Differentials as one-forms

The differential of a real function $\Phi, d \Phi$, is the variation of the function in an unspecified direction, at first order in the displacement. If we specify the direction as given by an arbitrary vector \vec{V}, we can explicitly compute the specific variation of the function, which is a real number, i.e. ${ }^{2}$

$$
\begin{equation*}
d \Phi(\vec{V})=V^{j} \frac{\partial \Phi}{\partial x^{j}} . \tag{2.100}
\end{equation*}
$$

This expression is linear in \vec{V}, thus, according to the definition 2.77, the differential of a function Φ is a one-form. The components of $d \Phi$ are

$$
\begin{equation*}
d \Phi_{i}=d \Phi\left(\vec{e}_{(i)}\right)=e_{(i)}^{j} \frac{\partial \Phi}{\partial x^{j}}=\delta_{i}^{j} \frac{\partial \Phi}{\partial x^{j}}=\frac{\partial \Phi}{\partial x^{i}} . \tag{2.101}
\end{equation*}
$$

Thus, the components of the one-form $d \Phi$ are the components of the gradient of the function. To hereafter, we shall omit the superscripted tilde over the differential $d \Phi$ to follow the standard notation of textbooks.

According to the definition, the differential of any coordinate x^{i} is the one-form $d x^{i}$ such that

$$
\begin{equation*}
d x^{i}(\vec{V})=V^{j} \frac{\partial x^{i}}{\partial x^{j}}=V^{j} \delta_{j}^{i}=V^{i} \tag{2.102}
\end{equation*}
$$

i.e. the one-form $d x^{i}$ associates to any vector \vec{V} the component V^{i}. Note that this is the definition of the one-forms of the coordindate basis given in Eq. 2.84, i.e. $\tilde{\omega}^{(i)}(\vec{V})=V^{i}$; therefore, the differentials $d x^{i}$ are the coordinate basis one-forms:

$$
\begin{equation*}
\tilde{\omega}^{(i)}=d x^{i}, \tag{2.103}
\end{equation*}
$$

whose components are

$$
\begin{equation*}
\omega_{j}^{(i)}=d x^{i}\left(\vec{e}_{(j)}\right)=\delta_{j}^{i} . \tag{2.104}
\end{equation*}
$$

[^0]
[^0]: ${ }^{2}$ Note that the right-hand side of Eq. 2.100 coincides with that of Eq. 2.58, i.e. with the directional derivative of the function Φ along \vec{V}. However, while the directional derivative $d / d \lambda$ maps C^{1} functions to \mathbb{R}, the differential of a function $d \Phi$ maps vectors to \mathbb{R}.

