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The full machine ADA
(e+e−, R=65 cm) and a
single detector like
ATLAS (pp, R=12 m) at
LHC (R = 4.2 km).

1 − Colliders : pp̄ – LEP – pp
i. Accelerators

1) Colliders

2) Synchrotron

3) Luminosity

ii. Physics

4) Scattering

5) Rapidity and pseudo-rapidity

6) Log s physics

7) The quark parton model

8) High-pT processes

iii. comparisons

9) e+e− ↔ pp ↔ p̄p.
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Colliders: introduction
• Hadronic collisions (Spp̄S + LHC at

CERN, TeVatron at Fermilab) share
common dynamical and kinematical
features, different from e+e− (Spear,
LEP, …).

• Hadrons are composite, as explained by
the QCD-quark-parton (qpm) model :
 coherent pp (p̄p) scattering at low pT;
 qq/q̄q̄/qq ̄/qg/q ̄g/gg scattering at high 

pT, dominated by t-channel gg.

• Instead in e+e− Colliders only point-like
interactions, dominated by s-channel.

• The historical order Spp̄S – LEP – LHC is
unnatural (hadrons, leptons, hadrons),
but we will follow it, at the price of
some repetitions and logical leaps.

• In the Spp̄S and LHC chapters, the order
will be the traditional one, increasing pT
and decreasing cross-section :

1. [total cross-section],
2. low-pT interactions,
3. high-pT hadronic processes,
4. high-pT electro-weak;
5. [searches for new physics, if any].

• For LEP, the order will be the history,
i.e. the increasing beam energy :
1. Z-pole electroweak physics,
2. W+W− pair creation,
3. [a digression on the method of

searches and the analysis of
negative results, the "limits"],

4. Higgs searches;
5. [searches for new physics, if any].

• In this first chapter, there are some
definitions and discussions, useful for
all the following parts, especially for
hadron colliders.
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Paolo Bagnaia – CP – 1 4



Colliders: vs fixed target
• Dynamics is invariant under a Lorentz boost; the

processes depend on the relative motion of
particles only : fixed target experiments (FT) and
colliders (C) are dynamically equivalent;

• dynamics is better computed in the CM system →
C are simpler to treat (very weak argument);

• however, the available kinematical region (and the
experiments) are very different;

• a general (simplified) discussion of the relative
merits of FT vs C in the next slides;

• the [obvious] reason for C superiority is √s :
 FT : s ≈ 2 mN Ebeam → √s ∝ √Ebeam;
 C : s = (2Ebeam)2 → √s ∝ Ebeam;

• for general purpose experiments, the quest for
higher √s gives C a definitive advantage over FT
[imho, but widely shared];

• future alternatives : e+e− linear C, µ+µ− circular C.
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Colliders : types
• FT's offers a plethora of initial states (nucleons,

mesons, charged and neutral leptons, …), while C's
have been realized with only few initial states:
 e+e− AdA, ADONE, SPEAR, DESY, LEP, DAΦNE, …;
 p̄p CERN and Fermilab Colliders;
 pp ISR, LHC;
 e±p Hera;
 (+ heavy ions and specialized machines);

• projects for µ+µ− Colliders; µ± are dynamically
equal to e±, but produce (much) smaller brem; so
they can be accelerated to higher energy;

• colliders e+e− have been realized since 50 years;
they have discovered new leptons (τ), new
hadrons (J/ψ, charm), new dynamics …

• The successes of pp (p̄p) are W±, Z, top, CKM, H.

• The swan songs of FT have been J/ψ and b quark (+
ν physics, which is a special case).
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Colliders: Livingston plot

In addition, FT has plenty
of applications out of the
"energy frontier".

[our department, together
with INFN and the SBAI
department, hosts a PhD
programme in accelerator
physics ("dottorato in Fisica
degli acceleratori")]
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Synchrotron
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A machine with a circular tube of small size
and large radius, instrumented with
dipoles and radiofrequencies of small-
aperture and big power (+ auxiliaries) :
• from Lorentz force:

|p| = m = 0.3BR (GeV, T, m);
→ the mag. field |B| must be continuosly

synchronized to keep the beam on the
same R, by varying the current ι in the
magnet coils (|B| = µ0nι).

• the revolution period must be an integer
multiple nR of the radio-frequency
period τrf [Povh, § A.1] :

→ ωrf must be continuosly re-adjusted (i.e.
synchronized) to follow the beam
velocity (β=p/E), in order to always get
the beam in the correct phase;

π π
= = τ = → ω =

ω
R R

R R rf rf
rf

2 R 2 n n pt n ;
p/E RE

R

rf system

tEl
ec

tr
ic

fie
ld

in
rf

τrf

ideal
particle

early 
particle*

late
particle

* higher field 
→ R increased

[YN1, §12.3.2]
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Synchrotron: parameters
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Present limitations for parameters :
• mag. field B < 1.4 T (warm, iron core) or

B < 10 T (superconductivity, it requires
cryo magnets);

• R limited by civil engineering (costs,
availability) to few (max tens) Km;

• radiofrequency limited by energy costs;
• brem problem for electrons [§ LEP].

• Results:
• beam(s) bunched : nbunch < nbucket (= nR);
• √scollider (TeV) ≈ 2p ≈ 0.6 B(T) R(Km);

• √sfixed (GeV) ≈ 2MpE ≈ 0.6BR (T,m).

Problems:
• beam manipulation is complicated (see

later);
• interaction rate [see later Luminosity L]

is smaller wrt continuous accelerators;
• however, in practice this is the only

known method to achieve high
energy/high intensity;

→ all modern accelerators are based on
the principle of synchrotrons.

R

rf system
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At present an active development program: B > 20 T, R > 100 Km ( ♥ �  )



Synchrotron: magnets
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The conventional approach to particle beam
manipulations is to treat them as light rays (beam
optics). The magnets behave as lenses:
• dipoles for beam bending; the dipoles are the main

elements; if all the particles behave as their average
("ideal trajectory"), no other elements were
necessary;

• higher multipoles, like quadrupoles, sextupoles, for
(de)focalization; they (de-)focus the beams like
(di/con)vergent lenses (but be aware of the Liouville
theorem !!!);

•
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• the overall control is in the hands
of very smart physicists/engineers,
fast and big computers, under the
goddess Fortuna.



Synchrotron: magnet coils
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The magnets are built with two different
techniques :
• warm : coils with high continuous

currents + iron yoke;
• cold : superconducting coils at cryo
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Synchrotron: examples of magnets
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a sextupole in front of 
a "C" dipole

a quadrupole of the 
HERA accelerator



Synchrotron: the brem effect6/6
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R

∆E ∝ M-4 √s 
(GeV) ∆E

LEP 1 e+e− 90 121 MeV

LEP 2 e+e− 200 2,500 MeV

LHC pp 14,000 6.9 KeV

in circular e+e− colliders Rbest ∝ s 
(severe limitation, see § LEP).
therefore, in future:
• µ+µ− colliders;
• linear e+e− colliders.
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The fundamental figure to quantify
collider performances is the Luminosity L.
Define it with a toy model:
• N1 particles/bunch turning "clockwise";
• N2 … "anti-clockwise";
• cylindrical  bunches S×ℓ,  ρ = const. 

[this is the toy assumption];
• for each of N1, while traveling inside the

cylinder N2 for a small step x, the

probability of interaction is:
P1(x) = 1 - e-ρσ

T
x ≅ ρ σT x = N2σTx/(S ℓ);

• the average number of interactions /
crossing is :
<nI> = N1 P1 (ℓ) = N1 N2 σT / S;
[<nI> independent from ℓ]

• the crossings rate is
nc = k × ƒ
[k = bunch number, ƒ = revolution

frequency]
therefore, the interaction rate is :
R ≡ L σT = <nI> × nc = N1 N2 k ƒ σT / S,

where L, the "luminosity", contains the
parameters of the machine, while σT
reflects the particle dynamics:

Luminosity: toy model1/11

= 1 toy 2N
S

N kƒ .  L
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Luminosity: comments2/11
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The toy model is too naïve, however some 
of the conclusions are correct.
The luminosity is defined as L ≡ R/σT, the
ratio between the interaction rate and the
total cross section(*). L is:
• NOT dependent (for head-on collisions) 
on the bunch length ℓ;

• proportional to the inverse of the bunch 
section (use an effective bunch section  
S = 4 xσy);

• proportional to the number of particles 
/ bunch of both beams (N1N2);

• proportional to the number of bunch
crossings / second (kƒ);

• [not in formula] dependent on centroids 
displacement and beam lifetime.

___________________________
(*) for a process x : Rx/RT = σx/σT → Rx=L σx.

NB the total number of interactions seems to
grow ∝ k2; however, in a given interaction
point, it grows ∝ k. Is it clear ? from this
consideration, many clever machine
developments, e.g. the pretzel scheme.

12
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Luminosity: collisions at angle α

• In case of an angle α between the
beams (LHC), the formula becomes

• It turns out(*) :

where σℓ(σT) is the longitudinal (transv.)
effective dimension of a bunch.

• Notice the dependence on σℓ/σT; short
bunches have other pros (better
definition of the interaction point) and
cons (e.g. in case of many overlapping
events in the same bunch-crossing).

• At LHC, α ≈ 300 μrad → ƒ(α) = 0.83.

(*) e.g. CERN CAS 2003, YR 2006-002, page 361.

• Problem : the effect of α on √s and pT :

in LAB sys (≠ CM !!!) :
[2E, 0, -2p sin(α/2),0] ≈ [2E, 0, - Eα, 0];

→ √s = 2E 1−α2/4 ≈ 2E (1 – α2/8);
→ ∆√s ≈ - E α2/4 (negligible at LHC);

→ |pT| ≈ Eα ≈ 2 GeV at LHC (also
negligible).

→ CONCLUSION : at LHC, in practice,
LAB. sys. = CM sys., √s = 2E,    
only L affected by α.

α
p p
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= ≡
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Luminosity: <nint>
Problem. How many interactions / bunch-
crossing [b.c.] ? [nint, also "µ", a bad
choice for an overused symbol].
Solution [τbc = (kƒ)-1 ≈ time between b.c.] :

The effects of µ depend on its value:
• <µ> << 1 (Spp̄S, LEP): the probability of

an interaction in a given b.c.; then "µ2"
is the probability of two events in the
same b.c. (a known and not-very-
important bckgd for Spp̄S and LEP);

• <µ> > 1 (LHC): the average number of
overlapped events in a b.c.; the actual
number is Poisson-distributed, with
average <µ>.

_____________
(*) some buckets are empty → larger Lbc and µ.

Comments:
• for hadronic colliders, it is better to

consider µinelastic [σT → σinel], which
decreases µ by ~20%, because elastic
collisions do not produce secondaries in the
detectors;

• some old machines (e.g. CERN ISR) had
"debunched" beams, i.e. particle
uniformly spread over the whole ring; in
this case the very definition of <nint> is
meaningless; however, for LHC this
setup is simply impossible [why ? try to
answer].

4/11
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Luminosity : ε, β, β*
The dynamics of a real beam :

• real particles oscillate around the ideal
trajectory (betatron oscillations);

• Reference system and definitions :
 z : line of flight of the ideal particle;
 x,y : deflections from ideal orbit;
 x' ≡ px / pz; y' ≡ py / pz;
σx ≡ rms beam size in x (also σy, σx', σy');
εx = π · σx · σx’ = "transverse emittance";
βx = σx / σx’ = "amplitude function";
εy = π · σy · σy’ ; βy = σy / σy’ .

• Therefore (for the *, see on this page):

• From Liouville's theorem :
V(6-dim) = σx· σy· σz· σpx· σpy· σpz =

= constant;
εx εy = const. (if z decouples, modulo

stochastic effects, increasing with time);
βx,y can be modified by accelerator

devices (e.g. quadrupoles) : it MUST be
SMALL in the interaction regions ("low-
beta", β*), and large far from them
("high-beta", β) [next slide].

z

x,y

5/11
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Luminosity: values of ε, β, β*

• At the CERN Spp̄S :
 εp ≈ 9 × 10-9 π rad m; εp̄ ≈ 5 × 10-9 π rad m;
 β*H ≈ 0.60 m; β*V ≈ 0.15 m.

• At LEP (remember the electron brem) :
 εH ≈ (20÷45) × 10-9 π rad m;
 εV ≈ (0.25÷1.0) × 10-9 π rad m;
 β*H ≈ 1.50 m; β*V ≈ 0.05 m.

• At LHC (≥ 2012) :
 εx ≈ εy ≈ 0.5 × 10-9 π rad m;
 β*x ≈ β*y ≈ 0.55 m;
 [see next page, from a beautiful CERN

Academic training by Mike Lamont].

z

x,y

6/11
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Luminosity : β squeeze

Image courtesy John Jowett

β*  = 60 cm
NB: round beams at IP

βmax ~4.5 km ATLAS @ LHC

7/11
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Luminosity: better toy model
A mechanical analogy [Ed Wilson, 28] :
• a little ball on a falling guide [see];
• two forces :

1. gravity toward z (= "acceleration");
2. a force orthogonal to z, which depends

on the local shape of the guide (e.g.
elastic ∝ |x|);

• choose two parameters ε, β:

• for each z (i.e. for the full motion) :

• i.e. an ellipse in x, x';
• during the motion, the ellipse changes

shape, but the area stays constant =  ;
• β is the ratio between the semi-axes (x/x’).

8/11
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Luminosity: Liouville's theorem

• Because of the Liouville's theorem, for
an "ideal fluid of balls", the [iper-]
volume of the ellips[oid] keeps
constant during the motion :

• Therefore, β (= amplitude) can change
from point to point [in the toy model,
by varying the shape of the guide],
decreasing the spatial dispersion in
favor of the angular one, or vice versa.

• Instead ε (= emittance) measures the
quality of the beam, which (in the
absence of non-conservative forces) is
kept constant when β varies.

• [a non-conservative random force has
the effect of increasing ε, e.g. friction in
the guide due to small corrugations.]

9/11
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Luminosity: evolution with time
• Many effects deteriorate the

luminosity during a long data-taking.
[following figures from LHC, but the
effects are similar for all colliders].

• Parameterize as dL = -L dt/τi; at LHC :
 collisions τcoll ≅ 29 h;
 increase of emittance τIBS ≅ 80 h;
 residual gas τgas ≅ 100 h;
 (many other minor effects ...)

• Global effect on luminosity :

L(t)=Lmaxe(-t/τ) ; 1
τ

= ∑ 1
τj

≈ 1 / (15 h).

Integrated luminosity after a time T :

• After few hours, new injection and
acceleration [see § LHC].

• I.e. Lmax,effective ≈ ½ Lmax.

• The decision to dump the beam and
restart the cycle (inject − accelerate −
squeeze − data-taking) is crucial :
At the Spp ̄S was dramatic (high level

officials), due the scarcity of p ̄.
 Even at LHC (plenty of protons

everywhere) is a major concern.

1.00

201050 15
.00
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.25
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Luminosity: L vs √s11/11
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Five parts:

a. Scattering: collisions in non-relativistic
q.m., mainly the optical theorem and
its consequences [a memo].

b. (Pseudo-)rapidity: kinematical variables
used both at low- and high-Q2 [the
math looks crazy, but it is very useful].

c. Log s physics: a synonym of "low-Q2

physics", i.e. when hadrons behave as
coherent non-point-like particles [an
old subject, difficult, no clean results,
but unavoidable, because it is the main
source of events in hadronic physics].

d. The quark parton model: the QCD
theory and its approx., applied to the
data [the real subject of the discussion].

e. High-pT processes: the kinematical
analysis of high-Q2 events
[Mandelstam variables, x, √s & c., both
at parton and hadron level].

NB. The sequence is dictated by understanding;
(a-c-d-e-b) would have been more logical, but
also more difficult.



scattering
• The electromagnetic processes, treated

in PP - § 2, are a special privileged case :
 the potential is derived from a well-

known and tested theory;
 the model is based on symmetries;
 the dimensionless coupling constant

αem << 1.
• The treatment of nuclear interactions is

much more difficult :
 no classical analogue;
 the analytic form of the interaction

law is [was] unknown;
 the coupling is much larger than in

electromagnetism : the perturbative
approach does not give results at
small Q2 (= large distances).

• Much experimental information comes
from nuclear reactions and scattering
processes. This study is therefore crucial.

• Examine the simplest case :
 two particles;
 spinless;
 non-relativistic approximation;
 potential only dependent from

relative position.
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scattering: partial waves
• Two particles, mass m1 and m2, both

spin 0, collide with a potential  V(x,y,z).
• The particles are abserved far from the            

collision region, i.e. where V ≈ 0. 
• Define :

• If V(r⃗) depends only on r⃗, i.e. on the relative
positions of m1,2, the Schrödinger equation splits in
two parts, with two solutions:
 a function ψCM(R), for the free motion of the

CM, which behaves as a free particle, with mass
M and energy ER;

 a function ψ(r⃗), for the motion of a particle with
reduced mass µ and energy Er, subject to V(r⃗).

The next three slides for reference
only: you already know everything
from the lectures on q.m.

References (many, but e.g.) :
 Sakurai,  Modern q.m., 397;
 Weinberg, Lectures on q.m., 211;

 Burcham – Jobes, 286;
 Messiah, vol 2, 866;
 Perkins (ed. 1971), 265.
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scattering: partial waves
• The initial state is described by a plain

wave along z :

jℓ(kr) = spherical Bessel functions,
Pℓ(cosθ) Legendre polynomials.

• … and the final state by the superposition
of a plane and a spherical wave,
modulated by ƒ(θ,ϕ) :
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 = Kronecker symbol .

complex factor, for each ℓ :
• ℑ(…ℓ) = change in phase;
• ℜ(…ℓ) = …    in amplitude.

spin-0 particles + central 
potential = no dependence on ϕ.

exp(ikz) = mixture of
different ℓ → expand
[no ϕ → m=0 only].

definition of 
σ and flux.

this σ refers to 
elastic scattering 



• the phase shifts δℓ pass through a
resonance when δℓ = π/2 :

 ηℓ exp(2iδℓ); 0 ≤ ηℓ ≤ 1;

 only elastic scattering → ηℓ = 1 →

• Finally, calculating the flux associated
with ψf, the value of σtot is :

• [warning : the theorem looks very smart;
however, it is only a relation, based on wave
mechanics, between two unknown quantities.]

• The dynamics, carried by the potential
V(r⃗), rests in ƒ(θ) [the scattering
amplitude], or, alternatively, in the
inelasticity parameters ηℓ and in the
phase shifts δℓ.

scattering: the optical theorem

"optical theorem"
[Sellmeier, Rayleigh 1871;
Bohr, Peierls, Placzek
1939;
Bethe, de Hoffman 1955]
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scattering: 𝛔𝛔tot
In hadron colliders, the standard method to
measure the total cross section, e.g. at LHC
σtot(pp), uses the optical theorem:

b. Define the elastic cross section in terms 
of ƒel(θ) and t(Mandelstam):

c. Define ρ = ℜ[ƒel
t=0] / ℑ[ƒel

t=0] and put it in 
the equations :

d. From Rtot = Lσtot, σ2
tot = σtotRtot / L,

Rel = σel L, dσel/dt = (dRel/dt) /L .

e. Combine (b) (c) (d) :
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scattering: measure 𝛔𝛔tot

Everything (but ρ) is directly measurable →
σtot can be measured without knowing L :

• Rel and Rtot :
 absolute rates in arbitrary units (only

the ratio counts, i.e. use Nel and Ntot,
integrated over the same time interval
→ smaller stat. errors);

 systematics due to dead time, faults in
data-taking, … cancels in the ratio;

• the term "dRel/dt|t=0" :
 produce a plot Rel (or Nel) vs tMandelstam;
 N(t=0) is non-measurable → go as low

as possible in t and extrapolate → t=0;
 units do NOT count, but extrapolation

errors do;

 the histogram requires t → must
know pinit → high-β is preferable, even
if L (and N) are smaller;

• the ratio ρ [a personal pessimistic view] :
 can be computed [maybe "guessed"]

from first principles;
 turns out small (≈ 0.14 @ LHC) →

 /σ ≈ 2ρ ≤ 1%;
 so ρ [is not well-understood, but it] does

not harm the result.

6/7
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scattering: 𝕊𝕊 matrix
The 𝕊𝕊 matrix (𝕊𝕊 for "scattering") was
introduced indipendently by J.Wheeler
in 1937 and W.Heisenberg in 1940.
The following definitions and properties
are discussed in [MQR § 11] in the
Interaction Picture ("IP", |〉I) :
• lim ℍI(t) = 0;

t→±∞

• lim |ψ(t)〉I ≡ |ψ(t=±∞)〉I = const.;
t→±∞

• |ψ(t)〉I = 𝕌𝕌I(t,t0)|ψ(t0)〉I;
• | i 〉 ≡ |ψ(t=−∞)〉I;
• | f 〉 ≡ |ψ(t=+∞) 〉I ≡ 𝕊𝕊| i 〉;
• 𝕊𝕊 ≡ lim 𝕌𝕌I(t2,t1);

t2→+∞,t1=−∞

• 𝕊𝕊 𝕊𝕊† = 𝕊𝕊† 𝕊𝕊 = 𝟙𝟙.

The following properties follow :
• 𝒮𝒮fi ≡ 〈 f | 𝕊𝕊 | i 〉;
• Σf|𝒮𝒮fi|2 = 1 [conservation of

probability];
• 𝕊𝕊 ≡ 𝟙𝟙 + 2i𝕋𝕋;
• 𝕋𝕋 = (𝕊𝕊 − 𝟙𝟙) / (2i);
• 〈f|𝕊𝕊|i〉 = δfi + i(2π)4δ4(pf-pi)〈f|𝕋𝕋|i〉;

• dσ =

It is interesting to note that, starting
from there, the optical theorem follows
(almost) immediately :
• σT = −2 ℜ[Mii] / vi = 4π ℑ[ƒ(0,ϕ)] / pI.
_________________________
The analytical properties of the 𝕊𝕊 matrix have
been extensively studied in the '50s and '60s.
After that, the success of the field theory and
the SM have terminated the approach, even if
some addicts are still around.

7/7
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• The rapidity φ was introduced by
Minkowski (NOT in particle physics):

φ = tanh-1(v/c),
many properties : i.e. it reduces to v/c
for low speed, it is additive (unlike v), ….

• In particle physics a similar variable (y)
defined by Feynman for a particle m≠0,
relative to an axis z (usually the beam) :

• define also : 

mT
2 = m2 + px

2 + py
2 (transverse mass);

η = - ln [tan (θ/2)] (pseudo-rapidity);

 x = 2 pz / √s ("Feynman x");

It follows (next slides) :

 pz → −pz ⇒ θ → (180θ ) ⇒ y → −y;

 E = mT cosh (y); pz = mT sinh (y);

 y = ln [ (E+pz) / mT] = tanh-1 (pz/E);

 dy = dpz / E;

 if (p≫m) → y ≈ η.

 given a Lorentz transformation 𝕃𝕃
along z, with velocity βz :

y’ = 𝕃𝕃 (y) = y - tanh-1 βz; ∆y' = ∆y;

i.e. y is the variable, whose
differential dy is invariant for 𝕃𝕃-
transformations along z.

(pseudo-)rapidity

Use p = [E, px, py, pz; m]; other variables will be defined.
[Unfortunately, with only 26 letters available, there is a lot of
repetition, e.g. the rapidity y has nothing to do with the inelasticity y.] z

pT
p

θ
pz

1/9

+
=

−
z

z

1 E py ln ;
2 E p
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(pseudo-)rapidity: a remark
In modern particle physics, many sets of
kinematical variables. Among them:

a) "Mandelstam" :
 s, t, u ;
 for two-body scattering (or quasi-

two-body), full event, 𝕃𝕃-invariant,
no dynamics implied;

b) "DIS" (mainly Bjorken) :
 Q2, ν, xB, y, W2 ;
 for full event (interpreted as two-

body), mainly ℓN (e±N, µ±N, νN), 𝕃𝕃-
invariant, implicit* dynamics;

c) "Feynman" :
 y, η, xF, mT ;
 for single particles of final state (or

quasi-particles like jets), non-𝕃𝕃-
invariant, implicit* dynamics.

________________

* implicit = variable only useful for a given dynamics.

IMHO a real mess, in part due to history:
• no simple rule for names,
• in some cases (e.g. hadron colliders) all

sets used at the same time,
• some (deep ? casual ?) relations (e.g.

xF = xB = x , t = -Q2 ).

Life is notoriously difficult, but some
cleanup looks really necessary, even if it
is not foreseen in near future.

2/9
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(pseudo-)rapidity: plot
• The pseudorapidity η is important.
• Sometimes physicists assume to be in

the extreme relativistic case, and call
it "rapidity".

• Roughly, it represents the zenith θ in
log scale, much expanded towards
the beam axis.

• But its properties are many, and …

3/9

For small θ (large η) : η [≈ y] = − ln [tan (θ/2)] →

≈ ln(2) − ln[θ(rad)] = ln(360/π) − ln[θ(deg)] = 4.741 − ln[θ(deg)].
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θ=2tan-1(e−η)

η θ (°)
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2.0 15.415
2.5 9.385
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(pseudo-)rapidity: properties (1)4/9

z

x,y

η = 0

η = 1

η = 4
η = 3

η = 0.5
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(pseudo-)rapidity: properties (2)

… And some others, quite long :

a) 𝕃𝕃 transform : p'z = γ(pz − βE);
E' = γ(E − βpz);

b) y' = 𝕃𝕃(y)

c) ∆y=y2−y1=∆y'=y'2−y'1;
i.e. y is the variable, whose
differential (even the finite ∆y) is
invariant for 𝕃𝕃-transf. along z.

z

x,y

y2

∆y is invariant
for 𝕃𝕃-transform.
along z

5/9
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(pseudo-)rapidity: properties (3)
• Start from well-known math :

• Then :

• i.e. the differential dy = dpz / E = dE / pz at constant pT.

• Definition of the invariant cross section ["invariant" under 𝕃𝕃-transform. along z] :
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 +
=  − 

z

z

1 E py ln
2 E p

σ, px, py are 
transverse

σ3

3

d called also E  
dp

in qpm Ed3σ/dp3 does NOT depend on the value 
of x of the event, therefore on the PDF (!!!)



(pseudo-)rapidity: properties (4)

• curiosity : an alternative way to show 
that y is invariant for 𝕃𝕃-transf. along z :

7/9
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Why are hard hadronic interactions often
analyzed in terms of (pseudo-)rapidity ?

Angular variables depend on each other:
jacobian transformations relate all
distributions; however, y looks "natural"
(and produces simpler plots).

• The "Feynman argument" :
 at high-pT the real interaction

happens at parton level;
 the values of the parton momenta

vary for each event, but they are (in
1st approx) along z;

 therefore y is the correct variable in
the lab., e.g. for jets and IVB analysis.

• The "Rutherford argument" :
 σ is a mixture of processes, with many

t-dependences, indistinguishable on
an event-by-event basis;

 the dominant processes are t-channel
(in the parton CM), almost flat in y (∝
t-2).

 the rapidity, which expands the scale
at θ ≈ 0° is welcome : dσ/dy is ∼ flat.

(pseudo-)rapidity: why8/9

2011
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(pseudo-)rapidity: how
Why are soft+hard hadronic interactions
often analyzed in terms of (pseudo-)rapidity ?
The phenomenology of low-pT :
• [maybe reasons based on low-pT physics,

related to the invariant cross-section];
• the inclusive y distributions are ∼ flat;
• so, y is very handy for fast background

computations.
Why is η used often, instead of y ?
• y has important physical properties;
• y-error is large, because of the difference of

two large similar quantities (E, pz);
• η depends on an angle, exper. friendly;
• worst : in the literature sometimes η is

given the properties of y [but it is ALMOST
correct].

Instead, e+e− interactions, where partons
(=e±) interact in the LAB at x=1, are
usually analyzed in terms of cos θ.

9/9
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it means : jets are integrated between ±�η;
the resultant number is divided by 2�η;
we used �η = 1, if I remember correctly.

How to do it ? "typical example" : a 
hard interaction studied in terms of 
d2σ/dpTdη|η=0.



Log s physics1/9

• An intuitive toy-model for low-pT, with
surprisingly good results :
σtot(pp or p̄p) ≈ πR2 ≈ π (ℏc/mπ)2 =

= π(197 MeV·fm / 140 MeV)2 = 62 mb.

• A limit ("Froissart bound") on the
increase of cross-section for any pairs of
particles, when √s increases :
for any two particles ab [e.g. pp, π+p, p̄p]:

i.e."at sufficiently high energies, the total
cross-section for scattering on a given
target [e.g . σ(p̄p), σ(pp), σ(π±p), σ(π±n)]
cannot grow faster than ln2 s".

• A theorem, based on quantum field
theory (NOT on dynamical assumptions,
i.e. valid for any type of interaction),
knows as the "Pomeranchuk theorem" :

i.e. "at sufficiently high energies, the
total cross-section on a given target is
the same for particle and antiparticle"
[e.g. σ(p̄p) ≈ σ(pp), σ(π+n) ≈ σ(π−n)].

• The (unexpected) experimental behavior
that indeed hadron cross-sections grow
with √s, [∝ ln(s) or maybe ∝ ln2(s)], and
that the "Pomeranchuk regime" is
reached at accelerator energies.

↓

p
(−)
p

→∞

 σ
= σ 

ab

s
ab

lim 1, for any two particles (a,b).

( )
→∞

σ ≤ × 2
abs

lim const ln s ,
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Log s physics: old plots
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A. Donnachie and P. V. Landshoff, 
Phys. Lett. B 296, 227 (1992)√s (GeV) √s (GeV)

σ t
ot

(m
b)

p(GeV/c)

S. P. Denisov et al., Phys.
Lett. B 36, 415 (1971)

LABORATORY MOMENTUM (GeV/c)

s (GeV2)
U. Amaldi et al., Phys. Lett. 
B 44, 112; R. Amendolia et 
al. ibidem, 119 (1973).
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1 – Before ISR exp. 

2 – The ISR exp. 

3 – after many 
years ... 



↓
• … gave rise (50 years ago) to much

excitement and phenomenological
models of low pT hadronic interactions
("Regge poles", "Pomeron", "cylindrical
phase space", ...).

• Then, no real breakthrough for many
years …

Comments (very personal) :
 physics born many years ago ('50s +

CERN ISR), before the advent of QCD;
 poor conceptual foundations, but many

phenomenological successes;
many mysteries remain (perhaps no

mystery, only complex many-body
interactions, e.g. chemistry);

 today the main motivation of the study
is to predict, parameterize and filter out
the background.

In the following, we will assume this 
attitude.

The funny name "Log s physics" comes from
the fact that, in low-pT processes, the evolution
with s of many quantities is logarithmic; the
reasons are not really understood (Froissart ?).

Log s physics: comments3/9
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there are books with an extensive treatment of the
subject; instead we summarize everything here.

p
(−)
p



Log s physics: σtot(pp)4/9

The data of σ(p̄p), i.e. Spp̄S and Tevatron, are dashed,
to show the similarity of the cross sections.
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1 b = 10-28 m2 = 10-24 cm2

1 mb = 10-31 m2 = 10-27 cm2

LHC

pp [Tevatron]

[Spp ̄S]

@1034

cm-2s -1

109

108



Log s physics: σtot, dσel/dt @ LHC5/9

σT, σanel, σel

TOTEM (LHC)
EPL, 96 (2011) 21002

dσel/dt
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√s (GeV)



Log s physics: σtot(p̄p)6/9

The data of σ(pp), i.e. LHC, do NOT belong to this
plot; they are plotted dashed, to show the similarity
of the cross sections ("Pomeranchuk theorem").
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A heuristic computation :
• Compute the limits on y :

• i.e. ymax increases ∝ ln(s);
• if there is a “rapidity plateau”, the total

cross section is represented by the area
of the rectangle :

• if the plateau grows ∝ ln s, then σtot ∝
ln2s, and "saturates" the Froissart
bound;

• actually, this seems to be the case :
both width and height of the rectangle
grow ∝ ln s.

The real question is : why dσ/dy ∝ ln s ?

Log s physics: "rapidity plateau"7/9

y-yMAX yMAX

∝ ℓn(s)?

∝ ℓn(s)

dσ
dy

“rapidity plateau”
(cfr. dσ/dη)

  +  = ≤ ≤ ≡         
z

MAX2
T T

E p s 1 sy ln ln ln y ;
m m 2 m

MAX

MAX

y

tot y

d ddy const ln(s);
dy dy

−

−

σ σ   
σ = ≈ × ×   

   ∫
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Log s physics: dσ/dη|particles
8/9

The η distributions of charged particles exhibit typical "rapidity plateaus", 
which increases ∝ log s. 
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Log s physics: inclusive data9/9

T

2

T s p T y2
T

Ed ƒ(s,p ,y) ƒ (s)ƒ (p )ƒ (y);
dp dy

σ
= ≈
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The number and pT distribution of the
charged particles of the final state
exhibits interesting properties :
• they seem to follow a general law;
• the law is independent from the

primary state (e+e−, pp, p̄p, e±p);
• it scales (approx) ∝ ln s or ∝ ln2 s.

Suggestion of a general “factorization
property” of single particle production at
low-pT ["Feynman scaling"] :

In turn, the single ƒi exhibits interesting
properties (like the log-dependence of ƒs).
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Hadronic collisions at high pT (= short
distance) are studied in terms of the
"quark-parton model" (*) :

• the process take place in phases, that
"factorize" (= take place one after the
other, without mutual interference);

• the hadrons of the initial state are an
incoherent mixture of elementary
partons (= quarks and gluons of QCD);

• the partons behave as point-like particles

quasi- free (like the electrons in e+e−);

• because of the sea contribution, the
"number" of partons in a hadron is not
defined; only their total momentum (=
the hadron momentum) is measurable.

(… continue …)
_________________________
(*) hadronic collisions at low pT (= great distance,
Q2<[few-GeV]2) correspond to interactions
between non-point-like hadrons; they do NOT
belong to this picture.

The quark parton model1/10
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The quark parton model: initial state2/10

• in first approximation, partons have
only longitudinal momentum (the
"Fermi motion" of partons in the
hadron is small);

• each parton shares a fraction x of the
momentum of its parent :

pparton = (0, 0, ±x phadron);

• the distribution function of x [Fi
h(x,Q2),

for the parton i in the hadron h] are

called pdf [= parton distribution
functions, and depend both on x and
Q2 [§ 2 and 7 of PP];

• the evolution in (x, Q2) of the pdf is
regulated in non-perturbative QCD by
the equation GLAP (Gribov − Lipatov –
Altarelli – Parisi).

(… continue …)
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The quark parton model: collision3/10

• collisions at high-pT between elementary
partons are two-body scatterings ("ab →
cd"), to be studied in perturbative QCD;

• parton energy in their CM : ŝ = sx1x2;

• most of the partons of the hadrons do
NOT participate in the collision
("spectator partons"); they continue in a
direction (quasi-)parallel to the hadrons
of the initial state;

• after the collision, the partons of the
final state "hadronize" ("fragment"), i.e.
give rise to the hadrons of the final state;

• those particles emerge as collimated
sprays ("jets") of particles with high pT;

• the 4-vector sum of the momenta of the
hadrons of a jet is identified with the 4-
vector momentum of the parton.

(…continue…)
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The quark parton model: fragmentation4/10

• The distributions of the final state
hadrons are called "fragmentation
functions";

• they are functions [Dp
h(z,Q2)] of the

variable z (= phadron / pparton), which
defines the distribution of hadron
"h" in a jet from parton "p";

• they do NOT depend, to a good
approximation, neither on the initial

state, nor on the elementary
collision, but only on the final state
parton and the value of Q2;

• however, unlike the partons of the
elementary collision, the hadrons are
color singlets; therefore in the
process of fragmentation particles of
different jets must interact.
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The quark parton model: electroweak5/10

• In (few but) interesting cases, non-
QCD processes happens [e.g. ūd →
W−, followed by W decay into quarks];

• these processes are rare (e.g. 10-5 ÷
10-6 of pQCD at LHC), but very
valuable; they are at the origin of both
the Spp̄S and LHC construction;

• the analysis proceeds in the same
way: the two-body QCD parton
scattering is replaced by the
appropriate electroweak (or SUSY, or
whatever) theory;

[the figure represents a Drell-Yan process (see
§ Spp ̄S), with the creation of a W± and its
successive decay into a qq̄ pair, which
fragments into two jets; other processes are
treated in the same way.]
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The quark parton model: score6/10

process prediction ? theory ↔ exp. why
σtot(p̄p→pp̄) no the optical theorem is a

relation, NOT a prediction. low-pTσtot(pp→pp) no

σincl(pp/p̄p→π+X) no ℓn s model ?

σincl(pp/p̄p→jet X) yes fair pQCD

σincl(pp/p̄p→ Z X) yes good
electro-

weakσincl(pp/p̄p→ W X) yes good

σincl(pp/p̄p→ H X) yes very good

σincl(pp/p̄p→ SUSY) if … ??? ???
cfr. similar e.w. processes:

σtot(e+e− → µ+µ−) yes perfect pure e.w.

σtot(e+e− → Z → ƒƒ̄) yes perfect pure e.w.

σtot(e+e− → HZ→ƒƒƒƒ) yes [it will be perfect, I know] pure e.w.
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The quark parton model: method7/10

• The scheme works for all known
interactions of quarks and gluons, both
e.w. and strong, if the correct definition
of the elementary process (σ̂) is applied.

• The present method is to reproduce the
process, via Montecarlo generation of
events, later analyzed as real data.

• When, according to q.m., a distribution
function (e.g. σ̂, pdf) appears, the
random function of the computer is used.

• Many events are generated, so the a-
posteriori analysis is able to
predict/reproduce the statistical result.

• A single event is built in successive steps,
according to the "factorization
approximation":

(continue …)
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a. a parton of a given type is generated
out of the first hadron; its x is also
generated, according to its pdf;

b. ditto for the second init. state parton;
c. the elementary parton process is

computed, using the appropriate cross
section at parton level(1);

d. (as a part of this step) the angular
distribution of the final state partons is
generated, according to the dynamics of
the elementary process;

e. each parton of the final state is
fragmented, with its fragmentation
functions (or a fragmentation model(2));

f. the hadrons from spectator partons are
added (few methods exist);

g. all the hadrons of the final state are
recorded for successive analysis.

______________________________

(1) In case of electroweak decays (W±, Z, H), with
production of leptons, the treatment of the final
state has to be appropriate (in fact, it is easier,
since the fragmentation step is absent or
simpler).
(2) "Fragmentation models" like Lund (Pythia),
Herwig, are a mixture of theory (perturbative
and non-pertubative QCD), parameterization of
measurements (fragmentation functions) and
computing skill for easy management. They are
very well-done and successful, but are NOT
based on a complete reproduction of the theory.

NB. The procedure just described contains some
loopholes, e.g. pdf's (a-b) depend on Q2, which is
generated later (c-d); there are appropriate
tricks, not described here.

The quark parton model: procedure8/10
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Two test-case processes for the q-p model :

a) two-jet production;

b) W (or Z) production and decay into jets.

Notice the correspondence between the
scheme and the corresponding formula.

The sums run over all the partons which

may generate the final state, and the
integrals between the kinematical limits.

The pdf's "weight" the processes, giving
each parton and each x the correct share.
NB. a) in principle the parton type is observable

→ sum the σ’s, NOT the amplitudes;
b) σW is strongly peaked for real W’s → xi , xk

are NOT kinematically independent]

The quark parton model: examples9/10
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The quark parton model: Spp̄S → LHC10/10
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NB. Spp̄S and Tevatron
are p̄p, LHC is pp.
However, no
difference within the
accuracy of this plot.



High-pT: kinematics1/5

 initial state in pp [pp̄] CM :

phadron_1= [½√s, ½√s, ~0, ~0]; pparton_i = [½xi√s, ½xi√s, ~0, ~0];

phadron_2= [½√s,-½√s, ~0, ~0]; pparton_k = [½xk√s, -½xk√s, ~0, ~0];

 sum : ik in CM12: [½√s(xi + xk), ½√s(xi - xk), ~0, ~0];

ik in CMik : [√ŝ, 0, 0, 0] → ŝ = ¼s[(xi + xk)2 – (xi − xk)2] = s xi xk.

i

m

j

k

+ Fermi motion of partons@LHC not head-on collisions
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High-pT: parton variables2/5

 pi = [½√ŝ, ½√ŝ, 0, 0];

 pk = [½√ŝ, -½√ŝ, 0, 0];

 pj = [½√ŝ, ½√ŝ cosθ*, ½√ŝ sinθ*, 0];

 pm = [½√ŝ, -½√ŝ cosθ*, -½√ŝ sinθ*, 0];

 s ̂ = (pi + pk)2 = (pj + pm)2 = s xi xk;

 t̂ = (pi - pj)2 = (pm - pk)2 = - ½ŝ (1 - cosθ*);

 û = (pi - pm)2 = (pk - pj)2 = - ½ŝ (1 + cosθ*);

 s ̂ + t̂ + û = 0 (→ in parton CM, two independent variables).

i

m

j

k

i

m

j

kθ*

Comments:
• see § 3 for similar discussion for

not-composite particles;
• zero mass approx for all partons

[for m≠0, § 3 and PDG § 43.5].
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High-pT: solve the kinematics3/5

xi

xk
2pik

longLAB / √s = (xi − xk)

mik
2 /  s = ŝ / s = xi xk

meas.

• The overall transverse momentum MUST
be balanced. A pT imbalance is attributed
to non interacting particles (ν's) or, most
likely, to measurement errors.

• By measuring the 4-momenta of the final
state (e.g. two jets), it is possible to
compute ŝ and plong. From there, xi and xk
and the full kinematics at parton level.
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Compute (pi+pk) :
• LAB : [ ½√s(xi+xk), ½√s(xi−xk), ~0, ~0];
• CMik : [ √ŝ, 0, 0, 0];
→ ŝ = ¼s[(xi+xk)2 – (xi−xk)2] = s xi xk.



High-pT: structure functions (pdf)
• in the quark parton model, hadrons are

"wide-band beams" of elementary
partons;

• in first approximation, structure
functions do NOT depend on Q2 :
∂Fi(x, Q2) / ∂Q2 = 0;

• but scaling violations do exist.

4/5

u, Q2 = (5 GeV)2

.00

.08
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[cteq2m]

u, Q2 = (100 GeV)2

g, Q2 = (100 GeV)2
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x

x2 
pd

f(x
,Q

2 )

when Q2 increases :
 partons "get closer";
 qsea and g increase at small x;
 qvalence decreases at all x;
 at x fixed and large, rates

@LHC smaller than @Spp̄S.

www.zebu.uoregon.edu/~parton/part
ongraph.html
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Jet reconstruction algorithm
(one of many many many …)

cone
∆R

hadrons

High-pT: partons → jets
• reconstruct the jets via an algorithm :
 simple clustering of nearby calo cells;
 cone algo. (see fig) with fixed ∆R

(very popular ∆R2 = ∆φ2 + ∆η2 = 1);
 "Durham"
 anti-Kt
 …

• more refined cooking (split, sum, …)
• reconstruct 4-momentum :

pjet=Σphadrons; Ejet=ΣEhadrons;
• [notice that the above definition gives jets a

mass ≠ 0, generally much larger than the tiny
parton mass → more cooking …]

• identify (jet → parton) and play with its
4-momentum;

• check the manipulations with known
cases (W±, Z → jets) and montecarlo.

5/5

calo
cells
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CDF – Z→ e+e− + jets
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e+e− ↔ pp ↔ p̄p
 a hadron is a bundle of many different

partons (valence+sea quarks, sea anti-
quarks, gluons);

 many initial states are simultaneously
available in pp/p̄p, i.e. hadron
machines are much richer in physics;

 in pp/p̄p, no need to scan in √s : at
high Q2, the pdf's provide a large range
of √ŝ simultaneously (remember the
J/ψ);

 it is therefore possible to define a
"differential luminosity" dLi/d√ŝ for
partons of type "i" (quarks, gluons) as
a function of √ŝ for the same √s;

 dLi/d√ŝ, integrated in small intervals
of √ŝ, is small; it also decreases for √ŝ
→ √s (i.e. x1x2 → 1), because of the
pdf’s;

 because of all that, the experiments
and analysis are much more difficult in
hadron machines.

1/7
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Few general arguments : the REAL answer is in the complete set of lectures.



e+e− ↔ pp ↔ p̄p : soft vs hard collisions
ex. : σ(LEP II, e+e−→ hadr., √s = 200 GeV) ≈ 100 pb;

σ(LHC, pp → total, √s = 14 TeV) ≈ 100 mb;

σ(LHC, pp → jet X, ET
jet > 250 GeV) ≈ 100 nb.

2/7

[actual thresholds quite
arbitrary, retain the
order of magnitude]

~ 1 ÷ 109  ÷ 103 (!!!)

• nucleons, when coherent, are
"one billion times" larger than
electrons;

• however, when individual
partons have to play, they are
only "1,000 times" (the actual
number depends on Q2)
larger;

• the factor 1,000 is due to the
strength of the coupling (αs ↔
αem) and by the choice of ET.
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e+e− ↔ pp ↔ p̄p: small vs large σ3/7

• in ee, "small" σtot (∼pb, ∝ 1/s away
from the Z pole), dominated by high-Q2

processes mainly in the s-channel;
• therefore few events (rate ∼1 Hz), all

very interesting → event trigger;

• in pp/pp̄, much higher σtot (∼100 mb
over many orders of magnitude),
dominated by low-Q2 processes (t-
channel);

• therefore very high rate (∼109 Hz), rare
interesting events → high-pT triggers.
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e+e− ↔ pp ↔ p̄p: data analysis
In detector and analysis many differences
between e+e− and pp/p̄p:
• in ee "partonic" energy √s is fixed by

the machine, and known precisely;
• in pp/pp̄ partonic energy √ŝ changes for

each event by a large factor;
• for a given √s, the average √ŝ in a pp/pp̄

collision is much lower;

• in ee, kinematical fits in 4D, constraints
known to 10−5;

• in pp/p̄p, fits in 2D, (because of
spectators), constraints to %;

• but √s in ee machines is severely limited
by brem.

4/7

LEP I, e+e− → Z
mZ from √s (LEP)

width = ΓZ = 2.5 GeV
∆m ≈ few MeV

UA2, pp̄ → Z
mZ from m(e+e−)

width = ΓZ ⊕ σZ ≈ 4.3 GeV,
i.e. ΓZ and σZ comparable,

∆m ≈ few × 100 MeV
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e+e− ↔ pp ↔ p̄p: a personal conclusion
In a given moment, with similar
technology (and resources, don't forget) :
A pp/p̄p machine :
• needs a smaller ring (because of brem);
• more difficult to build (both the

magnets and the detectors);
• (much) higher √s and (fairly) higher √s ̂;
• analysis difficult, higher systematics;
• larger variety of both initial and final

states (not only vacuum q.n.);
Therefore [imho, but largely shared]:
 (ee) and (pp/p̄p) are complementary,

NOT competitive;
 (pp/p̄p) an exploratory machine, for

first generation experiments;
 (ee) a "second generation" machine,

for systematics and consolidation (and
surprises in the precision meas);

This has been the CERN strategy in the
last half a century :
1. (pp/p ̄p) (re-using an old machine);
2. civil engineering for a new ring (the

long and expensive step);
3. (ee) in the new ring;
4. [back to step (1), restart the cycle].
It happens that, e.g., the value of √s in
step (3) is similar to ŝeff in step (4/1) [e.g.
both the Spp̄S and LEP had W± and Z as
their main purpose.
The "luminosity frontier" (Babar, Daφne,
…) is a different approach : a dedicated
machine, especially optimized wrt
intensity and systematics, for (a) very
important (single) measurement(s).

Use the Higgs search as a test case to discuss
this strategy.

5/7
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e+e− ↔ pp ↔ p̄p: matter vs antimatter
Last question : pp ↔ p̄p ?

• pp has major problems :
 it needs two independent magnet

rings;
 at the same √s, the effective √ŝ is

smaller for qq̄ channels (valence-
sea instead of valence-valence);

• however, p̄p has a larger problem:
 antiprotons do NOT exist in

nature (at least in our proximity);
 therefore p̄'s have to be "built",

starting from pp collisions;
 they are scarce, and have an

incredible "price" (in the Spp̄S,
one good p̄ / 3×105 pp collisions);

 they have to be cooled and stored
(AA, stochastic cooling, van der
Meer);

 the resultant luminosity is small
(in 1983, the golden year, L(Spp̄S)
< 1030 cm-2s-1);

• Therefore, in spite of all the
successes of the p̄p machines, both
at CERN and Fermilab, the quest for
higher energies and (consequently)
higher luminosities makes the pp
option really superior for present
and future colliders.

• The p̄p option will probably be
reserved for dedicated single-task
machines at sub-TeV energy.

6/7
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e+e− ↔ pp ↔ p̄p: e+e− linear or circular ?
• Smart idea (SLAC '80s): build/use a

powerful e+e− linear collider, add two
arcs and produce the equivalent of a
circular electron collider [see § LEP].

• In this way, essentially NO BREM (e+/e−

only once in a curved path).

Pros/cons :
• Circular colliders (like ADA, ADONE,

SPEAR, LEP, …) :
 cost ∝ radius,
 energy to exploit ∝ E4 / R (brem),
 $ = α R + β E4 / R;

d$ / dR = 0 → α = β E4 / R2 →
Rbest = β/α E2; $min = αβ E2;

 best choice: R ∝ E2; $ ∝ E2.
• Linear colliders (SLC, next CERN ?) :
 both machine and energy ∝ length;
 R ∝ E; $ ∝ E.

• Coefficients α,β depend on technology
and market; at present the crossing is at
Ebeam ≈ 150÷200 GeV;

• LEP is the highest energy e+e− circular
collider ever built [never say never …
read the CERN strategy plan];

• p, p̄, µ±, etc., are different (see § LHC).

[thanks to Gary Feldman]
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End of chapter 1

End
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