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9.6 THE BIRKHOFF THEOREM

The solution (9.24) has been found by imposing that the spacetime is static and spherically
symmetric, therefore it represents the gravitational field external to a non-rotating, sper-
ically symmetric body whose structure is time-independent. However, the Schwarzschild
solution is more general, since, as shown by G.D. Birkhoff in 1923, it is the only spherically
symmetric, asymptotically flat solution to vacuum, Finstein’s field equations. Thus, to prove
Birkhoff’s theorem we need to relax the assumption that the metric admits a timelike, hy-
persurface orthogonal Killing vector field. We shall now generalize the results of Sec. 9.1,
where we showed how to choose the coordinates by imposing the spherical symmetry, as-
suming that the metric depends on time. As in Sec. 9.1 we fill the three-dimensional space
with 2-spheres, with 2-metric (see Eq. 9.8)

ds(g) = a?(2°, 2")(d6? + sin® Odp?) (9.111)

where a?(z%, x!) is an unspecified function. Contrary to what we did in Sec. 9.1, we shall

now retain the dependence on z°. The basis vectors €y and €,y are tangent, respectively,
to the coordinate lines (¢ = const,f = const), which we choose on the 2-spheres. Then,
we align the poles of all 2-spheres as explained in Sec. 9.1; in addition we choose the basis
vector €(1y parallel to the vector 5 shown in figure 9.1, which joins points with fixed values
of § and ¢ on neighbouring spheres. In this way €(;) is orthogonal, at each space point, to
both €(4) and €, and the metric of the 3-space can be written as

ds%S) = g11(dz")? + a?(2°, 2')(d6? + sin® 0dp?) . (9.112)
The metric of the four-dimensional spacetime therefore becomes

ds® = goo(x°,21)(dz®)2+g11 (2%, 21) (dz" )2 +2g01 (22, 21 )da®dxt +a? (20, 21) (d? +sin? Odp?) .
(9.113)

We now change coordinates from (20, z1) to (z°,r) where

r=a(z®, zt)
so that the metric becomes
ds® = goo(x°,7)(dx®)? + grr-(2°, 1) (dr')? + 290, (2°, 7)dx dr + r2(d6? + sin® dp?) . (9.114)

We want to find a function ¢(z°, r) such that, if we choose it as a time-coordinate, the cross
term gg- in the metric vanishes and the first three terms in Eq. 9.114 can be written as

g00(2°,7)(dz°)? + gpr (20, ) (drh)? 4 290, (20, 7)d2’dr = bdt* + cdr? (9.115)
where b and ¢ are functions of (2°,7) to be determined. Being

ot ot
dt = o Gda® + o-dr (9.116)

Eq. 9.115 becomes

goo(d:ro)2 + gTTdr2 + ngTdmodr (9.117)
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which gives
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These are three equations for the three unknown functions t(z%r), b(z%, r) and c(z°, r),
which can in principle be solved. By inverting the function #(z°,r) with respect to 2° and
by replacing the result in b and ¢, they become function of (¢,7) and the metric can be
written as

ds® = b(t,r)dt* + c(t,r)dr? + r*(d6* + sin® dp?) . (9.119)

Since we require the spacetime to be Lorentzian, the function b(2°,7) has be negative. We
know that this choice may go wrong due to the choice of coordinates, as it occurs in the
Schwarzschild metric when r < 2m, however we will assume it for now. Furthermore, we
will replace b(t,r) and ¢(t,r) with the functions v(¢,r) and A(¢,r), where

bt,r) = —e2(tr) ¢ = e2Abr)

so that, finally, the metric of a time-dependent, spherically symmetric spacetime becomes
ds? = =2 a2 4 22 dr? 4 r2(d6? + sin? Adp?) . (9.120)

To prove Birkhoff’s theorem we only need the components Ry, and Rgy of the Ricci tensor:
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a)Ryy = (9.121)

From Eq. (9.121a) it follows that A must depend only on the radial coordinate r. Then from
eq. (9.121b) it follows that
dv O\ e2A ) — 1

P
ie. % depends only on r. Consequently we can write
v=uv(r)+ f(t), (9.122)

and
ds? = —e?M 2O @2 4 22 qr2 4 p2(d6? + sin? Odp?) . (9.123)

The term €2/® can be reabsorbed by a coordinate transformation such that
dt' = efWat, (9.124)
and the metric finally becomes

ds? = =M ar? 4 2O ar? 4 12(dh? + sin® fdp?) (9.125)
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where the prime has be suppressed for simplicity. Thus, we have shown that even if we
assume that the metric of a spherically symmetric spacetime depends on time, by suitable
coordinate transformations it can be made time independent. Since, as we have shown in
Sec. 9.1 the only solution to the vacuum Einstein equations for the metric 9.125, which is
asymptotically flat, is the Schwarzschild solution, we have then proved the Birkhoff theorem
stated at the beginning of this section. An important consequence of this theorem is the fol-
lowing. The metric external to a spherically symmetric star is the Schwarzschild metric even
when the star is collapsing, or exploding, or radially pulsating. Thus, spherically symmetric
systems can never emit gravitational waves. A similar situation occurs in electrodynamics:
a spherically symmetric distribution of charges and currents does not radiate.



