Elements of Unified Modeling

!'_ Language

Shahram Rahatlou
SAPTENZA

UNIVERSITA DI ROMA

http://www.romal.infn.it/people/rahatlou/programmazione++/

Corso di Programmazione++

Roma, 22 June 2009

Today’s Lecture

Introduction to UML
o object modeling language

Class diagrams

Relations between classes

Suggestions for further reading

Sh. Rahatlou, Programmazione++

Object Oriented Analysis (OOA)

Build a system composed of objects

Behavior of system defined by collaboration between objects
through sending messages to each other

State of system defined by states of individual collaborating
objects

Does not take into account implementations constraints such
as distribution and persistency

Result of OOA is a conceptual model focused on ideas and
concepts to be implemented

Sh. Rahatlou, Programmazione++

Object Oriented Design (OOD)

= Start from conceptual model provided by OOA and add
implementation constraints, e.g. specific programming
language

= Treat the objects as instances of collection of classes within
a class hierarchy

= Typically four stages in Design:
o Identify classes and objects
o Identify their responsibilities
o Identify their relationship
a Provide class interface and implementation

Sh. Rahatlou, Programmazione++

Object Modeling Language

= Standardized set of symbols and relations between them to
model object oriented design

= Visual and graphical representation provides higher level of
abstraction important in early analysis and design stage
o Focus on interaction and relation between objects
o Define interface rather than internal structure

= Software modeling tools can be used to implement code
from visual modeling diagrams

Sh. Rahatlou, Programmazione++

Brief History of Object Modeling Language

Booch Method
a Developed by Grady Booch
o Better for design

Object modeling technique (OMT)
o Developed by Jim Rumbaugh
o Better for analysis

Objectory
o Developed by Ivar Jacobsen

o Treat Use Cases

> Use case: interaction between system and end user
to achieve a specific goal

Class-Responsibility-Collaboration Cards
a Proposed by Ward Cunningham

Sh. Rahatlou, Programmazione++

Booch Method

. - - _—
|:‘.-P- 1-,‘“‘_ — 'I_ “‘-\.
\ \ | !
, Class D 11 ," Class P J'
|I -— o
P - e — = - - Wv “ - -7
i % . i r— - — — — a
y Class A P S I - Class P |
W Doy , L L — — — _ 4
Lo Pl D..
-y Class B + "\ [Class G I:.
L - - _— - .Ilr_— _— — -
L S
PR S A W Abstract Class
\ A —_ Association
y Class C 7/_\])
- Inherits
Lo P b_/ * Aggregation
- O Uses

Sh. Rahatlou, Programmazione++

Object Modeling Technique

A Generalization [Inheritance
$ iZlass operation f Class attribute

italic

Association f Link :
—0
—@ wultiplicity - many

Abstract class f Abstract operation

Multiplicity - one
Multiplicity : optional

%> Aggregation

addObject) T vold
ingertiint, Object) - vold
oefiint) - Ohject
getsizel) int

next

Entry

next | Entry

headar

LinkedList

size int=0
$MAX_SIZE - int = 100

ArrayList

elements ;. Array

Object F

add(Object) © void
insertiint, Object) : void
get{int) . Ohject
getSize() - int

add{Object) : void
insert{int, Ohject) void
get(int) - Object
getsize() ©int

§ listToArray(List) © Array

Y

Sh. Rahatlou, Programmazione++

Unified Modeling Language (UML) e

= Many approaches on the market by mid 1990s

MODELING
LANGUAGE

= Object Management Group (OMG) called for development of

a unified approach

= Consortium including Booch, Jacobsen, and Rumbaugh has
developed what today is called Unified Modeling Language

& Object Management Group - UML - Mozilla Firefox

Ele Edt View Go Bookmarks ITeols Help
@-9-@ @ & B 6 | ow hitpujwew.uml.org
[Headines [News (o) Sport [CM5 Eashabram O CERM WP Tuttockta' W wikipedia | CorsoParticelle §%) Calendar "¥Pvahoo! Cal [Gcoogle

] Decorator Amazon.com EFf... | |] tuntitied)

[e311 d UNIFIED MODELING LANGUAGE" .

T R T e S

UML™ Resource Page

[to UML | [UML Success Stories] [UML Cerification Program | [UL Testing/Cerlification Program |

Getting Started With UML:

The Unified Modeling Language™ - UL - is OMG's most-used specifi and the way the world models not
only application structure, behavior, and architecture, but also business process and data structure,

MOF™3, also provides a key foundation for OMG's Mo

UKL, along with the Meta Object Facili
Auchitecture®, which unifies every step of development and integration from business modeling, um.ugh
architectural and application modeling, to and evolution.

OMG is & notsfor-profit computer industr our members define and maintain the LML
specification which we publish in the series of documents linked on this page for your free download. Software providers of
every kind build tools that conform 10 these specifications. To model in UML, you'l have to obtain a compliant modeling
toal from one of these providers and learn how to use it. The links at the bottom of this page will help you do that

B3 Find: [booch OrFindiext @ & [Matchcase

il - Goodle Search | ows Linified Modeling .., | ows Object Managem, ., | ows Introduction ta ... | W/ Unified Modsling ...

B
=

v * [Clum

How: Mostly Sunny, 75°F

W/ Object madeling .., | o#cObject Manag... | [

~

Done Germany ™ 00 Argentina (@17:00,300n) 4 | Mo

http://www.uml.org/

Sh. Rahatlou, Programmazione++

http://www.uml.org/

Unified Modeling Language (UML)

-
& Unified Modeling Language - Wikipedia. the free encyclopedia - Mozilla Firefox E]@
File Edit Miew Go Bookmarks Tools Help
£ - LT o ks & W httpejfen.wikipedia, orgwikifUrified_Modeling_Language V 1’ @v
|y Headlines () Mews [) Spart [CMS EShahram '&:1}-_. CERM P Tuttolitta” W/ wikipedia | | Corso Particelle @Calendar "7 ‘ahoo! Cal Guagle Mowes Sunrey, 63° F
f 2, 2 Signin/create account A
r"_ I \.ﬁ ;;\ article dizcuszion edit this page history
0 Y % =i rowreorficued dorsfions keep Wikioedia maming!
5 LA1Th
& ll BA ™ .
Y g i Unified Modeling Language
=5, 2
) From wWikipedia, the free encyclopedia
-l
WIKIPEDIA _ . | | | | . | .
The Free Encyclopedia The Unified Modeling Language (UML) i= a non-proprietary, object modeling and specification language used in software engineering. UL
navigation includes a standardized graphical notation that may be used to create an abstract model of a system: the UL model. UML is an extensible
u Main Page modeling language. f a concept you need is not present in the base language, you may introduce it by defining a stereotype.
= Community Portal UML is officially defined at the Object Management Group (OMG) by the UML metamodel — a hMeta-Object Facility metamodel {(MOF). Like other
u Festured articles MOF-based specifications, the UML meta-rmodel and UML models may be serialized in ¥M0). UML is 3 General Purpose Modeling language.
= Current everts While UML was designed to specify, visualize, construct, and document software-intensive systerns, UML is not restricted to modeling software.
® Recert changes
o Random article LML has its strengths at higher, more architectural levels and has been used for modeling hardware (engineering systems) and is commaonly used
= Help for business process modeling, systems engineering modeling, and representing organizational structure among many other domains.
u Conitact Wikipedis UML has been important in the early ages of Model Driven Engineering or model-driven architecture. By establishing a consensual agreement an
= Donatians the various graphical shapes commanly used to represent comman concepts like classes, inheritance, agregation, states, transitions, etc. UL
el has allowed software designers to concentrate on more fundamental issues.
In the initial MDA view, PIMs and PSMs may be expressed in the UML language. 1t is also possible ta transform a UML model senalized in XMI
into a Java or EJB implementation by using a kModel Transformation Language or MTL. The standard way recommended by OMG for achieving this
is to use the newly defined O%T standard. UML has also an optional graph navigation and constraint language called QCL; in its navigational
taokox aspect this has a similar relationship to UML as ¥Path has to XML,
= 'What links here
= Related changes Contents [hids]
] Uplugd file 1 History
m Special pages 2 Method
u Printable version F D_ s
u Permanent link ST —
w_ite thiz aricls 4 Diagrams i
Dane o
Sh. Rahatlou, Programmazione++ 10

http://en.wikipedia.org/wiki/Unified_Modeling_Language

UML Diagrams

= Thirteen diagrams in UML 2.0 organized

Diagram

i

Structure
Diagram

i

Class Diagram

Component
Diagram

Ohject
Diagram

Bahavior
Diagram

e

Composite
Structura
Diagram

Deployment
Diagram

Package
Diagram

I |]
Activity Use Case State Machine
Diagram Diagram Diagram

Interaction
Diagram
i
1 [
Sequence |gt:;~::it;:::1
Diagram / v
Diagram

Communication
Diagram

Sh. Rahatlou, Programmazione++

Timing
Diagram

11

Categories of Diagrams

Structure diagrams: emphasize what things must be in the system
> Class diagram

Component diagram

Object diagram

Composite structure diagram

Deployment diagram

Package diagram

YV V V V V

Behavior diagrams: emphasize what must happen in the system
> Activity diagram
> Use case diagram
> State Machine diagram

Interaction Diagrams: subset of behavior diagrams, emphasize flow of

control and data among the things in the system
> Sequence diagram
> Collaboration (UML 1.x)/Communication diagram (UML 2.0)
> Interaction overview diagram (UML 2.0)
» Timing diagram (UML 2.0)

Sh. Rahatlou, Programmazione++

Class Diagram

= Type of static structure diagram describing structure of a system by

showing
o system's classes

o relationships between classes

= Graphical representation: box with 3 compartments for

o Name of class

o attributes or data members

o operations or methods

class Person {
public:
Person (const std: :stringé& name) ;
~Person () ;
std::string name() const { return name_; }
void print() const;

private:
std::string name ;

};

Name
of class —— Person

— name_ : std::string

| — e

+ name() : string
+ print()

<

+ public

— private

protected

Sh. Rahatlou, Programmazione++ 13

Relations between Classes

Generalization or Inheritance
o an is-a relationship

Association
o can be mutual or uni-directional

Aggregation
o Whole/part relationship. no lifetime control

Composition

B

o Aggregation with lifetime control

Dependence
o uni-directional association
o only B knows about A

Sh. Rahatlou, Programmazione++

14

Generalization or Inheritance

= Is-A relationship between A and B: B is also an A

a relationship between a base class
(super-type, parent) and a
derived class (sub-type, child)

Student

-id_

s int

+ id() : int

<7

Person

- name_ : std::string

+ name() : string
+ print()

Sh. Rahatlou, Programmazione++

GraduateStudent

- major_ : string

+ major() : string

15

= A and B exchange messages
o Call methods of each other

Department

- myUniv_ : University
- hame_ : string

Association

University

+ print()
+name() : string

- myDep_ : Department

+ print()
+department() : string

class Department ({

class University ({

private: private:
University* myUniversity ; Department* myDep ;
public: public:
void print() ({ string department () ({
cout << "My University is: : << return myDep ->name () ;
<< myUniv_->name () }
<< endl;

Sh. Rahatlou, Programmazione++

16

Aggregation

Whole/part association with A
no lifetime control B <>

o B contains a pointer to A

o B does not control lifetime of A
> A exists regardless of B

University Student
- students_ : vector<Student*> <> -id_:int
+ print() _ _
+students() : vector<Student*> +id() : int
+ addStudent(Student)

class University ({

private: All instances of Student exist regardless
vector<Student*> students_; 0 5 o
of the instance of University
public:

vector<Student*> students () {
return students_;

}

void addStudent (Student* s) {
students_->push_back (s) ;

}

Only keeps pointers but does not control
lifetime of objects pointed to

Sh. Rahatlou, Programmazione++

17

Composition

= Whole/part association with

lifetime control
o B contains instance of A

& A

a B is responsible for creation of its copies of A and their destruction
o B can transfer ownership of it’s a to others

University

- myDeps_ : vector<Department>*

Department

- name_ : string

+ print()
+departments() : vector<Department>

class University {

private:
vector<Department>* deps_;

public:
University () ({
deps_ = new vector<Department>;

deps_->push_back (“physics”) ;

}
~University() { delete deps_; }

vector<Departments> departments () {
return *deps_;

}

Sh. Rahatlou, Programmazione++

+ print()
+name() : string

class Department {

private:
string name_;

public:
string name () { return name

;)

18

Dependence

= B knows about A but A has no knowledge of B
o Mostly when A is used in definition of A

University

- myDeps_ : vector<Department>*

B

+ print()
+departments() : vector<Department>

class University {

private:
vector<Department>* deps ;

public:
University () ({
deps_ = new vector<Department>;

deps_->push_back (“physics”) ;

}
~University () { delete deps_; }

vector<Departments>* departments () {
return *deps_;

}

vector<T>

Sh. Rahatlou, Programmazione++

19

Multiplicity (a.k.a Cardinality)

= Multiplicity of a role describes number of instances
participating in the association
o *or0..*: zero to many
a 1..*: one to many
a 0..1: zero or one
o 1 :one and only one

o n.m:inorm University might have no student

University 1 0..* Student
O
r Y
1..*

Department
Each University has at least 1 department

Sh. Rahatlou, Programmazione++ 20

Additional Readings

Few very good books to improve your skills and learn more about object oriented
programming techniques

LOOK INSIDE!' LOOK INSIDE!

: _ - U »
Effective C++ : 55 Specific Ways to Improve Your \Iowl“ﬂem\e(++

35 New \:\a}
e :

i [ffective C+
Programs and Designs, Scott Meyers Third Bt

55 sp il Ways to Impnaws
Your Prggrams and DeStgns

More Effective C++: 35 New Ways to Improve Your @
Programs and Designs, Scott Meyers

Design Patterns: Elements of Reusable LOOK INSIDE!

Object-Oriented Software, E. Gamma et al. ———— w
Design Patterns g

Elements of Reusable
Objectl-Oriented Software

Learning UML 2.0, K. Hamilton, R. Miles |

oF

OREILLY"

Sh. Rahatlou, Programmazione++ 21

http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0596009828/qid=1151489231/sr=1-7/ref=sr_1_7/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155

