Short Communication

High T_c superconductivity by quantum confinement

A. Bianconi and M. Missori

Università di Roma, Dipartimento di Fisica, P.A. Moro 2, 00185 Roma, Italy

(Received 21 December 1993, accepted 4 January 1994)

Abstract. — We report the results of a careful experimental investigation of the Cu site configurations in the CuO$_2$ plane of Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi2212) showing that the quasi 2D Fermi liquid is confined in the stripes of width L with a superlattice period $\lambda_p = 4.65\,\text{Å}$. The high T_c superconductivity is stabilized at high temperature by tuning the Fermi energy of the 2D electron gas to the quantum resonance $k_Fy = 2\pi/L$. The confinement of a 3D electron gas in quantum wires can be realized by synthetizing Bi-Ca-Sr-Cu-O systems with some adjacent CuO$_2$ layers forming a metallic slab of thickness H. In this case the amplification of the critical temperature is assigned to quantization of the wavevectors along both the y and z directions satisfying the $k_{Fy} = 2\pi/L$ and $k_{Fz} = m\pi/H$ conditions.

The presence of polarons in the metallic phase of Bi$_2$Sr$_2$CaCu$_2$O$_{8+y}$ (Bi2212) [1-3] has been investigated by measuring the Cu-O(apical) distance by Extended X-ray Absorption Fine Structure (EXAFS) experiments. In fact the local structure configurations associated with polarons can be described by two main configurational coordinates: 1) the shortening of the Cu-O(apical) distance due to Cu displacement from the CuO$_2$ plane and to the movement of the apical oxygen, and 2) the tilting of the apical oxygen from (π, π) direction as in the low temperature orthorhombic (LTO) like structure to the $(0, \pi)$ direction in the low temperature tetragonal phase (LTT) like structure [4].

The idea of the present work is that by measuring the distribution of the long and short Cu-O(apical) bond lengths by EXAFS, and the modulation period $\lambda_p = 4.65\,\text{Å}$ by electron diffraction, it is possible to measure the width L of the stripes of Cu sites of undistorted domains with LTO type structure confined between the stripes of polarons with the LTT structure. Experimental details have been reported elsewhere [5]. Two Cu-O(apical) distances 2.37 and 2.53 Å below T_c have been found, in agreement with diffraction works [3] confirming the presence of domains with different Cu site configurations in the CuO$_2$ plane. The domains of the undistorted Cu sites, with the LTO type structure, are associated with the locus of the itinerant states giving a Fermi liquid. These domains form stripes of width L. In figure 1
we report the measure of \(L \) below \(T_c \), obtained by the measured values of \(N_{\text{long}}/N_{\text{tot}} \) in fact \(L/a = \lambda_p \left(N_{\text{long}}/N_{\text{tot}} \right) \).

This result allows us to describe the CuO\(_2\) plane as shown in figure 2 where polarons of area \(S_p = 4a^2 = 116 \text{ Å}^2 \) have condensed in a unidimensional charge density wave CDW, forming the polaronic stripes of width \(W = 2a \) with a LTT like structure. Therefore the CuO\(_2\) plane is decorated by two different Cu site structure configurations distributed in linear stripes.

This scenario shows that the Fermi liquid is confined in a superlattice of quantum stripes of width \(L \). The Bi2212 with two CuO\(_2\) layers form a quasi 2D electron gas. The anisotropic superconducting gap has been found to show a maximum in the \(\Gamma M \) direction with values of the components of the Fermi wavevector \(k_{Fx} = k_{Fy} = 0.37 \left(2\pi/a \right) \) [6]. For a 2D-Fermi liquid confined in a quantum stripes of width \(L \) the \(k \)-vector is quantized in the \(y \) direction \(\left(k_{ny} = n\pi/L \right) \) and it is evident that \(k_{Fy} \) is very close to \(2\pi/L = 1/2.7 \left(2\pi/a \right) \), so the Fermi wavevector is tuned to the resonance \(n = 2 \).

The density of states of the superlattice of quantum stripes [7] is different from the density of states of the 2D square lattice, because it shows very intense and sharp peaks with maxima of the order of five-tens times the 2D density of states. If the Fermi energy is tuned at one of these maxima the superconducting critical temperature can be pushed up by a factor of the order of 5-10.

In fact for a standard superconducting metal following the BCS theory \(T_c \sim 2\omega_D \exp(-1/N_0V) \), where \(N_0 \) is the density of states at the Fermi energy and \(V \) is the electron-phonon coupling constant, therefore the increase of \(N_0 \) implies an increase of \(T_c \). Careful band structure calculations of the cuprates give the electron-phonon coupling constant \(V \sim 1.5 \) and the density of states \(N_0 \sim 0.15 \text{ states/eV-atom-spin} \) showing that \(N_0V \sim 0.2 \). Therefore by taking \(\omega_D \sim 500 \text{ K} \) as the Debye temperature we can calculate in first approximation, the critical temperature of a homogeneous CuO\(_2\) plane \(T_c \sim 7 \text{ K} \) predicted by the BCS theory. More refined calculations of \(T_c \) using the Allen-Dynes equation give \(T_c \sim 30 \text{ K} \) [8].

The enhancement of the critical temperature by forming metallic stripes of width \(L \) separated by stripes of width \(W \) can be calculated by following the solution of the gap equation of Thompson and Blatt [9] in a single film of a superconducting metal where the Fermi level is close and above the energy of the \(n \) resonance. The enhancement factor at the second resonance as found in the cuprates should be of the order of \(\exp(1/(3N_0V)) \sim 5 \) for a superlattice
in comparison with the homogeneous CuO$_2$ plane. Therefore the critical temperature can be enhanced by the confinement from the 7 (30) K range to the 35 (150) K range. The amplification factor depends on the resonance number n and on the coupling term N_0V. In figure 3 we report the enhancement factor for the case of a superlattice of quantum wells as function of the resonance number for the case of $N_0V =$ 0.2 and 0.12, calculated by using the Thompson and Blatt approach. It is therefore clear that the largest amplification is obtained by tuning E_F at the lowest resonances.

Fig. 3. — The ratio of the critical temperature T_{cn} for a quantum well, with the Fermi energy tuned at the n resonance normalized to the bulk critical temperature $T_{c\infty}$ for superconducting metals with different coupling constants N_0V, calculated by using the Thompson and Blatt approach.
The 3D superconducting state is stabilized by a superlattice where the distance between the wells or wires is less or of the order of the superconducting coherence length ξ_0 [10]. In fact in a superlattice is possible to rise T_c by quantum confinement but in a single quantum well, as proposed by Thompson and Blatt, proximity effects and fluctuations will suppress the superconducting phase and T_c.

Recently Lagues et al. [11] reported high T_c superconductivity in a Bi-Sr-Ca-Cu-O system with 8 CuO$_2$ layers. Following the present idea for the enhancement of T_c by quantum confinement we propose that in the 8 layers compound a three dimensional (3D) Fermi liquid is confined in quantum wires as shown in figure 4. In fact by increasing the number of layers we expect to form a 3D Fermi liquid due to the hopping between the neighbor planes. Each quantum wire will have an effective thickness H given by the slab of the 8 CuO$_2$ layers in the z direction and width L in the y direction determined by the superstructure. For this quantum wire the k vector will be quantized in two directions y and z. The enhancement of T_c in a superlattice of quantum wires is expected where k_F is tuned to the quantized values $k_{yx} = m\pi/H$ and $k_{yz} = n\pi/L$, while in the quasi 2D electron gas in a single layer compound the quantization was only along the y direction.

![Fig. 4. — Pictorial view of the superlattice of quantum wires that can be realized by tuning the Fermi level of a 3D electron gas to the resonance conditions $k_{Fy} = 2\pi/L$ and $k_{Fz} = 2\pi/H$.](image)

References

