
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Elements of Unified Modeling
Language

Roma, 22 June 2009

Sh. Rahatlou, Programmazione++

Today’s Lecture

 Introduction to UML

 object modeling language

 Class diagrams

 Relations between classes

 Suggestions for further reading

2

Sh. Rahatlou, Programmazione++

Object Oriented Analysis (OOA)

 Build a system composed of objects

 Behavior of system defined by collaboration between objects
through sending messages to each other

 State of system defined by states of individual collaborating
objects

 Does not take into account implementations constraints such
as distribution and persistency

 Result of OOA is a conceptual model focused on ideas and
concepts to be implemented

3

Sh. Rahatlou, Programmazione++

Object Oriented Design (OOD)

 Start from conceptual model provided by OOA and add
implementation constraints, e.g. specific programming
language

 Treat the objects as instances of collection of classes within
a class hierarchy

 Typically four stages in Design:

 Identify classes and objects

 Identify their responsibilities

 Identify their relationship

 Provide class interface and implementation

4

Sh. Rahatlou, Programmazione++

Object Modeling Language

 Standardized set of symbols and relations between them to
model object oriented design

 Visual and graphical representation provides higher level of
abstraction important in early analysis and design stage

 Focus on interaction and relation between objects

 Define interface rather than internal structure

 Software modeling tools can be used to implement code
from visual modeling diagrams

5

Sh. Rahatlou, Programmazione++

Brief History of Object Modeling Language

 Booch Method

 Developed by Grady Booch

 Better for design

 Object modeling technique (OMT)

 Developed by Jim Rumbaugh

 Better for analysis

 Objectory

 Developed by Ivar Jacobsen

 Treat Use Cases

 Use case: interaction between system and end user
to achieve a specific goal

 Class-Responsibility-Collaboration Cards

 Proposed by Ward Cunningham

6

Sh. Rahatlou, Programmazione++

Booch Method

7

Sh. Rahatlou, Programmazione++

Object Modeling Technique

8

Sh. Rahatlou, Programmazione++

Unified Modeling Language (UML)

 Many approaches on the market by mid 1990s

 Object Management Group (OMG) called for development of
a unified approach

 Consortium including Booch, Jacobsen, and Rumbaugh has
developed what today is called Unified Modeling Language

9

http://www.uml.org/

http://www.uml.org/

Sh. Rahatlou, Programmazione++

Unified Modeling Language (UML)

10

http://en.wikipedia.org/wiki/Unified_Modeling_Language

Sh. Rahatlou, Programmazione++

UML Diagrams

 Thirteen diagrams in UML 2.0 organized

11

Sh. Rahatlou, Programmazione++

Categories of Diagrams

 Structure diagrams: emphasize what things must be in the system
 Class diagram

 Component diagram

 Object diagram

 Composite structure diagram

 Deployment diagram

 Package diagram

 Behavior diagrams: emphasize what must happen in the system
 Activity diagram

 Use case diagram

 State Machine diagram

 Interaction Diagrams: subset of behavior diagrams, emphasize flow of
control and data among the things in the system

 Sequence diagram

 Collaboration (UML 1.x)/Communication diagram (UML 2.0)

 Interaction overview diagram (UML 2.0)

 Timing diagram (UML 2.0)

12

Sh. Rahatlou, Programmazione++

Class Diagram

 Type of static structure diagram describing structure of a system by
showing

 system's classes

 relationships between classes

 Graphical representation: box with 3 compartments for

 Name of class

 attributes or data members

 operations or methods

13

Person

name_ : std::string

+ name() : string

+ print()

class Person {

public:

Person(const std::string& name);

~Person();

std::string name() const { return name_; }

void print() const;

private:

std::string name_;

};

Name
of class

Attributes

Operations + public
private

protected

Sh. Rahatlou, Programmazione++

Relations between Classes

 Generalization or Inheritance

 an is-a relationship

 Association

 can be mutual or uni-directional

 Aggregation

 Whole/part relationship. no lifetime control

 Composition

 Aggregation with lifetime control

 Dependence

 uni-directional association

 only B knows about A

14

AB

AB

AB

AB

AB

Sh. Rahatlou, Programmazione++

Generalization or Inheritance

 Is-A relationship between A and B: B is also an A

 relationship between a base class
(super-type, parent) and a
derived class (sub-type, child)

15

AB

Person

- name_ : std::string

+ name() : string

+ print()

Student

- id_ : int

+ id() : int

GraduateStudent

- major_ : string

+ major() : string

Sh. Rahatlou, Programmazione++

Association

 A and B exchange messages

 Call methods of each other

16

AB

class Department {

private:

University* myUniversity_;

public:

void print() {

cout << “My University is: : <<

<< myUniv_->name()

<< endl;

}

}

class University {

private:

Department* myDep_;

public:

string department() {

return myDep_->name();

}

}

Department

- myUniv_ : University
- name_ : string

+ print()

+name() : string

University

- myDep_ : Department

+ print()

+department() : string

Sh. Rahatlou, Programmazione++

Aggregation

 Whole/part association with
no lifetime control

 B contains a pointer to A

 B does not control lifetime of A

 A exists regardless of B

17

AB

class University {

private:

vector<Student*> students_;

public:

vector<Student*> students() {

return students_;

}

void addStudent(Student* s) {

students_->push_back(s);

}

}

University

- students_ : vector<Student*>

+ print()

+students() : vector<Student*>

+ addStudent(Student)

Student

- id_ : int

+ id() : int

All instances of Student exist regardless
of the instance of University

Only keeps pointers but does not control
lifetime of objects pointed to

Sh. Rahatlou, Programmazione++

Composition

 Whole/part association with
lifetime control

 B contains instance of A

 B is responsible for creation of its copies of A and their destruction

 B can transfer ownership of it’s a to others

18

class Department {

private:

string name_;

public:

string name() { return name_; }

}

class University {

private:

vector<Department>* deps_;

public:

University() {

deps_ = new vector<Department>;

deps_->push_back(“physics”);

}

~University() { delete deps_; }

vector<Departments> departments() {

return *deps_;

}

}

Department

- name_ : string

+ print()

+name() : string

University

- myDeps_ : vector<Department>*

+ print()

+departments() : vector<Department>

AB

Sh. Rahatlou, Programmazione++

Dependence

 B knows about A but A has no knowledge of B

 Mostly when A is used in definition of A

19

class University {

private:

vector<Department>* deps_;

public:

University() {

deps_ = new vector<Department>;

deps_->push_back(“physics”);

}

~University() { delete deps_; }

vector<Departments>* departments() {

return *deps_;

}

}

University

- myDeps_ : vector<Department>*

+ print()

+departments() : vector<Department>

vector<T>

AB

Sh. Rahatlou, Programmazione++

Multiplicity (a.k.a Cardinality)

 Multiplicity of a role describes number of instances
participating in the association

 * or 0..* : zero to many

 1..* : one to many

 0..1 : zero or one

 1 : one and only one

 n..m : n or m

20

University Student

Department

1 0..*

University might have no student

Each University has at least 1 department

1

1..*

Sh. Rahatlou, Programmazione++

Additional Readings

 Few very good books to improve your skills and learn more about object oriented
programming techniques

 Effective C++ : 55 Specific Ways to Improve Your
Programs and Designs, Scott Meyers

 More Effective C++: 35 New Ways to Improve Your
Programs and Designs, Scott Meyers

 Design Patterns: Elements of Reusable
Object-Oriented Software, E. Gamma et al.

 Learning UML 2.0, K. Hamilton, R. Miles

21

http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0596009828/qid=1151489231/sr=1-7/ref=sr_1_7/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155

