## Box 9-A

## Geometrized Units

It is easy to check that $R_{s}=\frac{2 G M}{c^{2}}$ has the dimension of a lenght. Indeed the constants $G$ and $c$, whose values are

$$
G=6.674 \times 10^{-8} \frac{\mathrm{~cm}^{3}}{\mathrm{~g} \mathrm{~s}^{2}}, \quad c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}
$$

have dimensions

$$
[G]=\frac{l^{3}}{m t^{2}}, \quad[c]=\frac{l}{t}
$$

therefore

$$
\begin{equation*}
\left[\frac{G}{c^{2}}\right]=\frac{l}{m}, \quad \text { with } \quad \frac{G}{c^{2}}=7.425 \times 10^{-29} \mathrm{~cm} \cdot \mathrm{~g}^{-1} \tag{9.32}
\end{equation*}
$$

It is often convenient to use geometrized units putting

$$
\begin{equation*}
G=c=1 . \tag{9.33}
\end{equation*}
$$

In these units masses, lengths, and time have the same dimensions. To recover a quantity in physical units, it is necessary to multiply it by suitable powers of $G$ and $c$. For example, the quantities

$$
\begin{equation*}
M, \quad \frac{G M}{c^{2}}, \quad \frac{G M}{c^{3}}, \tag{9.34}
\end{equation*}
$$

have the same expression in geometrized units, but their physical dimensions are those of a mass, length, and time, respectively. Likewise the quantity

$$
\begin{equation*}
m=\frac{G M}{c^{2}} \tag{9.35}
\end{equation*}
$$

has the dimension of a lenght, and it is usually referred to as the geometrical mass or the gravitational radius. As an example, the mass of the Sun $M_{\odot}=1.989 \cdot 10^{33} g$, in geometrized units is equivalent to

$$
\begin{equation*}
m_{\odot}=\frac{G M_{\odot}}{c^{2}}=7.425 \cdot 10^{-29} \times 1.989 \cdot 10^{33} \mathrm{~cm}=1.477 \cdot 10^{5} \mathrm{~cm}=1.477 \mathrm{~km} \tag{9.36}
\end{equation*}
$$

Two useful conversion factors are the following:

$$
\begin{equation*}
m_{\odot} \approx 1.477 \mathrm{~km} \approx 4.926 \times 10^{-6} \mathrm{~s} \tag{9.37}
\end{equation*}
$$

While the units with $G=c=1$ are convenient in General Relativity, there exist other possible choices of geometrized units, such as those with $\hbar=c=1$, used in Quantum Field Theory. We note that in the $G=c=1$ units the mass has the dimension of a lenght, and Planck's constant has the dimension of a lenght squared; its value is $\hbar=l_{P}^{2}$, where $l_{P} \simeq 1.6 \cdot 10^{-35} \mathrm{~m}$ is called Planck lenght. In the $\hbar=c=1$ units, instead, the mass has the dimension of an inverse lenght, while Newton's constant has the dimension of a lenght squared (with $G=l_{P}^{2}$ ).

