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We investigate the following two classes of Newtonian dynamical systems in
the plane

~̈x = ~F
(m)
1 (~x), m ∈ Z

~̈x = ~F
(m)
2 (~x, ~̇x), m ∈ Z,

(1)

where ~x = (x, y) ∈ R2, f̈ = d2f/dt2. The forces ~F
(m)
1,2 are defined by

~F
(m)
1 (~x) ≡ − (Re(α2(x + iy)m), Im(α2(x + iy)m))) ,

~F
(m)
2 (~x, ~̇x) ≡ ~̇x ∧ ~hm + 2 m+1

(m−1)2
ω2~x + (Re(x + iy)m, Im(x + iy)m) ,

(2)

where the constant vectors ~hm, m ∈ Z are orthogonal to the (x, y) plane,

with ||~hm|| = m+3
m−1

ω, and ω > 0, a ∈ R and α ∈ C are arbitrary parameters
[to be checked].

The classes (1a) and (1b) originate from the following complex ODE:

d2ζ

dτ 2
= ζm , m ∈ Z, m 6= −1, τ ∈ C, ζ ≡ ζ (τ) ∈ C (3)

solved by the complex quadrature

τ =

ζ
∫

ζ(0)

dζ
√

2(E + ζn

n
)
, n ≡ m + 1, (4)
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respectively via the following two distinguished changes of dependent and
independent variables

z(t) = x(t) + iy(t) = ζ(τ),
τ(t) = αt + β, α, β ∈ C

(5)

and (Calogero’s transformation)

z (t) = x(t) + iy(t) = exp
(

2i ω t
n−2

)

ζ (τ) , (k 6= −1) ,

τ(t) = exp(i ω t)−1
i ω

,
(6)

corresponding respectively to straight and cyclic motions on the hyperelliptic
curve of the quadrature (4).

We remark that the equations of the class (1a) are locally Liouville inte-

grable. Indeed, from the Hamiltonian character of (3):

ż =
∂H
∂π

, π̇ = −∂H
∂z

, (7)

with the complex Hamiltonian

H =
π2

2
+

ζn

n
, (8)

it follows the Hamiltonian character of (1a):

ẋ = ∂H
∂px

, ẏ = − ∂H
∂py

,

ṗx = −∂H
∂x

, ṗy = −∂H
∂y

,
(9)

where z = x + iy, π = px − ipy and H = Re H [check it]. Moreover (1a)
possesses two independent constants of motion: H = Re H, I = Im H, in
involution:

{H, I} =
∂H

∂x

∂I

∂px

− ∂H

∂px

∂I

∂x
+

∂H

∂y

∂I

∂py

− ∂H

∂py

∂I

∂y
= 0 (10)

[check it]. But the resulting dynamics is unbounded, due to the branch point
singularities associated with (4), and the 2-dimensional variety on which the
motion takes place is not a torus. It will be shown that this lack of global
integrability is intimately connected to the sensitive dependence on the initial
data exhibited by this class.
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Through the change of variables

w(ξ) = c1ζ(τ), ξ = c2τ + ξ0, ξ0 =
c1ζ(0)
∫

0

dw√
1−wn ,

c1 =
(

− 1
nE

)
1
n , c2 =

√
2E

n−2
2n n− 1

n ,

(11)

we write the quadrature (4) in its adimensional form

ξ =

w
∫

0

dw√
1 − wn

. (12)

The quadrature is associated with the hyperelliptic curve defined by

µ2 = 1 − wn, n ∈ Z (13)

whose square root branch points are the n roots ρj = e
2πi(k−1)

n , k = 1, .., n of
unity. Let g be the genus of the curve (13); then n = 2g + 1, if n is odd (in
this case, w = ∞ is also a branch point) and n = 2(g + 1) if n is even.

The symmetry

w → we
2πi
n , µ → µ (14)

of the curve (13) strongly suggests to cut the w-plane through the rays

γj = {arg w = arg ρj, |w| ≥ |ρj|}, j = 1, .., n. (15)

Then the cutted w-plane is mapped into the interior of the regular n-gone of
side 2l, see Fig.1, where:

l =

∞
∫

1

dw√
wn − 1

. (16)
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Fig. 1; case n = 5.

Let us consider, for the sake of concreteness, n = 5. Due to the Schwartz
reflection principle, the 5 images of the second w-sheet, obtained by analytic
continuation through the cuts γj, j = 1, .., 5, are the 5 regular pentagones
in Fig. 2 (the blue ones); these images are obtained, one from another, by
means of the 4 independent translations pi, i = 1, .., 4 connecting the next
nearest vertices of the central (white) pentagone:

4



p
1

p 2p
3

p
4

Fig. 2; case n = 5.

Therefore the 4 complex numbers pi, i = 1, .., 4 are a complete set of
independent periods of the inverse function w = w(ξ):

w (ξ + p) = w(ξ),

p =
4

∑

k=1

nkpk, nk ∈ Z.
(17)

In general, he multi-periodicity property implies immediately that one can
restrict the dynamics to the union ot two regular n-gones with periodicity
conditions at the parallel edges of the two n-gones (the edges indicated by
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the same letter in Fig. 3). The resulting space is topologically equivalent to
a single 2(n − 1)-gone with periodicity conditions at parallel edges.

a

b

c

d a −1

b −1

c −1
d −1

Fig. 3; case n = 5.

The regular polygones constructed by analytic continuation through the
cuts, using the Schwartz reflection principle, generically do not superimpose,
and the Riemann surface defined by w = w(ξ) is an infinite covering of
the ξ-plane with branch points, located at the vertices of the n-gones, whose
projections to the ξ-plane are everywhere dense. Near a generic branch point
ξb, w is unbounded, exhibiting the following behavior:

w ∼ c(ξ − ξb)
− 2

n−2 , ξ ∼ ξb. (18)

There are however few important exceptions to this picture, for n = 3, 4, 6,
corresponding respectively to the equilater triangle, the square and the reg-
ular exhagone, which are well-known to cover exactly the plane.

Two initially close rectilinear trajectories are shown in Fig. 5; when a
branch point happens to be inside the strip drawn by them, the two trajec-
tories separate. It is important to remark that, since the trajectories cover
ergodically the space, no matter how close the two trajectories are initially,
sooner or later this bifurcation will take place, and it will repeat over and
over. So, the straight motion exhibits sensitive dependence on the initial
data.
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Fig. 5; case n = 5.
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Interval Exchange Map

Fig. 6; the interval exchange map, case n = 5.
To study further the dynamical properties, we introduce as Poincaré Sec-

tion (PS) an orizontal line separating our polygonal domain into two separate
parts. Then the rectilinear motion becomes the so-called “Interval Exchange
Map” (IEM), whose ergodicity is known, and for which the following notion
of Lyapunov exponent can be introduced. Let ξ0 ∈ PS and consider N iter-
ations of ξ0 according to the IEM. Let N (I, ξ0, N) be the number of iterates
of ξ0 belonging to a subset I of the PS. Then the following result holds:

N (I, ξ0, N)

N
= µ(I)

(

1 + O

(

1

N1−λ

))

, 0 < λ < 1, N >> 1. (19)

It follows that:
1) the IEM is ergodic, since the fraction N

N
of iterates falling in I is equal, in

the limit N → ∞, to the measure µ(I) of I (the analogue, in the continuous
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case, of the fact that the time spent in a domain of phase space is proportional
to the measure of such domain).
2) Since in the integrable case of a quasi-periodic motion on a torus λ = 0,
λ is strictly connected to the asymptotic divergence of two close orbits and
can be interpreted as a sort of Lyapunov exponent.

Cyclic motions

In the case of cyclic trajectories (see Fig. 6), the theory says that, due to
the transformation (6), if the radius of the evolutionary circle is sufficiently
small, then the motion is isochronous with period T = 2π/ω. Preliminary
numerical experiments (with accuracy 10−17) show that generic initial data
lead to periodic motions if n is small, with a period which is a multiple of T ,
eventually very large (we found examples with period 107T and more!). This
means that, although inside the evolutionary circle there are infinitely many
branch points, the ones which are accessed by the dynamics are finite and
the sheets visited is also finite. For sufficiently large n, the typical motion is
instead aperiodic, with sensitive dependence on the initial data. Although a
phenomenological explanation of this result has been given [1], no rigorous
proof of it is available at the moment (see [1] and [2] for more details).
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Fig. 6; case n = 5.
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