
 //
 / VI REFERENCE /
 //

 Warning: some vi versions don't support the more esoteric features
 described in this document. You can edit/redistribute this document
 freely, as long as you don't make false claims on original authorship.

 Author: Maarten Litmaath <maart@nat.vu.nl>
 Version: 8

 /////////////////
 / contributions /
 /////////////////

 Rich Salz <rsalz@bbn.com>
 Eamonn McManus <emcmanus@cs.tcd.ie>
 Diomidis Spinellis <diomidis%ecrcvax.uucp@pyramid.pyramid.com>
 Blair P. Houghton <bph@buengc.bu.edu>
 Rusty Haddock <{uunet,att,rutgers}!mimsy.umd.edu!fe2o3!rusty>
 Panos Tsirigotis <panos@boulder.colorado.edu>
 David J. MacKenzie <djm@wam.umd.edu>
 Kevin Carothers <kevin@ttidca.tti.com>
 Dan Mercer <mercer@ncrcce.StPaul.NCR.COM>
 Ze'ev Shtadler <steed@il4cad.intel.com>
 Paul Quare <pq@r2.cs.man.ac.uk>
 Dave Beyerl <att!ihlpl!db21>
 Lee Sailer <UH2@psuvm.psu.edu>
 David Gast <gast@cs.ucla.edu>

 ///////////
 / legenda /
 ///////////

 default values : 1
 <*> : `*' must not be taken literally
 [*] : `*' is optional
 ^X : <ctrl>X
 <sp> : space
 <cr> : carriage return
 <lf> : linefeed
 <ht> : horizontal tab
 <esc> : escape
 <erase> : your erase character
 <kill> : your kill character
 <intr> : your interrupt character
 <a-z> : an element in the range
 N : number (`*' = allowed, `-' = not appropriate)
 CHAR : char unequal to <ht>|<sp>
 WORD : word followed by <ht>|<sp>|<lf>

 /////////////////
 / move commands /
 /////////////////

 N | Command | Meaning
 ---+--------------------+---
 * | h | ^H | <erase> | <*> chars to the left.
 * | j | <lf> | ^N | <*> lines downward.
 * | l | <sp> | <*> chars to the right.
 * | k | ^P | <*> lines upward.
 * | $ | To the end of line <*> from the cursor.
 - | ^ | To the first CHAR of the line.
 * | _ | To the first CHAR <*> - 1 lines lower.
 * | - | To the first CHAR <*> lines higher.
 * | + | <cr> | To the first CHAR <*> lines lower.
 - | 0 | To the first char of the line.
 * | | | To column <*> (<ht>: only to the endpoint).
 * | f<char> | <*> <char>s to the right (find).
 * | t<char> | Till before <*> <char>s to the right.
 * | F<char> | <*> <char>s to the left.
 * | T<char> | Till after <*> <char>s to the left.
 * | ; | Repeat latest `f'|`t'|`F'|`T' <*> times.
 * | , | Idem in opposite direction.
 * | w | <*> words forward.
 * | W | <*> WORDS forward.
 * | b | <*> words backward.
 * | B | <*> WORDS backward.
 * | e | To the end of word <*> forward.
 * | E | To the end of WORD <*> forward.
 * | G | Go to line <*> (default EOF).
 * | H | To line <*> from top of the screen (home).
 * | L | To line <*> from bottom of the screen (last).
 - | M | To the middle line of the screen.
 * |) | <*> sentences forward.
 * | (| <*> sentences backward.
 * | } | <*> paragraphs forward.
 * | { | <*> paragraphs backward.
 - |]] | To the next section (default EOF).
 - | [[| To the previous section (default begin of file).
 - | `<a-z> | To the mark.
 - | '<a-z> | To the first CHAR of the line with the mark.
 - | `` | To the cursor position before the latest absolute
 | jump (of which are examples `/' and `G').
 - | '' | To the first CHAR of the line on which the cursor
 | was placed before the latest absolute jump.
 - | /<string> | To the next occurrence of <string>.
 - | ?<string> | To the previous occurrence of <string>.
 - | n | Repeat latest `/'|`?' (next).
 - | N | Idem in opposite direction.
 - | % | Find the next bracket and go to its match
 | (also with `{'|`}' and `['|`]').

 /////////////////////////
 / searching (see above) /
 /////////////////////////

 :ta <name> | Search in the tags file[s] where <name> is
 | defined (file, line), and go to it.
 ^] | Use the name under the cursor in a `:ta' command.
 ^T | Pop the previous tag off the tagstack and return
 | to its position.
 :[x,y]g/<string>/<cmd> | Search globally [from line x to y] for <string>
 | and execute the `ex' <cmd> on each occurrence.
 :[x,y]v/<string>/<cmd> | Execute <cmd> on the lines that don't match.

 ///////////////////
 / undoing changes /
 ///////////////////

 u | Undo the latest change.
 U | Undo all changes on a line, while not having
 | moved off it (unfortunately).
 :q! | Quit vi without writing.
 :e! | Re-edit a messed-up file.

 ///////////////////////////////////
 / appending text (end with <esc>) /
 ///////////////////////////////////

 * | a | <*> times after the cursor.
 * | A | <*> times at the end of line.
 * | i | <*> times before the cursor (insert).
 * | I | <*> times before the first CHAR of the line
 * | o | On a new line below the current (open).
 | The count is only useful on a slow terminal.
 * | O | On a new line above the current.
 | The count is only useful on a slow terminal.
 * | ><move> | Shift the lines described by <*><move> one
 | shiftwidth to the right.
 * | >> | Shift <*> lines one shiftwidth to the right.
 * | ["<a-zA-Z1-9>]p | Put the contents of the (default undo) buffer
 | <*> times after the cursor.
 | A buffer containing lines is put only once,
 | below the current line.
 * | ["<a-zA-Z1-9>]P | Put the contents of the (default undo) buffer
 | <*> times before the cursor.
 | A buffer containing lines is put only once,
 | above the current line.
 * | . | Repeat previous command <*> times. If the last
 | command before a `.' command references a
 | numbered buffer, the buffer number is
 | incremented first (and the count is ignored):
 |
 | "1pu.u.u.u.u - `walk through' buffers 1
 | through 5
 | "1P.... - restore them

 /////////////////
 / deleting text /
 /////////////////

 Everything deleted can be stored into a buffer. This is achieved by
 putting a `"' and a letter <a-z> before the delete command. The
 deleted text will be in the buffer with the used letter. If <A-Z>
 is used as buffer name, the conjugate buffer <a-z> will be augmented
 instead of overwritten with the text. The undo buffer always
 contains the latest change. Buffers <1-9> contain the latest 9
 LINE deletions (`"1' is most recent).

 * | x | Delete <*> chars under and after the cursor.
 * | X | <*> chars before the cursor.
 * | d<move> | From begin to endpoint of <*><move>.
 * | dd | <*> lines.
 - | D | The rest of the line.
 * | <<move> | Shift the lines described by <*><move> one
 | shiftwidth to the left.
 * | << | Shift <*> lines one shiftwidth to the left.
 * | . | Repeat latest command <*> times.

 //////////////////////////////////
 / changing text (end with <esc>) /
 //////////////////////////////////

 * | r<char> | Replace <*> chars by <char> - no <esc>.
 * | R | Overwrite the rest of the line,
 | appending change <*> - 1 times.
 * | s | Substitute <*> chars.
 * | S | <*> lines.
 * | c<move> | Change from begin to endpoint of <*><move>.
 * | cc | <*> lines.
 * | C | The rest of the line and <*> - 1 next lines.
 * | =<move> | If the option `lisp' is set, this command
 | will realign the lines described by <*><move>
 | as though they had been typed with the option
 | `ai' set too.
 - | ~ | Switch lower and upper cases
 | (should be an operator, like `c').
 * | J | Join <*> lines (default 2).
 * | . | Repeat latest command <*> times (`J' only once).
 - | & | Repeat latest `ex' substitute command, e.g.
 | `:s/wrong/good'.
 - | :[x,y]s/<p>/<r>/<f>| Substitute (on lines x through y) the pattern <p>
 | (default the last pattern) with <r>. Useful
 | flags <f> are `g' for `global' (i.e. change
 | every non-overlapping occurrence of <p>) and
 | `c' for `confirm' (type `y' to confirm a
 | particular substitution, else <cr>). Instead
 | of `/' any punctuation CHAR unequal to <lf>
 | can be used as delimiter.

 ///////////////////////////////////
 / substitute replacement patterns /
 ///////////////////////////////////

 The basic meta-characters for the replacement pattern are `&' and `~';
 these are given as `\&' and `\~' when nomagic is set. Each instance
 of `&' is replaced by the characters which the regular expression
 matched. The meta-character `~' stands, in the replacement
 pattern, for the defining text of the previous replacement
 pattern. Other meta-sequences possible in the replacement pattern
 are always introduced by the escaping character `\'. The sequence
 `\n' (with `n' in [1-9]) is replaced by the text matched by the
 n-th regular subexpression enclosed between `\(' and `\)'. The
 sequences `\u' and `\l' cause the immediately following character
 in the replacement to be converted to upper- or lower-case
 respectively if this character is a letter. The sequences `\U' and
 `\L' turn such conversion on, either until `\E' or `\e' is
 encountered, or until the end of the replacement pattern.

 //////////////////////////////
 / remembering text (yanking) /
 //////////////////////////////

 With yank commands you can put `"<a-zA-Z>' before the command, just as
 with delete commands. Otherwise you only copy to the undo buffer.
 The use of buffers <a-z> is THE way of copying text to another file;
 see the `:e <file>' command.

 * | y<move> | Yank from begin to endpoint of <*><move>.
 * | yy | <*> lines.
 * | Y | Idem (should be equivalent to `y$' though).
 - | m<a-z> | Mark the cursor position with a letter.

 //
 / commands while in append|change mode /
 //

 ^@ | If typed as the first character of the
 | insertion, it is replaced with the previous
 | text inserted (max. 128 chars), after which
 | the insertion is terminated.
 ^V | Deprive the next char of its special meaning
 | (e.g. <esc>).
 ^D | One shiftwidth to the left, but only if
 | nothing else has been typed on the line.
 0^D | Remove all indentation on the current line
 | (there must be no other chars on the line).
 ^^D | Idem, but it is restored on the next line.
 ^T | One shiftwidth to the right, but only if
 | nothing else has been typed on the line.
 ^H | <erase> | One char back.
 ^W | One word back.
 <kill> | Back to the begin of the change on the
 | current line.
 <intr> | Like <esc> (but you get a beep as well).

 ///
 / writing, editing other files, and quitting vi /
 ///

 In `:' `ex' commands - if not the first CHAR on the line - `%' denotes
 the current file, `#' is a synonym for the alternate file (which
 normally is the previous file). As first CHAR on the line `%' is a
 shorthand for `1,$'. Marks can be used for line numbers too: '<a-z>.
 In the `:w'|`:f'|`:cd'|`:e'|`:n' commands shell meta-characters can be
 used.

 :q | Quit vi, unless the buffer has been changed.
 :q! | Quit vi without writing.
 ^Z | Suspend vi.
 :w | Write the file.
 :w <name> | Write to the file <name>.
 :w >> <name> | Append the buffer to the file <name>.
 :w! <name> | Overwrite the file <name>.
 :x,y w <name> | Write lines x through y to the file <name>.
 :wq | Write the file and quit vi; some versions quit
 | even if the write was unsuccessful!
 | Use `ZZ' instead.
 ZZ | Write if the buffer has been changed, and
 | quit vi. If you have invoked vi with the `-r'
 | option, you'd better write the file
 | explicitly (`w' or `w!'), or quit the
 | editor explicitly (`q!') if you don't want
 | to overwrite the file - some versions of vi
 | don't handle the `recover' option very well.
 :x [<file>] | Idem [but write to <file>].
 :x! [<file>] | `:w![<file>]' and `:q'.
 :pre | Preserve the file - the buffer is saved as if
 | the system had just crashed; for emergencies,
 | when a `:w' command has failed and you don't
 | know how to save your work (see `vi -r').
 :f <name> | Set the current filename to <name>.
 :cd [<dir>] | Set the working directory to <dir>
 | (default home directory).
 :cd! [<dir>] | Idem, but don't save changes.
 :e [+<cmd>] <file> | Edit another file without quitting vi - the
 | buffers are not changed (except the undo
 | buffer), so text can be copied from one file to
 | another this way. [Execute the `ex' command
 | <cmd> (default `$') when the new file has been
 | read into the buffer.] <cmd> must contain no
 | <sp> or <ht>. See `vi startup'.
 :e! [+<cmd>] <file> | Idem, without writing the current buffer.
 ^^ | Edit the alternate (normally the previous) file.
 :rew | Rewind the argument list, edit the first file.
 :rew! | Idem, without writing the current buffer.
 :n [+<cmd>] [<files>] | Edit next file or specify a new argument list.
 :n! [+<cmd>] [<files>] | Idem, without writing the current buffer.
 :args | Give the argument list, with the current file
 | between `[' and `]'.

 ////////////////////
 / display commands /
 ////////////////////

 ^G | Give file name, status, current line number
 | and relative position.
 ^L | Refresh the screen (sometimes `^P' or `^R').
 ^R | Sometimes vi replaces a deleted line by a `@',
 | to be deleted by `^R' (see option `redraw').
 [*]^E | Expose <*> more lines at bottom, cursor
 | stays put (if possible).
 [*]^Y | Expose <*> more lines at top, cursor
 | stays put (if possible).
 [*]^D | Scroll <*> lines downward
 | (default the number of the previous scroll;
 | initialization: half a page).
 [*]^U | Scroll <*> lines upward
 | (default the number of the previous scroll;
 | initialization: half a page).
 [*]^F | <*> pages forward.
 [*]^B | <*> pages backward (in older versions `^B' only
 | works without count).

 If in the next commands the field <wi> is present, the windowsize
 will change to <wi>. The window will always be displayed at the
 bottom of the screen.

 [*]z[wi]<cr> | Put line <*> at the top of the window
 | (default the current line).
 [*]z[wi]+ | Put line <*> at the top of the window
 | (default the first line of the next page).
 [*]z[wi]- | Put line <*> at the bottom of the window
 | (default the current line).
 [*]z[wi]^ | Put line <*> at the bottom of the window
 | (default the last line of the previous page).
 [*]z[wi]. | Put line <*> in the centre of the window
 | (default the current line).

 ////////////////////////////
 / mapping and abbreviation /
 ////////////////////////////

 When mapping take a look at the options `to' and `remap' (below).

 :map <string> <seq> | <string> is interpreted as <seq>, e.g.
 | `:map ^C :!cc %^V<cr>' to invoke `cc' (the C
 | compiler) from within the editor
 | (vi replaces `%' with the current file name).
 :map | Show all mappings.
 :unmap <string> | Deprive <string> of its mapping. When vi
 | complains about non-mapped macros (whereas no
 | typos have been made), first do something like
 | `:map <string> Z', followed by
 | `:unmap <string>' (`Z' must not be a macro
 | itself), or switch to `ex' mode first with `Q'.
 :map! <string> <seq> | Mapping in append mode, e.g.
 | `:map! \be begin^V<cr>end;^V<esc>O<ht>'.
 | When in append mode <string> is preceded by
 | `^V', no mapping is done.
 :map! | Show all append mode mappings.
 :unmap! <string> | Deprive <string> of its mapping (see `:unmap').
 :ab <string> <seq> | Whenever in append mode <string> is preceded and
 | followed by a breakpoint (e.g. <sp> or `,'), it
 | is interpreted as <seq>, e.g.
 | `:ab ^P procedure'. A `^V' immediately
 | following <string> inhibits expansion.
 :ab | Show all abbreviations.
 :unab <string> | Do not consider <string> an abbreviation
 | anymore (see `:unmap').
 @<a-z> | Consider the contents of the named register a
 | command, e.g.:
 | o0^D:s/wrong/good/<esc>"zdd
 | Explanation:
 | o - open a new line
 | 0^D - remove indentation
 | :s/wrong/good/ - this input text is an
 | `ex' substitute command
 | <esc> - finish the input
 | "zdd - delete the line just
 | created into register `z'
 | Now you can type `@z' to replace `wrong'
 | with `good' on the current line.
 @@ | Repeat last register command.

 /////////////////////////////
 / switch and shell commands /
 /////////////////////////////

 Q | ^\ | <intr><intr> | Switch from vi to `ex'.
 : | An `ex' command can be given.
 :vi | Switch from `ex' to vi.
 :sh | Execute a subshell, back to vi by `^D'.
 :[x,y]!<cmd> | Execute a shell <cmd> [on lines x through y;
 | these lines will serve as input for <cmd> and
 | will be replaced by its standard output].
 :[x,y]!! [<args>] | Repeat last shell command [and append <args>].
 :[x,y]!<cmd> ! [<args>] | Use the previous command (the second `!') in a
 | new command.
 [*]!<move><cmd> | The shell executes <cmd>, with as standard
 | input the lines described by <*><move>,
 | next the standard output replaces those lines
 | (think of `cb', `sort', `nroff', etc.).
 [*]!<move>!<args> | Append <args> to the last <cmd> and execute it,
 | using the lines described by the current
 | <*><move>.
 [*]!!<cmd> | Give <*> lines as standard input to the
 | shell <cmd>, next let the standard output
 | replace those lines.
 [*]!!! [<args>] | Use the previous <cmd> [and append <args> to it].
 :x,y w !<cmd> | Let lines x to y be standard input for <cmd>
 | (notice the <sp> between the `w' and the `!').
 :r!<cmd> | Put the output of <cmd> onto a new line.
 :r <name> | Read the file <name> into the buffer.

 //////////////
 / vi startup /
 //////////////

 vi [<files>] | Edit the files, start with the first page of
 | the first file.

 The editor can be initialized by the shell variable `EXINIT', which
 looks like:

 EXINIT='<cmd>|<cmd>|...'
 <cmd>: set options
 map ...
 ab ...
 export EXINIT (in the Bourne shell)

 However, the list of initializations can also be put into a file.
 If this file is located in your home directory, and is named `.exrc'
 AND the variable `EXINIT' is NOT set, the list will be executed
 automatically at startup time. However, vi will always execute the
 contents of a `.exrc' in the current directory, if you own the file.
 Else you have to give the execute (`source') command yourself:

 :so file

 In a `.exrc' file a comment is introduced with a double quote character:
 the rest of the line is ignored. Exception: if the last command on the
 line is a `map[!]' or `ab' command or a shell escape, a trailing comment
 is not recognized, but considered part of the command.

 On-line initializations can be given with `vi +<cmd> file', e.g.:

 vi +x file | The cursor will immediately jump to line x
 | (default last line).
 vi +/<string> file | Jump to the first occurrence of <string>.

 You can start at a particular tag with:

 vi -t <tag> | Start in the right file in the right place.

 Sometimes (e.g. if the system crashed while you were editing) it is
 possible to recover files lost in the editor by `vi -r file'. A plain
 `vi -r' command shows the files you can recover.
 If you just want to view a file by using vi, and you want to avoid any
 change, instead of vi you can use the `view' or `vi -R' command:
 the option `readonly' will be set automatically (with `:w!' you can
 override this option).

 //////////////////////////////
 / the most important options /
 //////////////////////////////

 ai | autoindent - In append mode after a <cr> the
 | cursor will move directly below the first
 | CHAR on the previous line. However, if the
 | option `lisp' is set, the cursor will align
 | at the first argument to the last open list.
 aw | autowrite - Write at every shell escape
 | (useful when compiling from within vi).
 dir=<string> | directory - The directory for vi to make
 | temporary files (default `/tmp').
 eb | errorbells - Beeps when you goof
 | (not on every terminal).
 ic | ignorecase - No distinction between upper and
 | lower cases when searching.
 lisp | Redefine the following commands:
 | `(', `)' - move backward (forward) over
 | S-expressions
 | `{', `}' - idem, but don't stop at atoms
 | `[[', `]]' - go to previous (next) line
 | beginning with a `('
 | See option `ai'.
 list | <lf> is shown as `$', <ht> as `^I'.
 magic | If this option is set (default), the chars `.',
 | `[' and `*' have special meanings within search
 | and `ex' substitute commands. To deprive such
 | a char of its special function it must be
 | preceded by a `\'. If the option is turned off
 | it's just the other way around. Meta-chars:
 | ^<string> - <string> must begin the line
 | <string>$ - <string> must end the line
 | . - matches any char
 | [a-z] - matches any char in the range
 | [^a-z] - any char not in the range
 | [<string>] - matches any char in <string>
 | [^<string>] - any char not in <string>
 | <char>* - 0 or more <char>s
 | \<<string> - <string> must begin a word
 | <string>\> - <string> must end a word
 modeline | When you read an existing file into the buffer,
 | and this option is set, the first and last 5
 | lines are checked for editing commands in the
 | following form:
 |
 | <sp>vi:set options|map ...|ab ...|!...:
 |
 | Instead of <sp> a <ht> can be used, instead of
 | `vi' there can be `ex'. Warning: this option
 | could have nasty results if you edit a file
 | containing `strange' modelines.
 nu | number - Numbers before the lines.

 para=<string> | paragraphs - Every pair of chars in <string> is
 | considered a paragraph delimiter nroff macro
 | (for `{' and `}'). A <sp> preceded by a `\'
 | indicates the previous char is a single letter
 | macro. `:set para=P\ bp' introduces `.P' and
 | `.bp' as paragraph delimiters. Empty lines and
 | section boundaries are paragraph boundaries
 | too.
 redraw | The screen remains up to date.
 remap | If on (default), macros are repeatedly
 | expanded until they are unchanged.
 | Example: if `o' is mapped to `A', and `A'
 | is mapped to `I', then `o' will map to `I'
 | if `remap' is set, else it will map to `A'.
 report=<*> | Vi reports whenever e.g. a delete
 | or yank command affects <*> or more lines.
 ro | readonly - The file is not to be changed.
 | However, `:w!' will override this option.
 sect=<string> | sections - Gives the section delimiters (for `[['
 | and `]]'); see option `para'. A `{' beginning a
 | line also starts a section (as in C functions).
 sh=<string> | shell - The program to be used for shell escapes
 | (default `$SHELL' (default `/bin/sh')).
 sw=<*> | shiftwidth - Gives the shiftwidth (default 8
 | positions).
 sm | showmatch - Whenever you append a `)', vi shows
 | its match if it's on the same page; also with
 | `{' and `}'. If there's no match at all, vi
 | will beep.
 taglength=<*> | The number of significant characters in tags
 | (0 = unlimited).
 tags=<string> | The space-separated list of tags files.
 terse | Short error messages.
 to | timeout - If this option is set, append mode
 | mappings will be interpreted only if they're
 | typed fast enough.
 ts=<*> | tabstop - The length of a <ht>; warning: this is
 | only IN the editor, outside of it <ht>s have
 | their normal length (default 8 positions).
 wa | writeany - No checks when writing (dangerous).
 warn | Warn you when you try to quit without writing.
 wi=<*> | window - The default number of lines vi shows.
 wm=<*> | wrapmargin - In append mode vi automatically
 | puts a <lf> whenever there is a <sp> or <ht>
 | within <wm> columns from the right margin
 | (0 = don't put a <lf> in the file, yet put it
 | on the screen).
 ws | wrapscan - When searching, the end is
 | considered `stuck' to the begin of the file.
 :set <option> | Turn <option> on.
 :set no<option> | Turn <option> off.
 :set <option>=<value> | Set <option> to <value>.
 :set | Show all non-default options and their values.
 :set <option>? | Show <option>'s value.
 :set all | Show all options and their values.

