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1 Dynamical systems and vector fields

Here we summarise some known facts on dynamical systems (systems of
ODEs).

The dynamical system

dxi

dt
= ui(~x, t), i = 1, . . . , N

(

d~x
dt

= ~u(~x, t)
)

.
~u(~x, t) = (u1(~x, t), . . . , uN(~x, t)) ∈ R

N ,
~x = (x1, . . . , xN ) ∈ R

N , ∇~x = (∂x1 , . . . , ∂xN ),

(1)

together with the initial condition ~x(t0) = ~x0 ∈ R
N , define a flow (a trajec-

tory in the phase space RN), tangent to the vector field ~u(~x, t) (see Fig. 1).

The general solution of (1), depending on N arbitrary constants ~c, is
characterized by the system of nondifferential equations:

ϕj(~x, t) = cj, j = 1, . . . , N, (2)

where the cj’s are N independent constants. Solving the system wrt ~x, if
∂(ϕ1,...,ϕN )
∂(x1,...,xN )

, one obtains the general solution of (1):

~x = ~X(t,~c). (3)

Definition 1. I(~x, t) is an integral of motion of (1) iff I satisfies the linear
PDE:

It + ~u · ∇~xI = 0 (4)

(I is constant on the characteristic curves (integral curves) of (1)).

Definition 2. Equation (4) can be written as

ûI = 0, (5)

û := ∂t + ~u · ∇~x =
N+1
∑

k=1

uk∂xk , uN+1 = 1, xN+1 = t. (6)
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where the first order linear operator û is also called vector field
associated with the ODE (1).

The application of û to a scalar differentiable function f(~x, t):

ûf(~x, t) (7)

is the “directional derivative of f , at the point (~x, t) ∈ R
N+1 of the extended

phase space, in the direction of the vector (1, ~u(~x, t)) (whose components
are the coefficients of the vector field û)”. We are therefore identifying the
extended vector field (1, ~u(~x, t)) = (1, u1, . . . , uN) with the operator û, that
takes a directional derivative in the direction of (1, ~u)! One of the advantages
of such identification is that û does not depend on coordinates.

Definition 3. A dynamical system (1) is Hamiltonian, and the associated
vector field û is Hamiltonian, if N = 2n is even and there exists a function
H(x) such that the ODE (1) and û can be written in the form:

dxi

dt
=

2n
∑

k=1

J ik ∂H
∂xk

= {xi, H}~x, i = 1, .., 2n, (d~x
dt

= J∇~xH), (8)

û = ∂t + {·, H}~x, (9)

where

J :=

(

0n In
−In 0n

)

, (10)

and the expression {f, g}~x is the Poisson bracket

{f, g}~x :=
2n
∑

a,b=1

Jab ∂f
∂xa

∂g
∂xb

= (∇~xf, J∇~xg). (11)

Introducing the canonical variables (q, p) as follows

~x = (q, p)T = (q1, ..qn, p1, .., pn)
T ,

∇~x = (∇q,∇p) = (∂q1 , .., ∂qn , ∂p1 , .., ∂pn)
(12)

the dynamical system takes the familiar form of the Hamilton equations

dqi
dt

=
∂H(q,p,t)

∂pi
= {qi, H}q,p, i = 1, . . . , n = N

2
,

dpi
dt

= −∂H(q,p,t)

∂qi
= {pi, H}q,p, i = 1, . . . , n,

(13)
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where

{f, g}q,p = {f, g}~x =
n
∑

k=1

(

∂f

∂qk
∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)

= ∇qf ·∇pg−∇pf ·∇qg (14)

and the Hamiltonian vector field (6) reads

û = ∂t + {·, H}~x = ∂t + {·, H}q,p. (15)

Definition 4. The vector field ~u(~x, t) (û) is divergence - less iff ∇~x · ~u = 0.

Lemma 1.

1. A dynamical system (1) associated with a divergence-less vector field
~u gives rise to volume preserving flows (prove it!).

2. A Hamiltonian vector field is divergence-less (check it!), but the op-
posite may not be true..

3. A two-dimensional divergence-less vector field is Hamiltonian (check
it!).

Proposition 1.

1. Vector fields û form a Lie algebra whose Lie bracket is given by the
usual commutator. Indeed (check it!):

[û, v̂] = ŵ, (16)

where
û =

∑

k

uk∂xk , v̂ =
∑

k

vk∂xk ,

ŵ =
∑

k

wk∂xk , wk := ûvk − v̂uk.
(17)

2. If the vector fields û1, û2

ûj = ∂tj + ~uj · ∇~x, j = 1, 2,
~uj = (u1j(~x, t), . . . , u

N
j (~x, t)), j = 1, 2,

(18)

are Hamiltonian, with Hamiltonians H1, H2, then the following identity
holds true (check it !):

[û1, û2] =
n
∑

i=1

(

∂H12

∂qi
∂
∂pi

− ∂H12

∂pi

∂
∂qi

)

=

(∇qH12) · ∇p − (∇pH12) · ∇q = {H12, ·}x = {H12, ·}q,p,
(19)

where
H12 := {H1, H2}q,p −H2t1 +H1t2 . (20)
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1.1 Symmetries of ODEs, commutation of vector fields
and involutivity

Proposition 2 The following statements are equivalent.

1. The two dynamical systems

d~x
dt1

= ~u1(~x,~t), ~t = (t1, t2),
d~x
dt2

= ~u2(~x,~t)
(21)

commute (or the flows generated by them commute; or one dynamical
system is symmetry of the other).

2. The vector fields û1 and û2 defined in (18) commute (see Fig. 2):

[û1, û2] = 0̂. (22)

3. The following two linear PDEs

û1ψ = û2ψ = 0 (23)

are satisfied for the same eigenfunction ψ (the two ODEs share the
same constant of motion ψ).

4. The following quasilinear PDEs of hydrodynamic type for the compo-
nents of the vectors ~u1(~x,~t), ~u2(~x,~t) are satisfied:

û1~u2 = û2~u1 ⇔ ~u2t1 + (~u1 · ∇)~u2 = ~u1t2 + (~u2 · ∇)~u1. (24)

Proposition 3. If the two commuting vector fields are Hamiltonian, then
(check it!):

H12 ≡ {H1, H2}q,p −H2t1 +H1t2 = 0 ⇒ [û1, û2] = 0, (25)

[û1, û2] = 0 ⇒ H12 = c (H12 is a numerical constant,) (26)

and usually such a numerical constant is 0. In this case, if the two Hamil-
tonians H1, H2 do not depend explicitely on t, then the commutation of the
two Hamiltonian vector fields is equivalent to the condition

{H1, H2}q,p = 0, (27)

called “involutivity” of H1, H2.
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Fig. 1 The flow generated by ~u. Fig. 2 Commuting vector fields.

2 Linear and quasi-linear PDEs of the first

order

Consider the evolution equation in N + 1 dimensions:

ψt +
N
∑

k=1

ukψxk = h. (28)

Different cases

1. If the coefficients

uk = uk(~x, t) ∈ R
N , h = h(~x, t) ∈ R, (29)

are given functions, then equation (28) is a linear first order PDE in
N + 1 dimensions for the unknown ψ(~x, t).

2. If the arguments of the ui’s and h depend also on the unknown ψ(~x, t):

ui = ui(~x, t, ψ), h = h(~x, t, ψ), (30)

equation (28) is a quasi-linear PDE (linear in the highest derivatives)
of the first order in N + 1 dimensions for the unknown ψ(~x, t).

3. If h = 0, it is a homogeneous equation in the derivatives.
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2.1 Quasi-linear PDEs vs systems of ODEs

Consider the first order quasi-linear PDE in M dimensions

M
∑

k=1

P k(x, ψ)ψxk = Q(x, ψ), (P (x, ψ) · ∇xψ = Q(x, ψ)) . (31)

where x = (x1, . . . , xM). If one of the independent variables is time t = xM ,
the PDE becomes, more conveniently,

∂ψ

∂t
+ ~u(~x, t, ψ) · ∇~xψ = h(~x, t, ψ) (32)

where x = (~x, t) and

~x = (x1, . . . , xN), ~u = (
P 1

PM
, . . . ,

PN

PM
)T , h =

Q

PM
, N ≡M − 1. (33)

It turns out that the system of PDEs (31) (or (32)) is intimately related
to the following system of M ODEs:

dx1

P 1 = · · · = dxM

PM = dψ
Q
. (34)

becoming
d~x
dt

= ~u(x, ψ),
dψ
dt

= h(x, ψ).
(35)

if t = xM . Now we show the deep relations between equations (31) and (34).
Proposition. Any solution ψ(~x, t) of the PDE (31) (or (32)) defines a so-
lution of the system of ODEs (34) (or (35)). Let ψ(x) be a solution of (31),
defined by the implicit equation:

ϕ(x, ψ) = c (36)

(if ∂ϕ
∂ψ

6= 0, we can solve it wrt ψ, obtaing a solution ψ(x) of (31)). Equation

(36) defines an integral surface S of (31)) in the (M + 1)-dimensional (x, ψ)
space (an hypersurface of dimension M).

Since, from (36), it follows

∇xϕ+
∂ϕ

∂ψ
∇xψ = 0, (37)
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if ∂ϕ
∂ψ

6= 0, we can replace ∇xψ by −∇xϕ(∂ϕ/∂ψ)
−1 in (31), obtaining

P · ∇xϕ+Q
∂ϕ

∂ψ
= (P ,Q) · (∇x, ∂ψ)ϕ = 0. (38)

Since the gradient of ϕ: (∇x, ∂/∂ψ)ϕ is normal to the integral surface S, the
(M + 1)-dimensional vector V = (P ,Q) is tangent to S at the point (x, ψ),
and defines a direction on S at that point. Moving along that direction, one
construct a “characteristic curve”, always tangent to S. If s is the arc length
parameter along the characteristic curve, then (dx/ds, dψ/ds) is parallel to
V , i.e.:

dx

ds
= µP ,

dψ

ds
= µQ (39)

for some scalar µ, implying the system of M ODEs (34) (or (35)), character-
izing the characteristic curves.

More rapidly, if the solutions ψ(~x, t) of (32) is assumed to be known, then
~u(~x, t, ψ(~x, t)) is also known. Consider now the vector ODE

d~x

dt
= ~u(~x, t, ψ(~x, t)), (40)

and its solution ~x(t). Then

d

dt
ψ(~x(t), t) = ψt +

N
∑

k=1

ψxk
dxk

dt
= ψt + ~u · ∇~xψ = h. (41)

Therefore the PDE (32) is transformed into the (more convenient) system of
ODEs (35).

The opposite is also true; we show it for equations (32) and (35).
Proposition . Any solution of the system of ODEs (35) defines a solution
ψ(~x, t) of the PDE (32). More in general, the general solution of the system
of N + 1 ODEs (35) generates the general solution of the first order quasi-
linear PDE in N + 1 dimensions (32).
Proof. Indeed, consider a solution of (35) described implicitely by the system
of equations

ϕj(~x, t, ψ) = cj, j = 1, . . . , N + 1, (42)

We first show that a single equation of the above system defines a particular
solution of the PDE (32). Take the jth equation above: ϕj(~x(t), t, ψ(t)) = cj,
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wher ~x(t) and ψ(t) are solutions of (35); then, applying to the equation d/dt,
one obtains

ϕjt + ~u · ∇~xϕj + h
∂ϕj
∂ψ

= 0. (43)

On the other hand, if ∂ϕj/∂ψ 6= 0, we can interprete the jth equation as a
way to define function ψ(~x, t; cj): ϕj(~x, t, ψ(~x, t; cj)) = cj, and taking partial
derivatives of such equation, we obtain:

∇~xϕj +
∂ϕj
∂ψ

∇~xψ = 0, ϕjt +
∂ϕj
∂ψ

ψt = 0. (44)

Using these last equations, one finally shows that equation (43) becomes (32).
Now we show how to obtain the general solution of (32). The general

solution of (35) is described by the M = N + 1 equations

ϕj(~x, t, ψ) = cj, j = 1, . . . , N + 1, (45)

where the c′js are N + 1 independent constants. Their independence is ex-
pressed by the relation φ(c1, . . . , cN+1) = 0 among them, where φ(·, .., ·) is
an “arbitrary” differentiable function of N +1 variables. So that we can also
write:

φ(c1, . . . , cN+1) = 0, ⇒ cN+1 = F (c1, . . . , cN) (46)

since ∂φ/∂cN+1 6= 0, due to the above independence, where F is an arbitrary
differentiable function of N arguments. Therefore:

ϕN+1(~x, t, ψ) = F (ϕ1(~x, t, ψ), . . . , ϕN(~x, t, ψ)) . (47)

Solving (47) wrt to ψ = ψ(~x, t), one obtains the general solution of the PDE
(31), given in terms of an arbitrary function F of N variables. (Show it!).
✷

Find, using the method of characteristics, the general solution of ψt+ψ
nψx =

1, n = 1, 2.

2.2 Linear PDEs and vector field equations

In the linear case, equation (32) reduces to

ψt + ~u(~x, t) · ∇~xψ = h0(~x, t) + h1(~x, t)ψ, (48)
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and solutions of (48) are in one to one correspondence with solutions of the
system of ODEs:

d~x
dt

= ~u(~x, t),
dψ
dt

= h0(~x, t) + h1(~x, t)ψ
(49)

which is now decoupled, and the characteristic curves, defined by (49a), do
not depend on ψ .

2.2.1 Homogeneous case: the vector field equation

In the important subcase h0 = h1 = 0, we obtain the vector field equation:

ûψ = ψt + ~u(~x, t) · ∇~xψ = 0, (50)

that we are going to discuss from now on. Solutions of (50) are in one to one
correspondence with solutions of the system of ODEs:

d~x
dt

= ~u(~x, t),
dψ
dt

= 0 (⇒ ψ = cN+1) .
(51)

Indeed, from solutions of (50) one obtains solutions of (51) specializing the
procedure presented in the above section. Viceversa, from the general solu-
tion of (51), we construct the general solution of (50). Indeed, the general
solution of (51a) is characterized by the system of nondifferential equations

φj(~x, t) = cj, j = 1, . . . , N (⇒ ~x = ~x (t, c1, . . . , cN)) ; (52)

from the usual condition cN+1 = F (c1, . . . , cN) it follows that the general
solution of the PDE (50) reads

ψ(~x, t) = F (φ1(~x, t), . . . , φN(~x, t)) , (53)

where F is an arbitrary differentiale function of N arguments. It is straight-
forward to verify that the N functions φj(~x, t), j = 1, . . . , N are particular
solutions of (50):

0 =
d

dt
φj(~x(t), t) = φjt + ~u · ∇~xφj, j = 1, . . . , N. (54)

The following proposition summarizes the important properties of the solu-
tions of a vector field equation.

Proposition 5
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1. Equation (50) admits N independent solutions.
Proof. Suppose we have N + 1 solutions

ψi(~x, t), i = 1, . . . , N + 1, (55)

of (50); then the corresponding system

ψit + ~u · ∇~xψi = 0, i = 1, . . . , N + 1, (56)

viewed as an algebraic system of N + 1 equations for the N + 1 com-
ponents of (1, ~u), gives rise to a nontrivial solution iff

∂(ψ1, . . . , ψN+1)

∂(x1, . . . , xN , t)
= 0; (57)

i.e., the N + 1 solutions ψ1, . . . , ψN+1 of the PDE (48) are dependent
✷.

2. The solution space of (50) is a ring; i.e., an arbitrary differentiable
function f(ψ1, . . . , ψN) of solutions of (50) is a solution of (50) (check
it!). Also, if {ψ1, . . . , ψN} are N independent solutions of (50), they
are a basis in the ring, and any solution ψ of (50) can be written in the
form

ψ = F (ψ1, . . . , ψN), (58)

for some differentiable function F of N arguments (compare with (52)).

3. If the vector field associated with (48) is Hamiltonian, then the solution
space of (50) is also a Lie algebra, whose Lie bracket is the Poisson
bracket.

Proof. If ψ1, ψ2 are solutions of (48) and û is Hamiltonian:

ûψj = ψjt + ~u · ∇~xψj = ψjt + {ψj, H} = 0, j = 1, 2 (59)

Then

û{ψ1, ψ2} = {ψ1, ψ2}t + {{ψ1, ψ2}, H} = {ψ1t, ψ2}+ {ψ1, ψ2t}−
{{H,ψ1}, ψ2} − {{ψ2, H}, ψ1} =
{ψ1, ψ2t + {ψ2, H}}+ {ψ1t + {ψ1, H}, ψ2} = 0,

(60)
having used the Jacobi identity, implying that also {ψ1, ψ2} is solution
of (48) ✷.

Find, using the method of characteristics, the general solution of xψx+yψy+
zψz = 0 and a good basis in the space of solutions.
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2.3 Homogeneous version of the quasi-linear PDE (31)

If Q = h = 0:
ψt + ~u(~x, t, ψ) · ∇~xψ = 0; (61)

then ψ is constant on the characteristic curves defined by (35):

dψ
dt

= 0, ⇒ ψ = A,
d~x
dt

= ~u(~x, t, ψ) = ~u(~x, t, A).
(62)

The general solution of (62b) is characterized by the N nondifferential equa-
tions:

ϕj(~x, t, A) = ξj, j = 1, . . . , N (63)

where ~ξ = (ξ1, . . . , ξN ) is an arbitrary constant vector, and, as above, A =

F (~ξ). Therefore the general solution of (61) is characterized by the following
implicit equation

ψ = F (~ϕ(~x, t, ψ)) (64)

or, equivalently, by the system

~ϕ(~x, t, F (~ξ)) = ~ξ,

ψ = F (~ξ),
(65)

(where one solves (65a) wrt ~ξ = ~ξ(~x, t) and then replace it into (65b), ob-

taining ψ = F (~ξ(~x, t))).

Basic example We consider, as basic example (with ρ = ψ), the following
first order quasi-linear PDE in multidimension:

ρt + ~u(ρ) · ∇~xρ = 0, ρ = ρ(~x, t), (66)

which is nothing but the continuity equation

ρt +∇~x · ~J(ρ) = 0,

~u(ρ) = ∂ ~J(ρ)
∂ρ

,
(67)

for some “density” ρ and some “flux vector” ~J(ρ) = ρ~v(ρ). If N = 1 and
u1(ρ) = ρ, this equation reduces to the famous Riemann-Hopf equation:

ρt + ρρx = 0, (68)
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the simplest prototypical model in the description of the gradient catastrophe
(wave breaking) of one dimensional waves.

From the above considerations, the solution ρ(~x, t) = A of (66) is constant
on the characteristic curves defined by the system of ODEs:

d~x

dt
= ~u(ρ(~x, t)) = ~u(A). (69)

Therefore (69) can be trivially integrated:

~x− ~u(F (A)t = ~ξ (70)

where ~ξ is an arbitrary N -dimensional contant vector, describing an N -
parameter family of characteristic straight lines in R

N+1, and the constant
value A of ρ on the straight line labelled by ~ξ is A = F (~ξ), where F is an
arbitrary scalar function of N variables. Therefore the solution ρ(~x, t) of (66)
is characterized by the non-differential equations

ρ(x, t) = F (~ξ),

~x = ~u(F (~ξ))t+ ~ξ.
(71)

Solving (71b) wrt ~ξ: ~ξ = ~ξ(~x, t), and replacing it in (71a), one obtains:

ρ(x, t) = F (~ξ(~x, t)), (72)

where F is an arbitrary scalar function of N variables.
Equivalently, this general solution is also characterized by the implicit

nondifferential equation
ρ = F (~x− ~u(ρ)t). (73)

If we add, for instance, the initial condition

ρ(~x, 0) = ρ0(~x), ~x ∈ R
N , (74)

then F = ρ0 and
ρ = ρ0(~x− ~u(ρ)t) (75)

is the equation defining implicitely the solution of the Cauchy problem

ρt + ~u(ρ) · ∇~xρ = 0, ρ(~x, 0) = ρ0(~x). (76)
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3 Analytic aspects of wave-breaking in 1+1

dimensions

For the geometric aspects, see [3, 4]; for the analytic aspects, see [5] and
below.

Consider the evolution of a localized one-dimensional wave according to
the Hopf equation

ut + uux = 0.
u(x, 0) = F (x), x ∈ R

(77)

Such evolution is described by the implicit equation

u = F (ζ),
ζ = x− F (ζ)t,

(78)

in which equation (78b) must be solved with respect to ζ, obtaining ζ =
ζ(x, t), and substituted in (78a), to get the solution u = F (ζ(x, t)).

Such inversion is possible if the ζ-derivative of (78b) is different from zero.
Therefore the 1-dimensional (movable) Singularity Manifold (SM) of
(77) is described by the equation:

S(ζ, t) = 1 + Fζ(ζ)t = 0 ⇒ t = − 1

Fζ(ζ)
. (79)

Since
ζx =

1
1+tFζ

, ζt = − F
1+tFζ

,

ux = Fζζx =
Fζ

1+tFζ
, ut = Fζζt = − FFζ

1+tFζ

(80)

the wave breaks on the singularity manifold.
We are interested in the first time tb in which the breaking of the solution

occurs, corresponding to the characteristic values ξb such that

tb = t(ζb) = global min{t(ζ)} > 0 ⇒
Fζζ(ζb) = 0, Fζ(ζb) < 0, Fζζζ(ζb) > 0,

(81)

ξb is an inflection point of the initial profile.
At tb, the wave breaks in the point xb of the x-axis defined by

xb = F (ζb)tb + ζb. (82)

Now we study the solution (78) near breaking:

x = xb + x′, t = tb + t′, ζ = ζb + ζ ′, (83)
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where x′, t′, ζ ′ are small:

ζ = x− F (ζ)t ⇒ ζ ′
3
+ b(t′)ζ ′ − γX(x′, t′) = 0, (84)

where

b(t′) =
6Fζ

tbFζζζ
t′ = γFζt

′, X(x′, t′) = x′ − Ft′, γ = 6
tbFξξξ

(85)

corresponding to the maximal balance

|X| = O(|t′|3/2), |ζ| = O(|t′|1/2). (86)

In (85) and in the rest of this section, unless explicitely specified, F and
its derivatives wrt ζ are evaluated at ζ = ζb. At the same order, the SM
equation reads:

SM : 0 = S(ζ ′, t) ∼ Fζt
′ +

Fζζζ
2
tbζ

′2. (87)

t

t b

ξ ξ
b

The singularity manifold

ξ+ξ (t)(t)−

The three roots of this cubic are given by the well-known Cardano’s for-
mula:

ζ ′0 (x
′, t′) = (A+)

1

3 + (A−)
1

3 ,

ζ ′± (x′, t′) = 1
2

(

(A+)
1

3 + (A−)
1

3

)

±
√
3
2
i
(

(A+)
1

3 − (A−)
1

3

)

,
(88)

where
A± = R±

√
∆, ∆ = R2 +Q3

Q(t′) = b(t′)
3
, R(x′, t′) = γ

2
X(x′, t′).

(89)

14



Once ζ ′(x′, t′) is known from the solution of the cubic, implying also:

ζ ′x′ =
1

S , ζ ′x′x′ = −tbFζζζ
ζ ′ζ ′2x′

S , (90)

then the solution of the Hopf equation and its derivatives are then approxi-
mated, near breaking, by the formulae:

u(x, t) ∼ F (ζb + ζ ′),

ux(x, t) ∼ F ′(ζ)ζ ′x′ ∼
Fζ(ζb+ζ

′)

Fζt′+
Fζζζ

2
ζ′2tb

,

uxx(x, t) ∼ F ′′(ζ)(ζ ′x′)
2 + F ′(ζ)ζ ′xx.

(91)

Before breaking
If t < tb (t

′ < 0), S and ∆ are strictly positive, and only the root ξ′0 is real;
correspondingly, the real solution of (77) is single valued:

u ∼ F (ζb + ζ ′0(x
′, t′)). (92)

and the slope ux of the profile, finite ∀x, reaches its minimum at the inflection
point xf (t

′), at wich X = 0 ⇒ ξ′ = 0, ξ′xx = 0, uxx = 0:

xf (t
′) = xb + F (ζb)t

′ (X = x− xf (t
′)),

u(xf (t), t) = F (ζb), ux(xf (t), t) =
1

t−tb , uxx(xf (t), t) = 0.
(93)

To analyse the solution in a smaller region around the inflection point, we
choose

|X| = |x− xf (t
′)| = O(|t′|p+1), p > 1/2. (94)

Then ζ ′ ∼ |t′|p, ζ ′3 << bζ ′ ∼ −γX, the solution becomes more explicit:

ζ ′ ∼ γX

b
=
x′ − Ft′

Fζt′
, (95)

and the real solution of (77) reduces to the exact similarity solution of the
Hopf equation:

u ∼ F (ζb + ζ ′) ∼ x− xb
t− tb

, (96)

describing the tangent to the profile at the inflection point.
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t < tb

x
f
(t) xb

The analytic expression of the slope of the profile:

ux ∼ −
(

|t− tb|+
Fζζζ
2
t4b

(

x− xf (t
′)

t− tb

)2
)−1

. (97)

ux ∼ (t − tb)
−1 in this very thin region; but ux = O(1) in the region |x −

xf (t)| = O(|t′|).

At breaking
In the limit t ↑ tb,
i) the inflection point reaches the breaking point: xf (t) → xb, and the tangent
to the inflection point becomes the vertical line x = xb.
ii) the solution of the cubic simplifies:

ζ ′ = 3

√

γ(x− xb), (98)

and, correspondingly,

u ∼ F
(

ζb +
3

√

γ(x− xb)
)

, ux ∼
γ1/3

3

F
(

ζb +
3

√

γ(x− xb)
)

(x− xb)2/3
, (99)

describing the typical vertical inflection at t = tb, in the neighborhood of xb:
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xb

t = tb

x
f (t)

After breaking

t

t b

ξ ξ
b

The singularity manifold

ξ+ξ (t)(t)−

The line t = const, t > tb intersects the SM in the two points

ζ±(t) = ζb ± ζM , ζM =
√

γ|Fζ(ζb)|(t−tb)
3

= 1
tb

√

2
Fζζζ

(t− tb). (100)

Corresponding points on the physical axes:

x±(t′) = xb + F (t− tb)± 2
3t2

b

√

2
Fζζζ

(t− tb)
3/2. (101)

17



are obtained by the condition ∆ = 0, defining the singularity manifold in
physical space-time.

If |ζ ′| ≤ ζM(t) (x−(t) ≤ x ≤ x+(t)), ∆ = Q3 + R2 ≤ 0 and all the three
roots of the cubic are real, and the solution of (77) becomes three-valued:

u0(x, t) = F (ζb + ζ ′0(x
′, t′)), u±(x, t) = F (ζb + ζ ′±(x

′, t′)). (102)

xf
x

b (t)x (t)− x (t)+

t>tb

4 Discontinuous shock wave regularization

Now we replace, after breaking, the regular, but multivalued solution, by the
discontinuous, but single valued one, whose discontinuity is characterized,
for t ≥ tb, by the following system of three equations [3]:

s = ζ1 + F (ζ1)t = ζ2 + F (ζ2)t, (103)

ṡ = F (ζ1)+F (ζ2)
2

, (104)

with initial conditions

s(tb) = xb, ζ1(tb) = ζ2(tb) = ζb, (105)

where s(t) is the position of the shock wave front and ζ1(t), ζ2(t) are two
of the three parameters of the characteristic curves meeting at t > tb (ζ1(t)
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is the maximum and ζ2(t) is the minimum of these three parameters). We
remark that (104) is the equal area condition, corresponding to cutting the
three valud profile with a vertical line removing equal area lobi. Solving
equations (103) we obtain, in principle, ζ1,2 as functions of s and t: ζ1,2(s, t).
Then (104) is an ODE for s(t), whose solution yields the three functions s(t),
ζ1,2(s(t), t) characterizing the discontinuous shock solution of (77) for t > tb:

u = F (ζ), x = ζ + F (ζ)t, x 6= s(t),
u = F (ζ1), x ↓ s(t); u = F (ζ2), x ↑ s(t), (106)

while, for 0 ≤ t ≤ tb, the solution is that constructed in the previous section:

u = F (ζ), x = ζ + F (ζ)t, x ∈ R. (107)

To get a more explicit result, let us investigate the system (103), (104) im-
mediately after breaking; then equations simplify to

ζ ′1,2
3 + γFζt

′ζ ′1,2 = γ(s′ − ft′),

ṡ′ = F +
Fζ

2
(ζ1 + ζ2),

(108)

where F, Fζ are evaluated at ζb, and

ζ ′1,2(t
′) = ζ1,2(t)− ζb, ζ ′1,2(0) = ζb,

s′(t′) = s(t)− xb, s′(0) = 0.
(109)

Therefore ζ1,2 are explicit functions of s′, t′, defined by:

ζ1(s
′, t′) = ζ ′0(s

′, t′), ζ ′2(s
′, t′) = ζ+(s

′, t′); (110)

Substituting (110) into (104), one gets the ODE ṡ′ = [F (ζ1(s
′, t′))+F (ζ2(s

′, t′))]/2
whose solution yields s′(t′) and, consequently, ζ1,2(t

′). Taking account of (86),
we simplify further the problem setting:

s′(t′)− Ft′ = βt′
3

2 , ζ1,2(t
′) = α1,2t

′ 12 , (111)

then the problem is reduced to that of finding the constants α1,2 and β from
the algebraic system

α1,2
3 + γFζα1,2 = γβ,

β =
Fζ

2
(α1 + α2).

(112)
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