
��
��
x
xu urrDESY DESY Computing Newsletter No� � ��

��
x
xu urrDESY

� UNIX shells

by Karsten K�unne

The �rst environment you interact with when you
log in to a UNIX system is the shell� The shell is the
interface between you and the system which accepts
your input and executes the appropriate commands�
One of the big advantages of UNIX is that you can
choose between several di�erent shells� you could
even write your very own private shell and use it�

In order to choose an appropriate working envi�
ronment for myself� I compared various widely avail�
able shells�

The candidates were�

sh �Bourne Shell� The Grand�daddy of all
shells� the �rst UNIX shell� written by
Steve Bourne�

csh The shell from the BSD UNIX Distribu�
tion� written at the University of Califor�
nia� Berkeley�

ksh �Korn Shell� A successor of the Bourne
Shell fromAT�T� written by David Korn�

tcsh A very popular 	free
 shell�
bash �Bourne Again Shell� The shell from the

GNU Project UNIX� also a free shell�
zsh Another very good free shell� written by

Paul Falstad�
rc The shell for the Plan � Project� a pos�

sible successor of UNIX� written by Tom
Du� at AT�T�

From the syntax point of view most shells fall
into one of two main groups� shells with sh�like syn�
tax and shells with csh�like syntax� sh�like syntax
and csh�like syntax are not compatible� The �rst
group contains sh� ksh� bash and zsh whereas the
second group contains csh and tcsh� The rc shell
has a di�erent syntax which does not �t into either
of the groups�

What a shell should do

What can one expect from a shell� What are the
main requirements an interactive shell has to meet��

�� Execution of commands� The shell should
execute commands�

�� Pipes� The ability to concatenate commands
such that the output of one command is used
as input for the next�

�� Redirection� This means redirecting com�
mand input
output from
to �les instead of stan�
dard input �keyboard� and output �screen��

�� Con�gurable Environment� The ability to
de�ne a personal working environment using vari�
ables�

�� History� A history of executed commands and
the possibility to re�execute commands�

�� Globbing� The expansion of wild�cards in �le�
names�

	� Aliases� The ability to use aliases for com�
mands�


� Functions� The ability to use shell functions�

�� Command Line Editing The ability to edit
a command line before execution using the arrow
keys�

��� Job Control� Report of status changes for
background jobs and track�keeping of back�
ground jobs�

��� Completion� The completion of a partially
typed command or �le name�

��� Spelling Correction� The correction of
spelling errors in commands and �le names�

Additional demands exist especially for the non�
interactive use of a shell �i�e� for shell scripts��

��� Execution Control� Loops and conditional
expressions are required�

��� Signal Handling� The ability to establish
handlers to catch signals and perform speci�c
actions�

��� Arithmetic� The ability to do arithmetic
computations�

� UNIX shells



��
��
x
xu urrDESY DESY Computing Newsletter No� � ��

��
x
xu urrDESY

Free Shells

The vendor supplied shells sh� csh and ksh should be
well known to most UNIX users� but how do the free
shells compare to these standard shells�

tcsh

The tcsh is basically a csh with a lot of enhance�
ments� It behaves exactly like the csh� except for
the added utilities� The most important of these
utilities are �

� Command line editing using Emacs�style com�
mands�

� Visual step up
down and searching through the
command history list�

� Programmable command� �le name� variable
name� and user name completion�

� One can give a command to produce a
�le
directory
user list in the middle of a typed
command�

� Spelling correction of command� �le� and user
names�

� Enhanced history mechanism�

� An addition to the syntax of �lenames to access
entries in the directory stack�

� In �le expressions one can specify negation of a
set of characters or a globbing pattern�

There are more enhancements built into tcsh but
these are the most important ones�

bash

The bash is basically a sh with a lot of enhancements
and features from �t�csh and ksh and some bash
speci�c features� The bash speci�c features are �

� Command line editing with arrow keys� con�g�
urable�

� Commands set and help available�

� Additional startup �les and shell variables�

Apart from this bash is comparable to ksh�

zsh

The zsh is a very powerful shell� The grammar of
zsh is very close to ksh
sh� with csh additions� Zsh
contains most features of ksh� bash� and tcsh� Some
of the important zsh features are �

� A shorthand for loops� Example�
for i ���c� echo �i

� A directory stack exists that is accessible with
the dirs command and �number�

� Process substitution� Example�
vi ��cmd�
starts vi on the output of cmd

� Generalized pipes� Example�

ls foo ���cmd�� ����cmd��

pipes stdout to cmd� and stderr to cmd��

� Advanced globbing� Examples�

ls ���file

searches recursively for 	�le
 in subdirectories�

ls file��	
�

matches �le��� �le��� �le��� etc�

ls ���c�pro�

matches ��c and ��pro�

ls ��R�

matches only world readable �les�

ls ��c�lex�c

matches all �c �les except lex�c�

� Null command short�hands� Examples�
� file is the same as more � file

� file is the same as cat � file

�� file is the same as cat �� file

UNIX shells �



��
��
x
xu urrDESY DESY Computing Newsletter No� � ��

��
x
xu urrDESY

� Automatic �le stream teeing �redirect to two dif�
ferent output �les�� Example�

ls �foo �bar

puts output in two places�

� Incremental history search�

� With the autocd option� typing a directory name
by itself is the same as typing cd dirname�

� Menu completion� Pressing TAB repeatedly cy�
cles through the possible matches�

� Incremental path hashing�

� With histverify option� performing csh�style
history expansions causes the input line to be
brought up for editing instead of being executed�

� Auto�loaded functions �loaded from a �le when
they are �rst referenced��

� Generalized argument completion including com�
mand name completion� �lename and path com�
pletion� hostname completion� key binding com�
pletion� option completion� variable name com�
pletion� and user�speci�ed keyword completion�

� Various nested startup �les�

� 	which �a cmd
 lists all occurrences of 	cmd

in path�

rc

The rc shell is a bit exotic compared to the other
shells� The syntax is similar to sh� but more based
on awk and C� The most important new features
compared to sh are�

� Semantic simpli�cations�

� Parser is based on yacc� This leads to an exact
grammar�

� One pass scanning of input stream�

� Signal handling through functions with the signal
name�

� Advanced redirection� Examples�

cmd ���
 ���

redirect �le descriptor ��

cmd �����
 ���

replace �le descriptor � by a copy of descriptor �

cmd ���
 ���

pipe �le descriptor � into another command�

� Simpler command substitution Example�

echo �fcmdg

substitutes output of cmd as parameter for echo�

� Array variables�

� Concatenation operator� Example�

echo �a b c� � �� � �� is the same as
echo a� b� c�

Comparison

For a short comparison of the di�erent shells the fol�
lowing matrix gives a good overview� The numbers
on the left side are the numbers of the requirements
at the beginning of this article�

sh csh ksh tcsh bash zsh rc

� � � � � � � �
� � � � � � �� ��
� � � � � � �� ��
� � � � � � � �
� � � � � � � � �
� � � � � � �� �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � �� �� �� ��
�� � � � � � � � � �
�� � � � � � �� � �� � �
�� � � � � � � � � � � � �

�� � � � � � � �
�� � � � � � � �
�� � � � � � � � �

�� means 	very good support


� UNIX shells



��
��
x
xu urrDESY DESY Computing Newsletter No� � ��

��
x
xu urrDESY

� means 	good support


� means 	limited support


� � means 	no support


Conclusion

As one can see from the comparison above� some
excellent 	free
 shells exist besides the vendor sup�
plied ones which compete very well� In general these
	free
 shells have a lot of enhancements which can
really improve the daily work with a UNIX system
and could increase the general acceptance level of
UNIX�

For me the absolute winner in the comparison is
zsh� It�s really the most powerful shell I have ever
used� I had tried tcsh and bash before� but now I
would recommend zsh� I have now been using zsh for
several months and have no problems at all� Some
of the zsh features are really nice and made my life
with UNIX easier�

TEX on the Apollo�� HP�� and SGI�clusters ��


