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6.2 EINSTEIN’S FIELD EQUATIONS
Let us first discuss the di↵erential order of Gµ⌫ in terms of derivatives of gµ⌫ . A comparison
with the Poisson equation shows that Gµ⌫ must have the dimensions of a second deriva-
tive with respect to the coordinates, i.e. the inverse of a square lenght. Furthermore, for
simplicity, we seek for an operator that does not contain any fundamental constant, since
G and c should only appear in our field equations 6.22 as the coupling term between the
source of the gravitational field on the right-hand side (Tµ⌫), and the tensor which describes
the spacetime geometry (Gµ⌫) on the left-hand side. The latter assumption is equivalent to
require that Gµ⌫ is scale invariant. Finally, we want the di↵erential operator in Gµ⌫ to be at
most of second order, since higher-order field equations are generically pathological, as will
be discussed in a following chapter. The above requirements strongly constrain the di↵er-
ential structure of Gµ⌫ . Indeed, suppose that Gµ⌫ contains terms of the following schematic
type
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In order to be dimensionally homogeneous each term should be multiplied by a constant
having the dimensions of a suitable power of a lenght, e.g.
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In this case, a gravitational field acting on a very small or on a very large scale would be
described by equations where some of the terms would be negligible with respect to some
others. That is, there would be an extra scale that is incompatible with the required scale
invariance of Gµ⌫ . Consequently the only terms we can accept in Gµ⌫ are those containing
the second derivatives of gµ⌫ and products of first derivatives.

Let us summarize the assumptions that we need to make on Gµ⌫ on the basis of Eqs. 6.22
and 6.23, and of the discussion above:

1. Gµ⌫ must be a tensor and, as Tµ⌫ , must be symmetric; moreover, in the weak-field,
stationary limit, it must reduce to Eq. 6.21, i.e.

G00 ⇠ �r
2g00 . (6.26)

2. It must be at most linear in the second derivatives, contain at most products of first
derivatives of gµ⌫ , and no linear terms in gµ⌫ .

3. Since Tµ⌫ satisfies the divergenceless equation Tµ⌫
;µ = 0, Gµ⌫ must satisfy the same

equation
Gµ⌫

;⌫ = 0 , (6.27)

for any gµ⌫ .

As discussed below, there exists a theorem, due to Lovelock, which guarantees that, under
the above assumptions, Gµ⌫ is in fact unique.

In Chapter 4 we introduced the Riemann tensor and we showed that it carries the
information on the curvature of the spacetime. It has the di↵erential structure which we
require for the tensor Gµ⌫ , i.e. it is linear in the second derivatives of gµ⌫ , contains products
of the first derivatives and no linear terms in gµ⌫ .
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As discussed in Chapter 4, by contracting the Riemann tensor with the metric we can
construct the Ricci tensor (Eq. 4.21)

Rµ⌫ = g↵�R↵µ�⌫ = R↵
µ↵⌫ , (6.28)

which is a symmetric tensor, and the scalar curvature (Eq. 4.22)

R = g↵�R↵� = R↵
↵ . (6.29)

It can be shown, by using the symmetries of the Riemann tensor, that Rµ⌫ and R are the
only second rank tensor and scalar that can be constructed by contraction of R↵µ�⌫ with
the metric. Both Rµ⌫ and R have the same di↵erential structure of R↵µ�⌫ . This suggests to
write the tensor Gµ⌫ as a linear combination of Rµ⌫ and R

Gµ⌫ = ARµ⌫ +Bgµ⌫R , (6.30)

where A and B are constants to be determined. The tensor Gµ⌫ is symmetric, as required
by the conditions 1 in the above list, and has the di↵erential structure imposed by condition
2. Furthermore, condition 3 requires that
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In order to find whether Eq. 6.31 can be satisfied, we shall use the Bianchi identities (see
Section 4.4)

R�µ⌫�;⌘ +R�µ⌘⌫;� +R�µ�⌘;⌫ = 0 . (6.32)

By contracting these equations with g�⌫ , and remembering that the covariant derivative of
the metric tensor vanishes, we find
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Contracting once more,
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Contracting with g⌘↵ the last expression can be rewritten in the following form
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Therefore, the Bianchi identities imply that, if
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Eq. 6.31 are satisfied identically. Thus
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We still have to find A. To this aim we will use the condition 1 of the above list, which
imposes that in the limit of weak, stationary field
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Since the field is weak, as in Section 6.1 we shall assume that gµ⌫ = ⌘µ⌫+hµ⌫ , with |hµ⌫ | ⌧ 1
and that gµ⌫ = ⌘µ⌫ � hµ⌫ +O(h2). Under these conditions, the Christo↵el symbols become

�↵
µ⌫ = ⌘↵� (h�µ,⌫ + h�⌫,µ � hµ⌫,�) +O(h2) . (6.39)

The expression of the Ricci tensor is (Eq. 4.56)
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and from Eq. 6.39 it follows that the terms which contain products of �’s in Eq. 6.40 are
of order O(h2), and can be neglected. Thus, in the weak field limit only the terms linear in
the second derivatives of the metric tensor survive, and the Ricci tensor can be written as
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The 00 component of Rµ⌫ therefore is
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To hereafter we shall omit the term O(h2) for simplicity. If the field is stationary, the time
derivatives of the metric tensor vanish, and Eq. 6.42 becomes
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In order to compute G00 we still need to compute R. In the weak-field limit1

|Tij | ⌧ |T00| . (6.46)

We shall now compute the trace of Tµ⌫ , which is found by contracting the tensor with the
metric tensor, i.e.

T = gµ⌫Tµ⌫ ' ⌘µ⌫Tµ⌫ = �T00 + �ijTij ' �T00 . (6.47)

In this equation we have assumed that the stress-energy tensor, which is the source of the
gravitational field, is of order h. If we now take the trace of the equation Gµ⌫ = 8⇡G
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1Consider for example the system on non-interacting particles discussed in Chapter 5. Be ⇢ the mass
density,
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X
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where rn indicates the position of the n-th particle; in the weak-field limit the stress-energy tensor given in
Eq. 5.15 can be written as
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Since dxi
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d⌧ with i = 1, 2, 3 (see Eq. 6.4), the dominant term in T
µ⌫ is T

00.
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In Eq. 6.48 we have used the property gµ⌫gµ⌫ = 4, which can easily be proved in a LIF,
where gµ⌫ = ⌘µ⌫ . Since gµ⌫gµ⌫ is a scalar quantity its value is the same in any frame. Using
Eq. 6.47, Eq. 6.48 gives
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and since the right-hand side of this equation is �G00 we find
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Using this relation and Eq. 6.43 we can finally compute G00
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Comparing this equation with the Eq. 6.26, we find that the relativistic field equations
reduce, in the weak-field, stationary limit, to the Newtonian equations if

A = 1 . (6.52)

Thus, in conclusion, Einstein’s equations are2
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where
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is called the Einstein tensor.
Einstein’s equations can also be written in an alternative form. If we take the trace of

Eq. 6.53
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and replace this expression in the Einstein tensor, Eq. 6.53 becomes
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In vacuum Tµ⌫ = 0, and Eq. (6.53) and (6.56) provide two equivalent forms of the Einstein
equations

Gµ⌫ = 0 , Rµ⌫ = 0 . (6.57)

The two forms are equivalent because in vacuum R = 0 (see Eq. 6.55), and the Einstein
and the Ricci tensors coincide. Therefore, in vacuum the Ricci scalar, the Ricci tensor and
the Einstein tensor all vanish, but the Riemann tensor does not, unless the gravitational
field vanishes or is constant and uniform.

The above heuristic derivation of Einstein’s equations might seem “ad hoc” and one
might wonder whether there are other geometrical quantities that can be used in place of
the Einstein tensor on the left-hand side of Eq. 6.53. A remarkable theorem, due to Lovelock
(1972), proves that the above expression of the Einstein tensor is unique. Lovelock’s theorem
can be stated as follows

2Although we call these equations the Einstein equations, they were derived independently, using the
variational approach, by D. Hilbert in the same year (see Chapter 7). However, Einstein showed the impli-
cations of these equations for the theory of the solar system, and in particular that the precession of the
perihelion of Mercury has a relativistic origin (see Chapter ??). This led to the theory’s acceptance, and
since then the equations have been called the Einstein equations.
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In four spacetime dimensions the only divergence-free symmetric rank-2 tensor
constructed solely from the metric gµ⌫ and its derivatives up to second di↵er-
ential order, and preserving coordinate invariance, is the Einstein tensor plus a
cosmological term.

In other words, Lovelock’s theorem shows that general relativity emerges as the unique
theory of gravity under the above assumptions.

The cosmological constant

As proved by Lovelock’s theorem, one may add to the Einstein tensor given in Eq. 6.54
a term proportional to gµ⌫ , such that Einstein’s equations would become

Rµ⌫ �
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2
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where � is a constant. With this term Gµ⌫ violates the condition 2 in the list of con-
straints that the Einstein tensor must satisfy; in addition Eq. 6.58 does not reduce to
Newton’s equations in the weak-field, stationary limit, as required by Eq. 6.26, unless �
is extremely small. Such term is related to the cosmological constant and plays a crucial
role in cosmology. After being initially introduced by Einstein himself, this term was
disregarded for many decades. It was only in 1998 that two independent experiments,
using the observations of distant supernovae, discovered that the Universe is expanding
at an increasing rate. This result (that was awarded the Nobel Prize in Physics in 2011)
can be explained by a positive cosmological constant. The current measured value is
� ⇡ 1.11⇥ 10�52 m�2. The value of the cosmological constant is so small that it plays
a role only on cosmological scales, whereas it can be safely neglected at astrophysical
scales and in the study of compact objects. We shall therefore neglect such term in
the rest of the book. For an introduction of the cosmological implications of Einstein’s
equations, we refer to other monographs, e.g. Carrol (2004).

Box 6-A


