Ll

@ DESY Computing Newsletter No. 4 @

Ll

¢ UNIX shells

by Karsten Kiinne

The first environment you interact with when you
log in to a UNIX system is the shell. The shell is the
interface between you and the system which accepts
your input and executes the appropriate commands.
One of the big advantages of UNIX is that you can
choose between several different shells, you could
even write your very own private shell and use it.

In order to choose an appropriate working envi-
ronment for myself, | compared various widely avail-
able shells.

The candidates were:

sh (Bourne Shell) The Grand-daddy of all
shells, the first UNIX shell, written by
Steve Bourne.

csh The shell from the BSD UNIX Distribu-
tion, written at the University of Califor-
nia, Berkeley.

ksh (Korn Shell) A successor of the Bourne
Shell from AT&T, written by David Korn.

tcsh A very popular “free” shell.

bash (Bourne Again Shell) The shell from the
GNU Project UNIX, also a free shell.

zsh Another very good free shell, written by
Paul Falstad.

rc The shell for the Plan 9 Project, a pos-
sible successor of UNIX, written by Tom
Duff at AT&T.

From the syntax point of view most shells fall
into one of two main groups: shells with sh-like syn-
tax and shells with csh-like syntax. sh-like syntax
and csh-like syntax are not compatible. The first
group contains sh, ksh, bash and zsh whereas the
second group contains csh and tcsh. The rc shell
has a different syntax which does not fit into either
of the groups.

What a shell should do

What can one expect from a shell? What are the
main requirements an interactive shell has to meet?:

1. Execution of commands: The shell should
execute commands.

2. Pipes: The ability to concatenate commands
such that the output of one command is used
as input for the next.

3. Redirection: This means redirecting com-
mand input/output from/to files instead of stan-
dard input (keyboard) and output (screen).

4. Configurable Environment: The ability to
define a personal working environment using vari-
ables.

5. History: A history of executed commands and
the possibility to re-execute commands.

6. Globbing: The expansion of wild-cards in file-
names.

7. Aliases: The ability to use aliases for com-
mands.

8. Functions: The ability to use shell functions.

9. Command Line Editing The ability to edit
a command line before execution using the arrow
keys.

10. Job Control: Report of status changes for
background jobs and track-keeping of back-
ground jobs.

11. Completion: The completion of a partially
typed command or file name.

12. Spelling Correction: The correction of
spelling errors in commands and file names.

Additional demands exist especially for the non-
interactive use of a shell (i.e. for shell scripts):

13. Execution Control: Loops and conditional
expressions are required.

14. Signal Handling: The ability to establish
handlers to catch signals and perform specific
actions.

15. Arithmetic: The ability to do arithmetic
computations.

UNIX SHELLS

Ll

@ DESY Computing Newsletter No. 4 @

Ll

Free Shells

The vendor supplied shells sh, csh and ksh should be
well known to most UNIX users, but how do the free
shells compare to these standard shells?

tesh

The tcsh is basically a csh with a lot of enhance-
ments. |t behaves exactly like the csh, except for
the added utilities. The most important of these
utilities are :

¢ Command line editing using Emacs-style com-
mands.

e Visual step up/down and searching through the
command history list.

¢ Programmable command, file name, variable
name, and user name completion.

e One can give a command to produce a
file/directory/user list in the middle of a typed
command.

e Spelling correction of command, file, and user
names.

e Enhanced history mechanism.

¢ An addition to the syntax of filenames to access
entries in the directory stack.

e In file expressions one can specify negation of a
set of characters or a globbing pattern.

There are more enhancements built into tcsh but
these are the most important ones.

bash

The bash is basically a sh with a lot of enhancements
and features from (t)csh and ksh and some bash
specific features. The bash specific features are :

¢ Command line editing with arrow keys, config-
urable.

e Commands set and help available.

¢ Additional startup files and shell variables.

Apart from this bash is comparable to ksh.

zsh

The zsh is a very powerful shell. The grammar of
zsh is very close to ksh/sh, with csh additions. Zsh
contains most features of ksh, bash, and tcsh. Some
of the important zsh features are :

e A shorthand for loops. Example:
for i (*.c) echo $i

e A directory stack exists that is accessible with
the dirs command and =number.

e Process substitution. Example:
vi =(cmd)
starts vi on the output of ecmd
o Generalized pipes. Example:

1s foo >>(cemdl) 2>>(cmd?2)

pipes stdout to cmdl and stderr to cmd2.

¢ Advanced globbing. Examples:
1s *x/file
searches recursively for “file” in subdirectories.
1ls file<20->
matches file20, file30, file100 etc.
1s *.(clpro)
matches *.c and *.pro.
1s *(R)
matches only world readable files.
1s *.c~lex.c
matches all .c files except lex.c.
e Null command short-hands. Examples:
< file is the same as more < file

> file is the sameas cat > file
>> file is the sameas cat >> file

UNIX SHELLS

@ DESY Computing Newsletter No. 4 @

Ll

Ll

Automatic file stream teeing (redirect to two dif-
ferent output files). Example:

1s >foo >bar

puts output in two places.

Incremental history search.

With the autocd option, typing a directory name
by itself is the same as typing cd dirname.

e Menu completion. Pressing TAB repeatedly cy-
cles through the possible matches.

¢ Incremental path hashing.

With histverify option, performing csh-style
history expansions causes the input line to be
brought up for editing instead of being executed.

Auto-loaded functions (loaded from a file when
they are first referenced).

Generalized argument completion including com-
mand name completion, filename and path com-
pletion, hostname completion, key binding com-
pletion, option completion, variable name com-
pletion, and user-specified keyword completion.

Various nested startup files.

o “which —a ecmd” lists all occurrences of “cmd”
in path.

re

The rc shell is a bit exotic compared to the other
shells. The syntax is similar to sh, but more based
on awk and C. The most important new features
compared to sh are:

e Semantic simplifications.

Parser is based on yacc. This leads to an exact
grammar.

e One pass scanning of input stream.

Signal handling through functions with the signal
name.

e Advanced redirection. Examples:
cmd >[2]
redirect file descriptor 2.
cmd >[2=1]
replace file descriptor 2 by a copy of descriptor 1
cmd | [2]

pipe file descriptor 2 into another command.

e Simpler command substitution Example:
echo ’{emd}

substitutes output of c¢md as parameter for echo.
e Array variables.

¢ Concatenation operator. Example:

echo (a b c) (1 2 3) is the same as
echo al b2 c3

Comparison

For a short comparison of the different shells the fol-
lowing matrix gives a good overview. The numbers
on the left side are the numbers of the requirements
at the beginning of this article.

sh csh ksh tcsh bash zsh re

1 + + + + + + +

2 + + + + + ++ ++

3| + - + - + ++ ++

4| + + + + + + +

5|-- 4+ + + + + +

6| + + + + + ++ +

T|-- + + + + + --

8| + -- + -- + + +

9|-- - - + ++ ++ ++ 4+

10-- 4+ + + + + --
nmj-- -- + 4+ + ++ --
12/-- —— —= 4+ - - + -
13| + + + + + + +
14 + - + - + + +
15| -- 4+ + + + + +

++4+ means “very good support”

UNIX SHELLS

Ll

@ DESY Computing Newsletter No. 4

DESY
Ll

+ means “good support”
— means “limited support”

i 77
— — means "no support

Conclusion

As one can see from the comparison above, some
excellent “free” shells exist besides the vendor sup-
plied ones which compete very well. In general these
“free” shells have a lot of enhancements which can
really improve the daily work with a UNIX system
and could increase the general acceptance level of
UNIX.

For me the absolute winner in the comparison is
zsh. It's really the most powerful shell | have ever
used. | had tried tcsh and bash before, but now |
would recommend zsh. | have now been using zsh for
several months and have no problems at all. Some
of the zsh features are really nice and made my life
with UNIX easier.

TEX oN THE APoLLO-, HP-, AND SGI-CLUSTERS

10

