Programmazione++

Today’s Lecture

 More on Template

 Inheritance

 static data members

 friend and Template

 example: auto_ptr<T>

 Standard template library

 Error handling in applications

 Typical solutions

 advantages and disadvantages

 C++ exception

 What is it?

 How to use it

2

Sh. Rahatlou, Programmazione++

Template and Runtime Decision

 Fundamental difference between Template and Inheritance

 All derived classes share common functionalities

 Can point to any derived class object via base-class pointer

 No equivalent of base-class pointer for class-template
specializations

 Dummy<string> and Dummy<double> are different classes

 No polymorphism at run time!

3

Sh. Rahatlou, Programmazione++

Template and Inheritance

 Inheritance provides run-time polymorphism

 Templates provide compile-time polymorphism

 Code generated by compiler at compilation time using the Template
class or function and the specified parameter

 All specialized templates are identical except for the data type

 Template-class specialization is equivalent to any regular non-
template class

 But remember…

 Class template NOT EQUIVALENT to base class

 No base-class pointer mechanism for different specializations

 No runtime polymorphism

 Different specializations are different classes with no inheritance
relation

4

Sh. Rahatlou, Programmazione++

Difference between Template and Inheritance

5

int main() {

Person* p = 0;

int value = 0;

while(value<1 || value>10) {

cout << "Give me a number [1,10]: ";

cin >> value;

}

cout << flush; // write buffer to output

cout << "make a new derived object..." << endl;

if(value>5) p = new Student("Susan", 123456);

else p = new GraduateStudent("Paolo", 9856, "Physics");

cout << "call print() method ..." << endl;

p->print();

delete p;

return 0;

}

int main() {

Dummy<std::string>* d1 = 0;

Dummy<double>* d2 = 0;

int value = 0;

while(value<1 || value>10) {

cout << "Give me a number [1,10]: ";

cin >> value;

}

cout << flush;

if(value>5) d1 = new Dummy<std::string>("string");

else d2 = new Dummy<double>(1.1);

if(d1 != 0) d1->print();

if(d2 != 0) d2->print();

return 0;

}

Same base-class pointer used

to initialize data based on user input

one call to ::print()

no if statement

no checking for null pointer

Need as many pointers as possible

outcomes of input by user

No base-class pointer  No polymorphism

Check specific pointers to be non-null

before calling DIFFERENT ::print() methods

$./example0

Give me a number [1,10]: 3

Dummy<T>::print() with type T = d, *data_: 1.1

$./example0

Give me a number [1,10]: 7

Dummy<T>::print() with type T = Ss, *data_: string

Sh. Rahatlou, Programmazione++

Template and Inheritance

 Can use specializations as any other class

 But can’t inherit from a class template

 A class template can be derived from a non-template class
 template<class T> class GenericPerson : public Person { };

 A class template can be derived from a class-template specialization
 template<class T> class MyString : public Dummy<std::string> {};

 A class-template specialization can be derived from a class-template
specialization

 class Dummy<Car> : public Vector<Object> { };

 A non-template class can be derived from a class-template specialization

 class Student : public Dummy<std::string> { };

6

Sh. Rahatlou, Programmazione++

Template and static

 All specializations of a class template have their copy of own
static data

 Treat class-template specialization as equivalent to normal non-
template class

7

// example1.cpp

#include <iostream>

#include <string>

#include <typeinfo>

using namespace std;

#include "Dummy.h"

int main() {

Dummy<std::string> d1("d1");

Dummy<std::string> d2("d2");

Dummy<std::string> d3("d3");

Dummy<double> f1(0.1);

Dummy<double> f2(-56.45);

cout << "Dummy<std::string>::total(): " << Dummy<std::string>::total() << endl;

cout << "Dummy<double>::total(): " << Dummy<double>::total() << endl;

cout << "Dummy<int>::total(): " << Dummy<int>::total() << endl;

return 0;

}

$ g++ -Wall -o example1

example1.cpp

$./example1

Dummy<std::string>::total(): 3

Dummy<double>::total(): 2

Dummy<int>::total(): 0

Sh. Rahatlou, Programmazione++

Static data with Dummy<T>

8

template< typename T >

class Dummy {

public:

Dummy(const T& data);

~Dummy();

void print() const;

static total() { return total_; }

private:

T* data_;

static int total_;

};

All code in Dummy.h

Remember no source file!

template<class T>

int Dummy<T>::total_ = 0;

template<class T>

Dummy<T>::Dummy(const T& data) {

data_ = new T(data);

total_++;

}

template<class T>

Dummy<T>::~Dummy() {

total_--;

delete data_;

}

template<class T>

void

Dummy<T>::print() const {

std::cout << "Dummy<T>::print() with type T =

"

<< typeid(T).name()

<< ", *data_: " << *data_

<< std::endl;

}

Sh. Rahatlou, Programmazione++

Template and friend Functions

 All usual rules for friend methods and classes are still valid

 You can declare functions to be friends of

 all specializations of a template-class or specific specializations

 Your Favorite combination of template classes and functions

9

template< typename T >

class Foo {

public:

Foo(const T& data);

~Foo();

void print() const;

// friend of all specializations

friend void nicePrint();

// friend of specialization with same type

friend void specialPrint(const Foo<T>& obj);

// member function of Bar friend of all specializations

friend void Bar::printFoo();

// member function of Dummy with same type

friend void Dummy<T>::print(const Foo<T> & f)

private:

T* data_;

};

nicePrint() friend of

Foo<int> and Foo<string>

specialPrint(string) friend of

Foo<string> but NOT friend of Foo<int>

Bar::printFoo() friend of

Foo<int> and Foo<string>

Dummy<int>::print(int) friend of

Foo<int> but NOT friend of Foo<string>

Sh. Rahatlou, Programmazione++

Standard Template Library

 Library of container classes, algorithms, and iterators

 Covers many of basic algorithms and data structures of common use

 Very efficient through compile-time polymorphism achieved by using
Template

 Containers: classes whose purpose is to contain any type of
objects

 Sequence containers: vector, list,
seq, deque

 Associative containers: set, multiset,
map, multimap

 Algorithms: methods used to manipulate container items

 Finding, sorting, reverting items

 Iterators: generalization of pointer
to provide access to items in a container

10

Sh. Rahatlou, Programmazione++

containers

 Address different needs with different perfmance

 Vector: fast random access. Rapid insertion
and deletion at the end of vector

 List: rapid insertion and deletion
anywehere

 No sequential storage of data

11

vector

list

Sh. Rahatlou, Programmazione++

Requirements for type T objects in containers

 Any C++ type and class can be used but a minimum set of
functionality required

 Inserting an object of type T corresponds to copying object

into the container

 Sequential containers require a proper copy constructor and
assignment operator (=) for class T

 Default implementations is fine as long as non-trivial data members
are used

 Associative containers often perform comparison between

elements
 Class T should provide equality (==) and less-than (<) operators

12

Sh. Rahatlou, Programmazione++

iterators

 Allows user to traverse through all elements of a container regardless of
its specific implementation

 Allow pointing to elements of containers

 Hold information sensitive to particular containers

 Implemented properly for each type of container

 Five categories of iterators

13

Sh. Rahatlou, Programmazione++

iterator Operations

 Predefined iterator typedef’s
found in class
definitions

 iterator

 Forward read-write

 const_iterator

 Forward read-only

 reverse_iterator

 Bacward read-write

 const_reverse_iterator

 backward read-only

14

Sh. Rahatlou, Programmazione++

Using iterators

 Two member functions begin() and end() returning

iterators to beginning and end of container
 begin() points to first object

 end() is slightly different. Points to NON-EXISTING object past last

item

15

vector<Student> v1; // declare vector

// create iterator from container

vector<Student>::const_iterator iter;

// use of iterator on elements of vector

for(iter = v1.begin();

iter != v1.end();

++iter) {

cout << iter->name() << endl;

(*iter).print();

}

Sh. Rahatlou, Programmazione++

Algorithms

 Almost 70 different algorithms provided by STL to be usedu
generically with variety of containers

 Algorithms use iterators to interact with containers

 This feature allows decoupling algorithms from containers!

 Implement methods outside specific containers

 Use generic iterator to have same functionality of many containers

 Many algorithms act on range of elements in a container
identified by pair of iterators for first and last element to be

used

 Iterators used to return result of an algorithm

 Points to element in the container satisfying the algorithm

16

Sh. Rahatlou, Programmazione++

Non-modifying Algorithms

17

Sh. Rahatlou, Programmazione++

Modifying algorithms

18

swap() allows fast and

non-expensive copy
of elements between

containers

Commonly used to optimize

performance and minimize
unnecessary copy

operations

Sh. Rahatlou, Programmazione++

Comments and Criticism to STL

 Heavy use of template make STL very sensitive to changes
or capabilities of different compilers

 Compilation error messages can be hard to decipher by

developer

 Tools being developed to provide indention and better formatting of
improved error messages

 Generated code can be very large hence leading to
significant increase in compilation time and memory usage

 Careful coding necessary to prevent such problems

 Common problem with invalid pointers when element deleted
from a container

 Iterator not update hence pointing to non-existing element
19

Sh. Rahatlou, Programmazione++ 20

Error Handling in C++

Sh. Rahatlou, Programmazione++

Exception Handling: What does it mean?

 Under normal circumstances applications should run
successfully to completion

 Exceptions: special cases when errors occur

 ‘exception’ is meant to imply that such errors occur rarely and are an
exception to the rule (successful running)

 Warning: exceptions SHOULD NEVER be used as replacement for
conditionals!

 C++ Exceptions provide mechanism for error handling and
writing fault-tolerant applications

 errors can occur deep into the program or in third party software not
under our control

 Applications use exceptions to decide if terminate or continue
execution

21

Sh. Rahatlou, Programmazione++

Hierarchy of C++ STL Exceptions

22

Sh. Rahatlou, Programmazione++

C++ Exceptions

23

#include <iostream>

#include <stdexcept>

using std::cin;

using std::cout;

using std::endl;

using std::runtime_error;

double ratio(int i1, int i2) {

if(i2 == 0) throw std::runtime_error("error in ratio");

return i1/i2;

}

int main() {

int i1 = 0;

int i2 = 0;

cout << "enter two numbers (ctrl-D to end): ";

while(cin >> i1 >> i2) {

try {

cout << "ratio: " << ratio(i1,i2) << endl;

} catch(std::runtime_error& ex) {

cout << "error occured..." << ex.what() << endl;

}

cout << "enter two numbers (ctrl-Z to end): ";

}

return 0;

}

$ g++ -Wall -o example3 example3.cpp

$./example3

enter two numbers (ctrl-D to end): 7876 121

ratio: 65

enter two numbers (ctrl-D to end): 34 14

ratio: 2

enter two numbers (ctrl-D to end): 56 0

error occured...error in ratio

enter two numbers (ctrl-D to end):

throw an exception when error
condition occurs

exception is a C++ object!

include code that can throw
exception in a try{} block

use catch() {} to catch possible
exceptions thrown within the try{}
block

Sh. Rahatlou, Programmazione++

Exceptions Defined by Users

24

// example4.cpp

#include <iostream>

#include <stdexcept>

using std::cin;

using std::cout;

using std::endl;

using std::runtime_error;

class MyError : public std::runtime_error {

public:

MyError() : std::runtime_error("dividing by zero") {}

};

double ratio(int i1, int i2) {

if(i2 == 0) throw MyError();

return i1/i2;

}

int main() {

int i1 = 0;

int i2 = 0;

cout << "enter two numbers (ctrl-Z to end): ";

while(cin >> i1 >> i2) {

try {

cout << "ratio: " << ratio(i1,i2) << endl;

} catch(MyError& ex) {

cout << "error occured..." << ex.what() << endl;

}

cout << "enter two numbers (ctrl-Z to end): ";

}

return 0;

}

New exceptions can be
implemented by users

Inherit from existing exceptions
and specialize for use case relevant
for your application

$ g++ -Wall -o example4 example4.cpp

$./example4

enter two numbers (ctrl-Z to end): 6 5

ratio: 1

enter two numbers (ctrl-Z to end): 5 0

error occured...dividing by zero

enter two numbers (ctrl-Z to end):

