66 ■ General Relativity: From Black Holes to Gravitational Waves

$V^{\alpha}_{;\beta}$ are the components of a tensor field

Let us define the following quantity:

$$\nabla \vec{V} = V^{\alpha}_{;\beta} \ \vec{e}_{(\alpha)} \otimes \tilde{\omega}^{(\beta)} . \tag{3.14}$$

We shall now show that $\nabla \vec{V}$ is a $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ tensor whith components $V^{\alpha}_{;\beta}$. We remind that a $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ tensor, say $\mathbf{F} = F^{\alpha}{}_{\beta} \vec{e}_{(\alpha)} \otimes \tilde{\omega}^{(\beta)}$, maps vectors to vectors. Indeed, if we apply **F** to a generic vector \vec{V} , remembering that $\tilde{\omega}^{(\beta)}(\vec{V}) = V^{\beta}$, we get

$$F(\ ,\vec{V}) = F^{\alpha}{}_{\beta}\vec{e}_{(\alpha)}\ \tilde{\omega}^{(\beta)}(\vec{V}) = F^{\alpha}{}_{\beta}V^{\beta}\ \vec{e}_{(\alpha)}.$$
(3.15)

Thus, the result of this operation is a vector with components $F^{\alpha} = F^{\alpha}{}_{\beta}V^{\beta}$.

Let us now consider a curve on the manifold $x^{\mu}(\lambda)$, passing through the point **p**, with tangent vector $t^{\mu} = \frac{dx^{\mu}}{d\lambda}$, and let us apply $\nabla \vec{V}$ to \vec{t}

$$\nabla \vec{V}(\vec{t}) = V^{\alpha}{}_{;\beta} \vec{e}_{(\alpha)} \tilde{\omega}^{(\beta)}(\vec{t}) = V^{\alpha}{}_{;\beta} t^{\beta} \vec{e}_{(\alpha)}.$$
(3.16)

The quantities $V^{\alpha}{}_{;\beta}t^{\beta}$ are the components of the directional derivative of the vector \vec{V} along the curve; indeed, using Eq. 3.12 we find

$$\frac{d\vec{V}}{d\lambda} = \frac{\partial\vec{V}}{\partial x^{\beta}} \frac{dx^{\beta}}{d\lambda} = V^{\alpha}{}_{;\beta} t^{\beta} \vec{e}_{(\alpha)} \,. \tag{3.17}$$

The directional derivative of a vector field along a curve

$$\frac{d\vec{V}}{d\lambda} = \lim_{\Delta\lambda\to 0} \frac{\vec{V}(\lambda + \Delta\lambda) - \vec{V}(\lambda)}{\Delta\lambda}$$
(3.18)

is a vector, because it is the difference of two vectors (which we can compute after having defined a connection) divided by the real number $\Delta \lambda$. Therefore

$$\nabla \vec{V}(\vec{t}) = V^{\alpha}{}_{;\beta} t^{\beta} \ \vec{e}_{(\alpha)} = \frac{d\vec{V}}{d\lambda} \,. \tag{3.19}$$

We also denote the covariant derivative of \vec{V} along \vec{t} as $\nabla_{\vec{t}} \vec{V} \equiv \nabla \vec{V}(\vec{t})$, and, when \vec{t} is a basis vector, $\nabla_{\mu} \vec{V} \equiv \nabla_{\vec{e}_{(\mu)}} \vec{V}$.

Thus, $\nabla \vec{V}$ maps the vector \vec{t} to the vector $\frac{d\vec{V}}{d\lambda}$, i.e. it is a $\begin{pmatrix} 1\\ 1 \end{pmatrix}$ tensor field, called **covariant** derivative of the vector \vec{V} . Its components are

$$(\nabla \vec{V})^{\alpha}{}_{\beta} \equiv \nabla_{\beta} V^{\alpha} \equiv V^{\alpha}{}_{;\beta} = V^{\alpha}{}_{,\beta} + V^{\mu} \Gamma^{\alpha}_{\beta\mu} \,. \tag{3.20}$$

Since in a LIF Christoffel's symbols vanish, from Eq. 3.11 it follows that

$$V^{\alpha}{}_{;\beta} = V^{\alpha}{}_{,\beta} \Longrightarrow \frac{\partial \vec{V}}{\partial x^{\beta}} = V^{\alpha}{}_{,\beta} \ \vec{e}_{(\alpha)} \,. \tag{3.21}$$

Thus, in a locally inertial frame covariant and ordinary derivatives coincide.