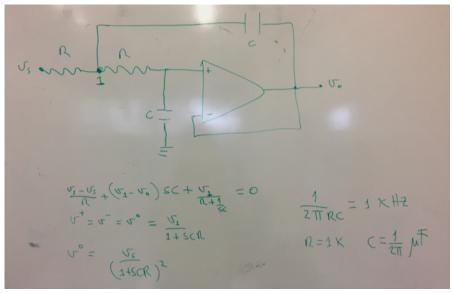
LSS 2018/19 – Canale A-De – Esonero 2, Soluzioni A

Esercizio 1:



Esercizio 2:

- (1) Visto che $v_D=-v_s$, nel caso $v_s<0$ abbiamo $I_D=(v_o)/R$ e quindi $v_o=RI_Se^{-v_s/v_T}$. Nel caso $v_s>0$ nel diodo non scorre corrente quindi $v_o=0$.
- (2) Solo le semionde negative sono ammesse all'ingresso, quindi all'uscita avremo semionde positive innalzate dalla relazione esponenziale.
- (3) E' sufficiente avere un'alimentazione singola, V^+ positivo e $V^-=0$.

Esercizio 3: 1) La tavola della verita' e l'espressione canonica sono:

Аз	A2	A ₁	Ao	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	х
1	0	1	1	х
1	1	0	0	х
1	1	0	1	х
1	1	1	0	х
1	1	1	1	х

$$Y = \overline{A_3}\overline{A_2}A_1\overline{A_0} + \overline{A_3}\overline{A_2}A_1A_0 + \overline{A_3}\overline{A_2}\overline{A_1}A_0 + \overline{A_3}\overline{A_2}A_1A_0$$

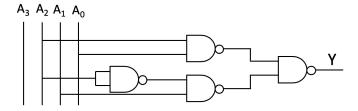
2) Trasformazione in forma minima attraverso il metodo delle mappe di Karnaugh

A1A0 A3A2	00	01	11	10	A1A0 A3A2	00	01	11	10
00	0	0	1	1	00	0	0	1	1
01	0	1	1	0	01	0	1	1	0
11	Х	Х	Х	х	11	Х	1	1	х
10	0	0	Х	Х	10	0	0	1	1

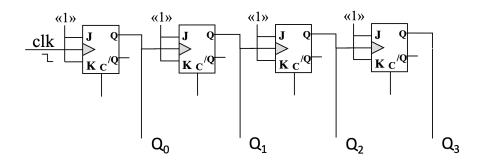
Da cui la forma minima: $Y = A_2 A_0 + \overline{A_2} A_1$

 ${\bf 3)}$ Disegno con NAND a 2 e 3 inputs. Applicando De Morgan otteniamo:

$$Y = \overline{\overline{A_2 A_0} * \overline{\overline{A_2}} \overline{A_1}}$$



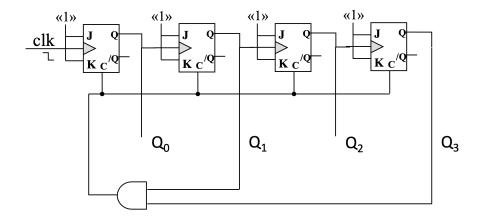
Esercizio 4: 1) Un contatore modulo 16 e' realizzato con 4 T-FF in cascata e ha intervallo di conteggio pari a (0-15)



- 2) Frequenza del segnale in uscita dall'ultimo contatore (Q_3) e' $clk/2^4 = 1MHz$.
- 3) Un contatore modulo 10 ha intervallo di conteggio pari a (0-9). Di conseguenza la condizione Clear = 1 si deve avere per il valore 10 dell'uscita $(Q_3Q_2Q_1Q_0 = 1010)$. Esprimiamo la condizione e minimizziamo con il metodo delle Mappe di Karnaugh

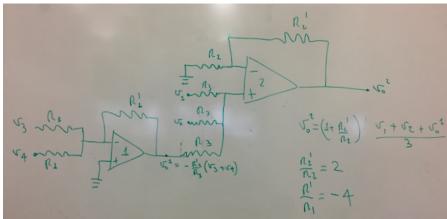
Q1Q0 Q3Q2	00	01	11	10	\	Q1Q0 Q3Q2	00	01	11	10
00	0	0	0	0		00	0	0	0	0
01	0	0	0	0		01	0	0	0	0
11	Х	Х	х	х		11	х	х	1	1
10	0	0	х	1		10	0	0	1	1

Da cui la forma minima: $C = Q_3Q_1$ Il circuito finale e' quindi:



LSS 2018/19 – Canale A-De – Esonero 2, soluzioni ${\bf B}$

Esercizio 1:



Esercizio 2:

- (1) Visto che $v_D = v_s$, nel caso $v_s > 0$ abbiamo $I_D = (0 v_o)/R$ e quindi $v_o = -RI_S e^{v_s/v_T}$. Nel caso $v_s < 0$ nel diodo non scorre corrente quindi $v_o = 0$.
- (2) Solo le semionde positive sono ammesse all'ingresso, quindi all'uscita avremo semionde negative innalzate dalla relazione esponenziale.
- (3) E' sufficiente avere un'alimentazione singola, $V^+=0$ e V^- negativo.

Esercizio 3: 1) La tavola della verita' e l'espressione canonica sono:

Аз	A2	A 1	A o	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	х
1	0	1	1	х
1	1	0	0	Х
1	1	0	1	х
1	1	1	0	х
1	1	1	1	х

$$Y = \overline{A_3} A_2 \overline{A_1} \overline{A_0} + \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0} + \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0} + \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_0}$$

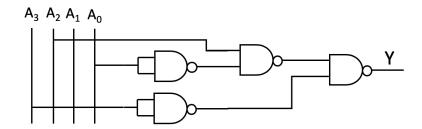
2) Trasformazione in forma minima attraverso il metodo delle mappe di Karnaugh

A1A0 A3A2	00	01	11	10	A1A0 A3A2	00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	0	0	1	01	1	0	0	1
11	Х	Х	Х	х	11	1	1	1	1
10	1	1	х	х	10	1	1	1	1

Da cui la forma minima: $Y = A_2 \overline{A_0} + A_3$

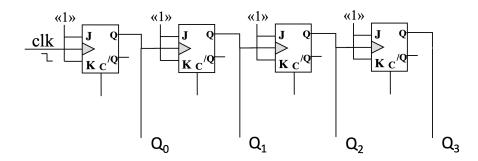
3) Disegno con NAND a 2 e 3 inputs. Applicando De Morgan otteniamo: $Y = \overline{\overline{A_2 \overline{A_0}}*\overline{A_3}}$

$$Y = \overline{\overline{A_2}\overline{A_0}} * \overline{A_3}$$



Esercizio 4:

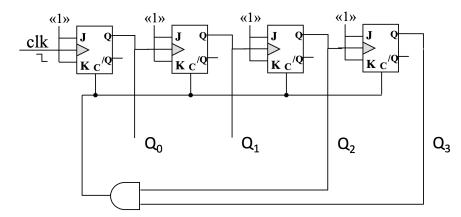
1) Un contatore modulo 16 e' realizzato con 4 T-FF in cascata e ha intervallo di conteggio pari a (0-15)



- 2) Frequenza del segnale in uscita dall'ultimo contatore (Q_3) e' $clk/2^4 = 2MHz$.
- 3) Un contatore modulo 12 ha intervallo di conteggio pari a (0-11). Di conseguenza la condizione Clear = 1 si deve avere per il valore 12 dell'uscita $(Q_3Q_2Q_1Q_0 = 1100)$. Esprimiamo la condizione e minimizziamo con il metodo delle Mappe di Karnaugh

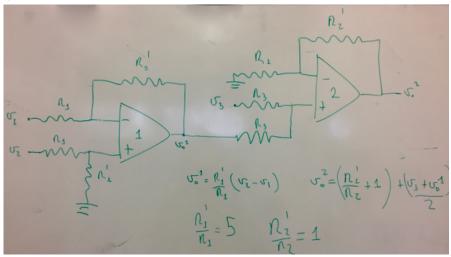
\	Q1Q0 Q3Q2	00	01	11	10	\	Q1Q0 Q3Q2	00	01	11	10
	00	0	0	0	0		00	0	0	0	0
	01	0	0	0	0		01	0	0	0	0
	11	1	х	х	х		11	1	1	1	1
	10	0	0	0	0		10	0	0	0	0

Da cui la forma minima: $C = Q_3Q_2$ Il circuito finale e' quindi:



LSS 2018/19 – Canale A-De – Esonero 2, soluzione ${f C}$

Esercizio 1:



Esercizio 2:

- (1) Uguagliando le correnti abbiamo che $v_s/R = I_S e^{v_D/v_T}$. Quindi nel caso $v_s > 0$ scorre corrente nel diodo mentre nel caso opposto il diodo è un aperto. Visto che $v_o = -v_D$ nel caso $v_s > 0$, $v_o = -V_T \log \frac{v_s}{RI_S}$. Nel caso $v_s < 0$ il circuito si comporta da comparatore e satura a V^+ .
- (2) Solo le semionde positive all'ingresso sono riprodotte in negativo all'uscita e schiacciate dal logaritmo. Le semionde negative producono una saturazione a V^+
- (3) E' sufficiente avere un'alimentazione singola, $V^+ = 0$ e V^- negativo.

Esercizio 3: 1) La tavola della verita' e l'espressione canonica sono:

Аз	A2	A 1	Αo	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1	х
1	1	0	0	Х
1	1	0	1	х
1	1	1	0	Х
1	1	1	1	х

$$Y = \overline{A_3 A_2} A_1 \overline{A_0} + \overline{A_3} A_2 \overline{A_1 A_0} + \overline{A_3} A_2 \overline{A_1 A_0} + \overline{A_3} A_2 A_1 \overline{A_0} + A_3 \overline{A_2 A_1 A_0}$$

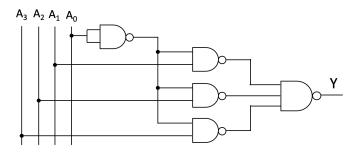
2) Trasformazione in forma minima attraverso il metodo delle mappe di Karnaugh

A1A0 A3A2	00	01	11	10	A1A0 A3A2	00	01	11	10	
00	0	0	0	1	00	0	0	0	1	
01	1	0	0	1	01	1	0	0	1	
11	х	х	х	х	11	1	х	х	1	
10	1	0	х	х	10	1	0	х	1	

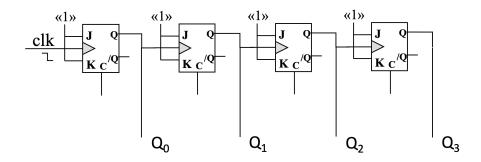
Da cui la forma minima: $Y = A_2 \overline{A_0} + A_3 \overline{A_0} + A_1 \overline{A_0}$

3) Disegno con NAND a 2 e 3 inputs. Applicando De Morgan otteniamo:

$$Y = \overline{\overline{A_2}\overline{A_0} * \overline{A_3}\overline{A_0} * \overline{A_1}\overline{A_0}}$$



Esercizio 4: 1) Un contatore modulo 16 e' realizzato con 4 T-FF in cascata e ha intervallo di conteggio pari a (0-15)



- 2) Frequenza del segnale in uscita dall'ultimo contatore (Q_3) e' $clk/2^4 = 4MHz$.
- 3) Un contatore modulo 14 ha intervallo di conteggio pari a (0-13). Di conseguenza la condizione Clear = 1 si deve avere per il valore 14 dell'uscita $(Q_3Q_2Q_1Q_0 = 1110)$. Esprimiamo la condizione e minimizziamo con il metodo delle Mappe di Karnaugh

Q1Q0 Q3Q2	00	01	11	10	\	Q1Q0 Q3Q2	00	01	11	10
00	0	0	0	0		00	0	0	0	0
01	0	0	0	0		01	0	0	0	0
11	0	Х	х	1		11	0	0	1	1
10	0	0	0	0		10	0	0	0	0

Da cui la forma minima: $C = Q_3Q_2Q_1$ Il circuito finale e' quindi:

